LEARNING FROM DIFFERENT PERSPECTIVES: **ROBUST CARDIAC ARREST PREDICTION VIA TEMPORAL TRANSFER LEARNING**

JOYCE C. HO (EMORY UNIVERSITY) YUBIN PARK (ACCORDION HEALTH)

CARDIAC ARREST PREDICTION & PREVENTION

- Greatest challenges of contemporary cardiology
 - ~80% in-hospital mortality rate
 - 300,000 deaths in the US annually
- - Ignore temporal patterns
 - Unable to identify high-risk patients with sufficient intervention time

tp://images.counsel<u>heal.com/data/images/full/9825/getty</u>

Early warning / risk stratification only look at summary statistics of vital signs

CARDIAC ARREST PREDICTION: SETUP

CARDIAC ARREST PREDICTION: SETUP

CARDIAC ARREST PREDICTION: SETUP

CAPTURING TEMPORAL TRENDS IN MACHINE LEARNING MODELS

- trees
 - Temporal trends need to be encoded as features
 - Insufficient data to fit time point of interest models
- processes, etc.
 - nature

Standard "static" models: logistic regression, support vector machines, decision

"Dynamic" models: state-space models, multivariate matrix normals, Gaussian

Less interpretable compared to risk-stratification systems due to "black"-box

TTL-REG: TEMPORAL TRANSFER LEARNING BASED MODEL

- Pose estimation of coefficients at different time points as related tasks
- Borrow information from adjacent time points by smoothing estimated

$$f(\boldsymbol{\beta}) = \sum_{k=1}^{T} \ell(y_k, \mathbf{X}_k \beta_k) - \sum_{k=1}^{T-1} \frac{\lambda}{2} ||\beta_t - \beta_{t+1}||_2^2 - \sum_{k=2}^{T} \frac{\lambda}{2} ||\beta_t - \beta_{t-1}||_2^2$$

coefficients between time point before (z - 1) and time point after (z + 1)

TTL-REG: TEMPORAL TRANSFER LEARNING BASED MODEL

- Pose estimation of coefficients at different time points as related tasks
- Borrow information from adjacent time points by smoothing estimated

$$f(\boldsymbol{\beta}) = \sum_{k=1}^{T} \ell(y_k, \mathbf{X}_k \beta_k) - \sum_{k=1}^{T-1} \frac{\boldsymbol{\lambda}}{2} ||\beta_t - \beta_{t+1}||_2^2 - \sum_{k=2}^{T} \frac{\boldsymbol{\lambda}}{2} ||\beta_t - \beta_{t-1}||_2^2$$

Regularization parameter controls amount of information shared between adjacent points

coefficients between time point before (z - 1) and time point after (z + 1)

DATA: MIMIC-II

- Publicly available intensive care unit (ICU) database https://mimic.physionet.org/
- pressure
- event (~26% prevalence)

> 7 features: temperature, peripheral capillary oxygen saturation, heart rate, respiratory rate, diastolic blood pressure, systolic blood pressure, and pulse

763 elderly (aged 50+) patients with 197 of them experiencing a cardiac arrest

DATA: PATIENT EXAMPLE

variable — hr — rr — temp — spo2

observation window = 12

DATA: PATIENT EXAMPLE

observation window = 12

BASELINE MODELS: AUC + ESTIMATED COEFFICIENTS

Hour	Train	Train	Test	Te
	Mean	SD	Mean	S
1	0.6588	0.0155	0.6137	0.0
2	0.6612	0.0116	0.6138	0.0
3	0.6483	0.0174	0.6068	0.0
4	0.6777	0.0112	0.6220	0.0
5	0.6522	0.0125	0.5941	0.0
6	0.6467	0.0179	0.6306	0.0

TTL-REG MODEL: AUC + ESTIMATED COEFFICIENTS

DISCUSSION + CONCLUSION

- Temporal transfer learning by smoothing coefficients of adjacent time points
 - > Yields coefficient trajectories that are easily interpreted
 - Provides improved early prediction of cardiac arrest
- Future work
 - Explore various prediction problems (readmission, etc.)
 - Explore different classification models (SVM, decision tree, etc.)

\mathbf{Q}

Contact information:

- Joyce C. Ho (joyce.c.ho@emory.edu)
- Yubin Park (<u>yubin@accordionhealth.com</u>)

Saccordion