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CARDIAC ARREST PREDICTION & PREVENTION

▸ Greatest challenges of contemporary cardiology 

▸ ~80% in-hospital mortality rate 

▸ 300,000 deaths in the US annually 

▸ Early warning / risk stratification only look at summary statistics of vital signs 

▸ Ignore temporal patterns 

▸ Unable to identify high-risk patients with sufficient intervention time

http://images.counselheal.com/data/images/full/9825/getty-images.jpg

http://images.counselheal.com/data/images/full/9825/getty-images.jpg
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CARDIAC ARREST PREDICTION: SETUP
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CARDIAC ARREST PREDICTION: SETUP

Time point of interest 
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CARDIAC ARREST PREDICTION: SETUP

Observation window 
or training data

Time point of interest 
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CAPTURING TEMPORAL TRENDS IN MACHINE LEARNING MODELS

▸ Standard “static” models: logistic regression, support vector machines, decision 
trees 

▸ Temporal trends need to be encoded as features 

▸ Insufficient data to fit time point of interest models 

▸ “Dynamic” models: state-space models, multivariate matrix normals, Gaussian 
processes, etc. 

▸ Less interpretable compared to risk-stratification systems due to “black”-box 
nature
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TTL-REG: TEMPORAL TRANSFER LEARNING BASED MODEL

▸ Pose estimation of coefficients at different time points as related tasks 

▸ Borrow information from adjacent time points by smoothing estimated 
coefficients between time point before (z - 1) and time point after (z + 1)
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TTL-REG: TEMPORAL TRANSFER LEARNING BASED MODEL

▸ Pose estimation of coefficients at different time points as related tasks 

▸ Borrow information from adjacent time points by smoothing estimated 
coefficients between time point before (z - 1) and time point after (z + 1)
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Regularization parameter controls amount of 
information shared between adjacent points 
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DATA: MIMIC-II

▸ Publicly available intensive care unit (ICU) database 
https://mimic.physionet.org/ 

▸ 7 features: temperature, peripheral capillary oxygen saturation, heart rate, 
respiratory rate, diastolic blood pressure, systolic blood pressure, and pulse 
pressure 

▸ 763 elderly (aged 50+) patients with 197 of them experiencing a cardiac arrest 
event (~26% prevalence)

https://mimic.physionet.org/
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DATA: PATIENT EXAMPLE
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DATA: PATIENT EXAMPLE
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BASELINE MODELS: AUC + ESTIMATED COEFFICIENTS
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1 0.6588 0.0155 0.6137 0.0289
2 0.6612 0.0116 0.6138 0.0208
3 0.6483 0.0174 0.6068 0.0230
4 0.6777 0.0112 0.6220 0.0230
5 0.6522 0.0125 0.5941 0.0328
6 0.6467 0.0179 0.6306 0.0397
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TTL-REG MODEL: AUC + ESTIMATED COEFFICIENTS
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DISCUSSION + CONCLUSION

▸ Temporal transfer learning by smoothing coefficients of adjacent time points 

▸ Yields coefficient trajectories that are easily interpreted 

▸ Provides improved early prediction of cardiac arrest 

▸ Future work 

▸ Explore various prediction problems (readmission, etc.) 

▸ Explore different classification models (SVM, decision tree, etc.)



▸ Contact information: 

▸ Joyce C. Ho (joyce.c.ho@emory.edu) 

▸ Yubin Park (yubin@accordionhealth.com)
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Q&A
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