GRANITE: DIVERSIFIED, SPARSE TENSOR FACTORIZATION FOR ELECTRONIC HEALTH RECORD-BASED PHENOTYPING

Jette Henderson^{*}, Joyce C. Ho[†], Abel N. Kho[‡], Joshua C. Denny[§],

Bradley A. Malin[§], Jimeng Sun[¶], Joydeep Ghosh^{*}

^{*}University of Texas at Austin, [†]Emory University, [‡]Northwestern University [§]Vanderbilt University, [¶]Georgia Institute of Technology

INTRODUCTION

ELECTRONIC HEALTH RECORD (EHR)

Nature Reviews | Genetics

Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: towards better research applications and clinical care. Nature Reviews: Genetics, 13(6), 395–405.

EHR: CHALLENGES

Data

- Diverse patient population
- Heterogenous data types
- Noisy & varying time scales
- Application
 - Good performance
 - Medical interpretability

PHENOTYPE

- Observable characteristics of an organism determined by both genetic makeup and environmental influences
- Usage
 - Retrospective research
 - Clinical trial
 - Epidemiology/ population health

Phenotype= Blue Eyes

Genotype=bb

Recessive=b

Phenotype=Brown Eyes

Genotype = Bb or BB

Dominant =B

MODERN INTERPRETATION: EHR-BASED PHENOTYPING

- Specifications for identifying patients with a given condition of interest
- Concept representation easily understood (and therefore actionable) by clinicians

HIGH-THROUGHPUT PHENOTYPING: RECENT DEVELOPMENTS

EHR database Machine learning algorithms Phenotypes

These methods do not focus on generating sparse, diverse phenotypes with minimal supervision

TENSORS (MULTIWAY ARRAYS)

- Generalization of matrices to multidimensional array
- Representation of an n-way interaction
- Captures hierarchical information in the structure
- Used in many domains

Mittel@iotectional.apoption Mittel@iotecturec.apoption)

TENSORS

 Diagnosis-Medication

 Image: Second state st

Interaction matrix of medication for specific disease

3-mode Feature Tensor

Each element represents # times a patient receives the medication to treat a specific diagnosis

TENSOR FACTORIZATION

- Generalization of matrix factorization
- Multiway structure information utilized during decomposition process
- Many decomposition models: CANDECOMP / PARAFAC (CP), Tucker, etc.

STANDARD CP ALTERNATING LEAST SQUARES (CP-ALS)

min
$$\sum_{\vec{i}} (x_{\vec{i}} - m_{\vec{i}})^2$$

s.t. $\mathcal{M} = [\lambda; \mathbf{A}^{(1)}, \cdots, \mathbf{A}^{(N)}]$

- Objective function assumes Gaussian distribution for numeric data
- Can be altered to be nonnegative
- May not be suitable for count data

CP ALTERNATING POISSON REGRESSION (CP-APR)

- Poisson distribution for nonnegative, discrete data
- Nonnegative constraints
- Stochastic column constraints

$$\min f(\mathcal{M}) \equiv \sum_{i} m_{i} - x_{i} \log m_{i}$$

s.t $\mathcal{M} = [\![\boldsymbol{\lambda}; \mathbf{A}^{(1)}; ...; \mathbf{A}^{(N)}]\!] \in \Omega$
 $\Omega = \Omega_{\lambda} \times \Omega_{1} \times \cdots \times \Omega_{N}$
 $\Omega_{\lambda} = [0, +\infty)^{R}$
 $\Omega_{n} = \{\mathbf{A} \in [0, 1]^{I_{n} \times R} \mid ||\mathbf{a}_{r}||_{1} = 1 \forall r\}$

LIMESTONE: PHENOTYPING VIA TENSOR FACTORIZATION

Nonzero elements are clinical characteristics with the conditional probability given the phenotype and mode

MARBLE: MOTIVATION FOR DIVERSE PHENOTYPES

OVERLAPPING ELEMENTS CAN BE DIFFICULT TO INTERPRET

GRANITE: DIVERSIFIED, SPARSE TENSOR FACTORIZATION

- Poisson model for count data
- Angular and ridge terms to reduce overlapping factors
- Simplex projection for better sparsity control
- Projected gradient descent to fit decomposition T0 BE SMALL $\min \left(\sum_{\vec{i}} (z_{\vec{i}} - x_{\vec{i}} \log z_{\vec{i}}) + \frac{\beta_1}{2} \sum_{n=1}^{N} \sum_{r=1}^{R} \sum_{p=1}^{r} (\max\{0, \underbrace{|\mathbf{a}_p^{(n)}|^{\top} \mathbf{a}_r^{(n)}}{||\mathbf{a}_p^{(n)}||_2||\mathbf{a}_r^{(n)}||_2} - \theta_n \} \right)^2 + \frac{\beta_2}{2} \sum_{n=1}^{N} \sum_{r=1}^{R} (||\mathbf{a}_r^{(n)}||_2)$ s.t $\mathcal{Z} = \llbracket \sigma; \mathbf{u}^{(1)}; \cdots; \mathbf{u}^{(N)} \rrbracket + \llbracket \boldsymbol{\lambda}; \mathbf{A}^{(1)}; \cdots; \mathbf{A}^{(N)} \rrbracket$ $\sigma > 0, \lambda_r \ge 0, \forall r$ $\mathbf{A}^{(n)} \in [0, 1]^{I_n \times R}, \mathbf{u}^{(n)} \in (0, 1]^{I_n \times 1}, \forall n$ $||\mathbf{a}_r^{(n)}||_1 = ||\mathbf{u}^{(n)}||_1 = 1 \forall n$

SPARSITY CONTROL

Henderson, J., Ho, J. C., Kho, A.K., Denny, J. C., Malin, B. A., Sun, J., & Ghosh, J. (2017). Granite: Diversified, Sparse Tensor Factorization for Electronic Health Record–Based Phenotyping. Proceedings of ICHI 2017.

PUSH ELEMENTS

SIMULATED TENSORS: ACCURATE RECOVERY

- Simulated 50 thirdorder tensor of size 40 x 20 x 20 with rank of 5 with cosine similarity threshold set to .3
- Fit Granite and Marble decompositions

DATA: VANDERBILT UNIVERSITY SYNTHETIC DERIVATIVE

- Inpatient and outpatient billing and medication codes for nearly 2 million patients
- Focus on resistant hypertension
 - 1394 patients (33% cases) manually identified by domain experts
 - 177 diagnoses (HCC categories)
 - 149 medications (MeSH PA)
- Compare Granite, Marble, CP-APR, CP-ALS, NMF

RESULTS: TOP 5 RESULTING PHENOTYPES

Granite

Phenotype 1
(15.43% of Patients)
Legally Blind
Major Symptoms, Abnormalities (1,2)
Polyneuropathy
Cerebrovascular Disease Late Effects, Unspecified
Multiple Sclerosis
anticonvulsants
bronchodilators
anxiolytics, sedatives, and hypnotics

Phenotype 2
(10.76% of Patients)
Specified Heart Arrhythmias
Major Symptoms, Abnormalities (1,2
Heart Infection/Inflammation, Except Rheumatic
diuretics
beta-adrenergic blocking agents
antihyperlipidemic agents (2,5)

	Phenotype 3	
	(5.92% of Patients)	
nias malities (1,2)	Other Endocrine/Metabolic/Nutritional Disorders (3,5)	
ation, Except	Severe Hematological Disorders	
	vitamins	

Phenotype 4

(3.41% of Patients)

Rheumatoid Arthritis and Inflammatory Connective Tissue Disease

antirheumatics

Phenotype 5

(7.71% of Patients) Other Endocrine/Metabolic/Nutritional Disorders (3,5)

antihyperlipidemic agents (2,5)

Phenotype 1
(13.27% of Patients)
Other Infectious Diseases (1,2,5)
Bone/Joint/Muscle Infections/Necrosi (ii)
Major Symptoms, Abnormalities (1,2,3,4,5)
antiemetic/antivertigo agents (1,2)
anticonvulsants
anxiolytics, sedatives, and hypnotics
antihistamines (1,2)

Phenotype 2	
(9.6% of Patients)
Severe Hematolo	gical Disorders
Major Symptoms,	, Abnormalities
(1,2,3,4,5)	
Parkinson's and H	luntington's Diseases
analgesics	
antiemetic/antive	ertigo agents (1,2)
antihistamines (1	,2)

Phen	otype 3
(5.38	% of Patients)
Othe	Infectious Diseases (1,2,5)
Bone (ii)	/Joint/Muscle Infections/Necrosis
Majo	r Symptoms, Abnormalities
(1,2,3	3,4,5)
antifu	ingals
antiti	uberculosis agents
derm	atological agents

Marble

Phenotype 4
(15.43% of Patients)
Major Symptoms, Abnormalities
(1,2,3,4,5)
Coronary Atherosclerosis/Other Chronic
Ischemic Heart Disease
Congestive Heart Failure
Hypertension
beta-adrenergic blocking agents
diuretics
antiarrhythmic agents
antihyperlipidemic agents

Phenotype 5	
(5.38% of Patients)	
Major Symptoms, Abnormalities	
(1,2,3,4,5)	
Other Infectious Diseases (1,2,5)	
laxatives	
antacids	
mouth and throat products	
antiseptic and germicides	

RESULTS: COSINE SIMILARITY

RESULTS: IMPORTANCE OF PHENOTYPE WEIGHTS

- Domain expert annotated phenotypes into 3 categories
 - Clinically relevant
 - Possibly clinically relevant
 - Not relevant
- Granite generated fewer clinically relevant ones than Marble

HIGH CORRELATION BETWEEN WEIGHTS AND CLINICAL RELEVANCY

RESULTS: RESISTANT HYPERTENSION PREDICTION

- Task: Predict case vs controls
- 5 80-20 train/test splits with stratified sampling
- Logistic regression with
 Lasso
 - 10-fold CV to learn weight
 - Train on loadings (patient)
 matrix with R = 30

Model	AUC	NNZ / Phenotype
Granite	0.7298	4.63
Marble	0.7197	5.3330
CP-APR	0.7406	111.0000
CP-ALS	0.6765	113.1522
NMF	0.7203	N/A

RESULTS: NON-ZERO ELEMENTS

CONCLUSION

 Granite provides an unsupervised framework to extract concise and diverse phenotypes that retain predictive power

FUTURE WORK

Provide weak supervision using outside data sources to increase the number of clinically relevant phenotypes

COLLABORATORS

Emory University: Joyce C. Ho

- UT-Austin: Joydeep Ghosh
- GaTech: Jimeng Sun
- Vanderbilt: Joshua Denny & Bradley A Malin
- Northwestern: Abel N Kho

CONTACT INFORMATION

- Email: jette@ices.utexas.edu
- Website: <u>http://ejette.github.io/</u>

FEATURE MATRIX

Fit a decomposition on a set of patients X

- For a new set of patients X_{test}, fix diagnosis and medication modes and use projected gradient descent to fit a new patient mode
- Row normalize new patient mode to find a patient's membership to phenotypes

FEATURE MATRIX

Fit a decomposition on a set of patients X_{train}

- For a new set of patients X_{test}, fix diagnosis and medication modes and use projected gradient descent to fit a new patient mode
- Row normalize new patient mode to find a patient's membership to phenotypes