lensor Factorization

CS 584: Big Data Analytics



Tensor

- Definition: An element of the tensor product of N vector
spaces

- (Generalization of scalars, vectors, and matrices to
multidimensional array

Representation of an n-way interaction
Matrix represents a binary relation

Difficult to visualize beyond 3rd order tensors
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lensors are Everywhere
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Tensor lerminology

Meaning

dimension, axis

number of modes

fix every index but one

fix all but two indices
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Tensor lerminology

3rd order tensor

Mode 1 X —

Mode 2
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Tensor lerminology

N
1
(00)

Frontal Slices

X::k

CS 584 [Spring 2016] - Ho



Tensor lerminology

Mode-1 fibers
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Matricization: lTensor Unfolding
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Column ordering can be different across papers!
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Useful Matrix Operations

- Kronecker product: generalization of outer product
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+ Khatri-Rao product: column-wise Kronecker product
P=|p1 p2 - Dol Q=01 @ - qn

PoOQ=[pi®qa - pn®g]€R™"
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Useful Matrix Operations (2)

+ Hadamard product: element-wise multiplication
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Rank-1 Tensor: Outer Product of N Vectors
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CP Decomposition
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- Polyadic form (Hitchcock, 1927)
- CANDECOMP = Canonical Decomposition (Carroll and Chang, 1970)

- PARAFAC = Parallel Factors (Harshman, 1970)
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Matricization of CP

R
X = g a, o b, oc,
r=1

0

X(l) — A (C O, B)T
X(Q) =B (C O, A)T
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CP Property: Uniqueness

- Unique representation (unlike matrix)

- Up to permutation of terms Kruskal rank
max k such that k columns
- Up to scaling of factors are linearly independent
. N v
- Sufficient condition ka+ kg +kc>2R+2
- Problems:

- Degenerate solutions (component loadings highly correlated in all
Modes)

- Unstable and slow to converge
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CP: Tensor Rank

- Smallest number of rank-one tensors that generates
tensor X as their sum

- Not bounded by dimensions of tensor

- Computing rank is NP-hard problem: determined
numerically by trying many rank-R models

- Weak upper-bound for general third order tensor

rank( X ) <min{lJ IK,JJK}

RIXJXK
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CP Decomposition Algorithm

min [|[X — [A; A AR A

- Many algorithms

- Alternating least squares
(Carroll and Chang, 1970; Harshman, 1970)

- Nonlinear least squares
(Paatero, 1997; Tomasi and Bro, 2005)

- Nonlinear conjugate gradient
(Acar, Kolda and Dunlavy)
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Tucker Decomposition
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p=1qg=1 r=1

- Tucker3 (Tucker, 19906)
- N-mode PCA (Kapteyn et al., 1980)

- Higher-order SVD (De Lathauwer et al., 2000)
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Tucker Decomposition (2)

- Many degrees of freedom: A, B, and C are often required to
be orthogonal

+ CP decomposition is a special case of Tucker when P =Q =
R and core tensor G is superdiagonal

- Decomposition is not unique

+ Nn-rank of tensor X is the column rank of X => X is a rank-
(R1, R2, ..., Rn) tensor

- Different than idea of rank
(Minimum number of rank-one components)
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Matricization of Tucker

P Q@ R
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Tucker Decomposition Algorithms

- Alternating least squares
- Without orthogonality
- With orthogonality
- Higher-order SVD (De Lathauwer et al., 2000)

- Newton-Grassman optimization approach (Elden and
Savas, 2009)
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Other Decompositions

Model Decomposition

Imposing symmetry on two modes of

INIPICAL the CP model

CANDELINC CP with linear constraints No

Asymmetric relationships between two
modes that index the same object

DEDICOM

Yes

Only tip of the iceberg — many others available!
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What are the advantages”?

- Exploit structure for improved interpretabllity

* Robust to noise and missing data
(CP recovers components even with 99% missing in 3rd

order tensor)

- Unigqueness properties (for some decompositions)
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What are good resources”

-+ Tensor decompositions and applications
(Kolda and Bader, 2009)

- Applications of tensor (multiway array) factorization and
decompositions in data mining
(Morup, 2011)

- Multi-way Analysis: Applications in the Chemical
Sciences (Smilde, Bro, and Geladi, 2004)

- PARAFAC: Tutorial and applications (Bro, 1997)

CS 584 [Spring 2016] - Ho



What packages can | use”

- MATLAB

+ Tensor Toolbox
http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html

- N-way Toolbox
http://www.models.life.ku.dk/nwaytoolbox

- Python

- sckit-tensor
https://github.com/mnick/scikit-tensor/

- pytensor
https://code.google.com/p/pytensor/
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