
Stochastic Gradient Descent
CS 584: Big Data Analytics

CS 584 [Spring 2016] - Ho

Gradient Descent Recap
• Simplest and extremely popular

• Main Idea: take a step proportional to the negative of the
gradient

• Easy to implement

• Each iteration is relatively cheap

• Can be slow to converge

CS 584 [Spring 2016] - Ho

Example: Linear Regression
• Optimization problem:

• Closed form solution:

• Gradient update:

min
w

||Xw � y||2

w⇤ = (X>X)�1X>y

w

+ = w � 1

m

X

i

(x>
i w � yi)xi

Requires an entire pass through the data!

CS 584 [Spring 2016] - Ho

Tackling Compute Problems: Scaling to Large n

• Streaming implementation

• Parallelize your batch algorithm

• Aggressively subsample the data

• Change algorithm or training method

• Optimization is a surrogate for learning

• Trade-off weaker optimization with more data

CS 584 [Spring 2016] - Ho

Tradeoffs of Large Scale Learning
• True (generalization) error is a function of approximation

error, estimation error, and optimization error subject to
number of training examples and computational time

• Solution will depend on which budget constraint is active

Bottom and Bousquet (2011). The Tradeoffs of Large-Scale Learning.
In Optimization for Machine Learning (pp. 351–368).

CS 584 [Spring 2016] - Ho

Minimizing Generalization Error

If n ! 1,

then "est ! 0

For fixed generalization error, as number of samples increases,
we can increase optimization tolerance

Talk by Aditya Menon, UCSD

CS 584 [Spring 2016] - Ho

Expected Risk vs Empirical Risk Minimization

Expected Risk

• Assume we know the
ground truth distribution
P(x,y)

• Expected risk associated
with classification function

Empirical Risk

• Real world, ground truth
distribution is not known

• Only empirical risk can be
calculated for function

E(fw) =

Z
L(fw(x), y)dP (x, y)

= E[L(fw(x), y)]

En(fw) =
1

n

X

i

L(fw(xi), yi)

CS 584 [Spring 2016] - Ho

Gradient Descent Reformulated

• True gradient descent is a batch algorithm, slow but sure

• Under sufficient regularity assumptions, initial estimate is
close to the optimal and gain is sufficiently small, there is
linear convergence

w

+ = w � �

1

n

X

i

rwL(fw(xi), yi)

learning rate or gain

rEn(fw)

CS 584 [Spring 2016] - Ho

Stochastic Optimization Motivation
• Information is redundant amongst samples

• Sufficient samples means we can afford more frequent,
noisy updates

• Never-ending stream means we should not wait for all
data

• Tracking non-stationary data means that the target is
moving

CS 584 [Spring 2016] - Ho

Stochastic Optimization
• Idea: Estimate function and gradient from a small, current

subsample of your data and with enough iterations and data,
you will converge to the true minimum

• Pro: Better for large datasets and often faster convergence

• Con: Hard to reach high accuracy

• Con: Best classical methods can’t handle stochastic
approximation

• Con: Theoretical definitions for convergence not as well-
defined

CS 584 [Spring 2016] - Ho

Stochastic Gradient Descent (SGD)
• Randomized gradient estimate to minimize the function

using a single randomly picked example

• The resulting update is of the form:

• Although random noise is introduced, it behaves like
gradient descent in its expectation

Instead of rf, use ˜rf,where E[

˜rf] = rf

w

+ = w � �rwL(fw(xi, yi))

CS 584 [Spring 2016] - Ho

SGD Algorithm

Randomly initialize parameter w and learning rate �

while Not Converged do

Randomly shu✏e examples in training set

for i = 1, · · · , N do

w

+
= w � �rwL(fw(xi, yi))

end

end

CS 584 [Spring 2016] - Ho

The Benefits of SGD
• Gradient is easy to calculate (“instantaneous”)

• Less prone to local minima

• Small memory footprint

• Get to a reasonable solution quickly

• Works for non-stationary environments as well as online
settings

• Can be used for more complex models and error surfaces

CS 584 [Spring 2016] - Ho

Importance of Learning Rate
• Learning rate has a large impact on convergence

• Too small —> too slow

• Too large —> oscillatory and may even diverge

• Should learning rate be fixed or adaptive?

• Is convergence necessary?

• Non-stationary: convergence may not be required or desired

• Stationary: learning rate should decrease with time

• Robbins-Monroe sequence is adequate �t =
1

t

CS 584 [Spring 2016] - Ho

Mini-batch Stochastic Gradient Descent
• Rather than using a single point, use a random subset

where the size is less than the original data size

• Like the single random sample, the full gradient is
approximated via an unbiased noisy estimate

• Random subset reduces the variance by a factor of  
1/|Sk|, but is also |Sk| times more expensive

w

+ = w � �

1

|Sk|
X

i2Sk

rwL(fw(xi, yi)),where Sk ✓ [n]

CS 584 [Spring 2016] - Ho

Example: Regularized Logistic Regression
• Optimization problem:

• Gradient computation:

• Update costs:

• Batch: O(nd)

• Stochastic: O(d)

• Mini-batch: O(|Sk|d)

min

1

n

X

i

⇣
�y

i

x

>
i

� + log(1 + e

x

>
i �

)

⌘
+

�

2

||�||22

rf(�) =
X

i

(yi � pi(�))xi + ��

Batch is doable if n is moderate 
but not when n is huge

CS 584 [Spring 2016] - Ho

Example: n=10,000, d=20

Iterations make better progress as mini-batch size is
larger but also takes more computation time

http://stat.cmu.edu/~ryantibs/convexopt/lectures/25-fast-stochastic.pdf

http://stat.cmu.edu/~ryantibs/convexopt/lectures/25-fast-stochastic.pdf

CS 584 [Spring 2016] - Ho

SGD Updates for Various Systems

Bottou, L. (2012). Stochastic Gradient Descent Tricks.
Neural Networks Tricks of the Trade.

CS 584 [Spring 2016] - Ho

Asymptotic Analysis of GD and SGD

Bottou, L. (2012). Stochastic Gradient Descent Tricks.
Neural Networks Tricks of the Trade.

CS 584 [Spring 2016] - Ho

SGD Recommendations
• Randomly shuffle training examples

• Although theory says you should randomly pick examples, it
is easier to make a pass through your training set sequentially

• Shuffling before each iteration eliminates the effect of order

• Monitor both training cost and validation error

• Set aside samples for a decent validation set

• Compute the objective on the training set and validation set
(expensive but better than overfitting or wasting computation)

Bottou, L. (2012). Stochastic Gradient Descent Tricks.
Neural Networks Tricks of the Trade.

CS 584 [Spring 2016] - Ho

SGD Recommendations (2)
• Check gradient using finite differences

• If computation is slightly incorrect can yield erratic and slow
algorithm

• Verify your code by slightly perturbing the parameter and
inspecting differences between the two gradients

• Experiment with the learning rates using small sample of training set

• SGD convergence rates are independent from sample size

• Use traditional optimization algorithms as a reference point

CS 584 [Spring 2016] - Ho

SGD Recommendations (3)
• Leverage sparsity of the training examples

• For very high-dimensional vectors with few non zero
coefficients, you only need to update the weight
coefficients corresponding to nonzero pattern in x

• Use learning rates of the form

• Allows you to start from reasonable learning rates
determined by testing on a small sample

• Works well in most situations if the initial point is slightly
smaller than best value observed in training sample

�t = �0(1 + �0�t)
�1

CS 584 [Spring 2016] - Ho

Some Resources for SGD
• Francis Bach’s talk in 2012: http://www.ann.jussieu.fr/~plc/

bach2012.pdf

• Stochastic Gradient Methods Workshop: http://
yaroslavvb.blogspot.com/2014/03/stochastic-gradient-
methods-2014.html

• Python implementation in scikit-learn: http://scikit-learn.org/
stable/modules/sgd.html

• iPython notebook for implementing GD and SGD in Python:
https://github.com/dtnewman/gradient_descent/blob/master/
stochastic_gradient_descent.ipynb

http://www.ann.jussieu.fr/~plc/bach2012.pdf
http://yaroslavvb.blogspot.com/2014/03/stochastic-gradient-methods-2014.html
http://scikit-learn.org/stable/modules/sgd.html
https://github.com/dtnewman/gradient_descent/blob/master/stochastic_gradient_descent.ipynb

