Integrating Low-Rank and Group-Sparse Structures for Robust Multi-Task Learning

CS 584: Big Data Analytics

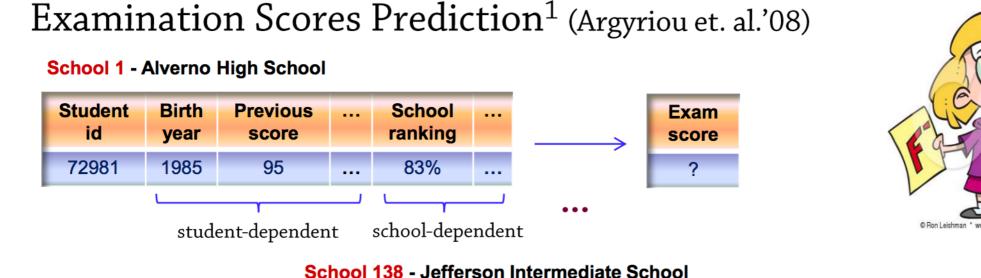
Standard Methodology: Independent Tasks

- Learn one task at a time
- Large problems can be broken into small, reasonably independent subproblems
 - Learn each subproblem separately
 - Merge the results

Motivation for Multi-Task Learning

- How to learn under the scenario of multiple related tasks?
- What if there are few data per task? Can we pool data across related tasks?
- How can we generalize well on given tasks and transfer to new tasks?

Example: Exam Score Prediction



Birth

year

1986

Previous

score

87

student-dependent

School

ranking

72%

school-dependent

...

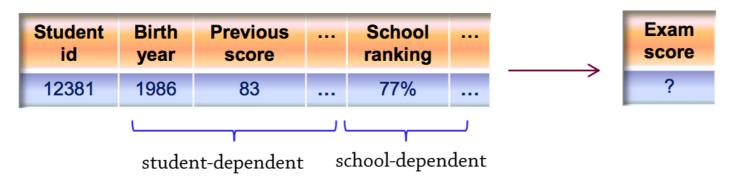
. . .

...

...

?

School 139 - Rosemead High School



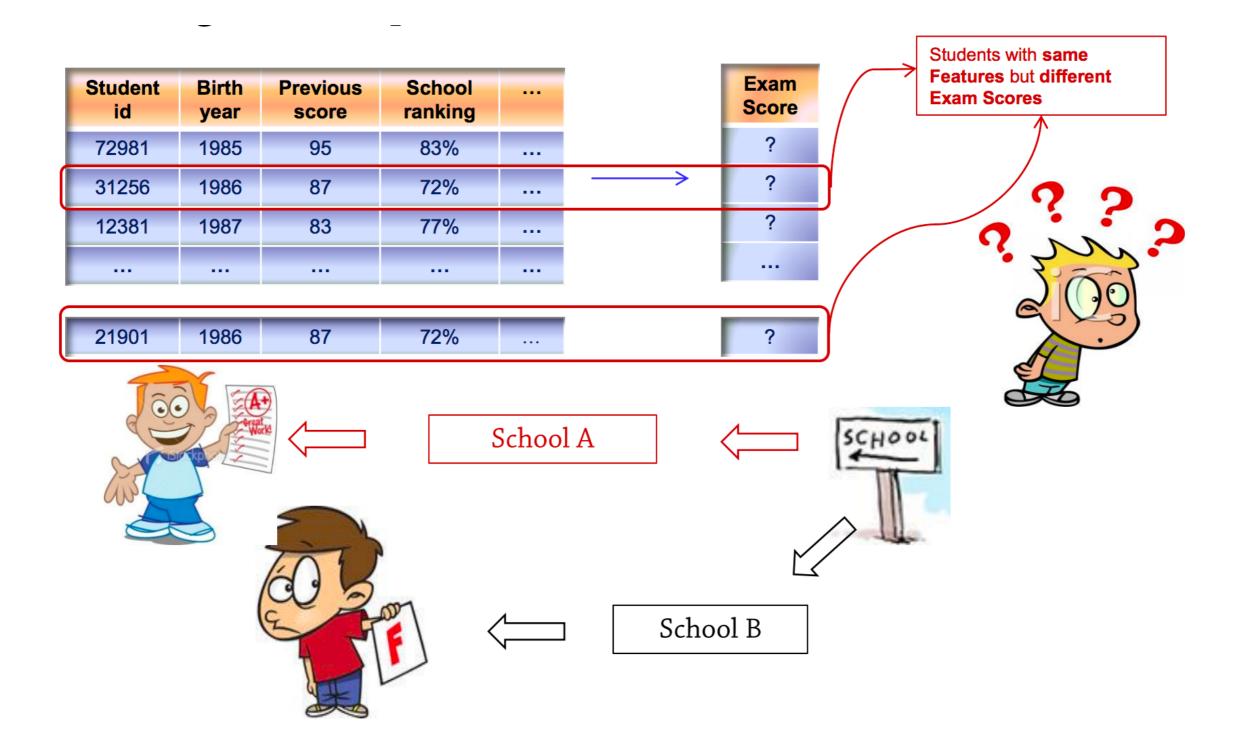
Student

id

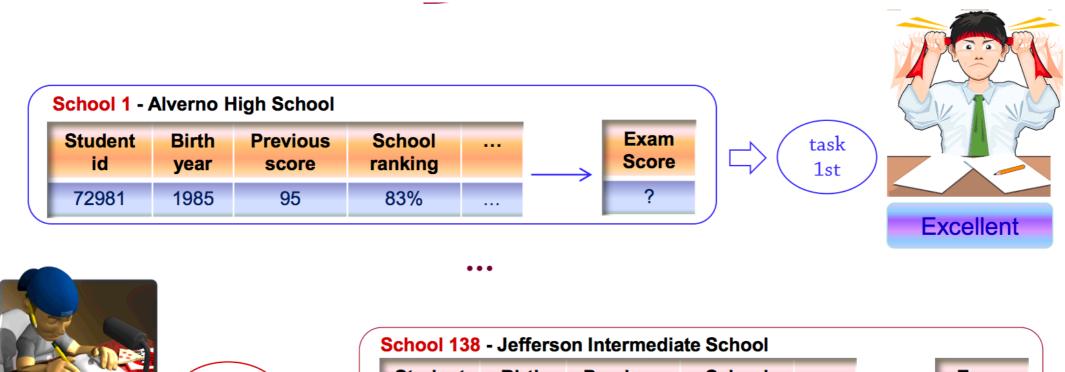
31256

¹The Inner London Education Authority (ILEA)

Solution #1: Create Pool of All Tasks



Solution #2: Learn Independently

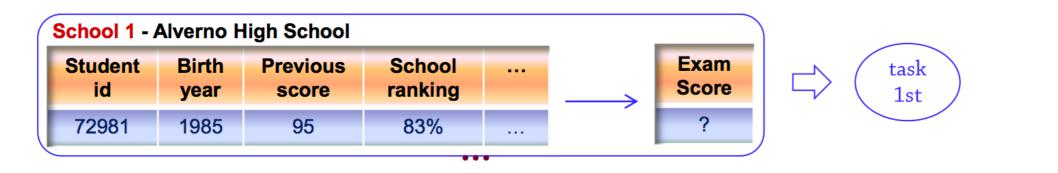


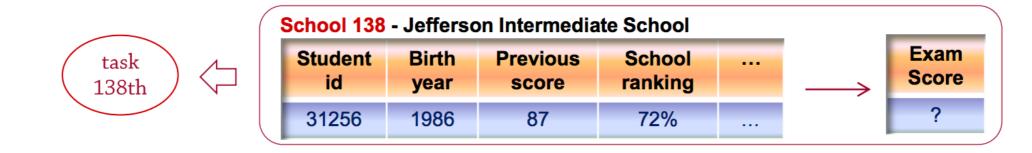
		School 138						
	task 138th	Student id	Birth year	Previous score	School ranking		\rightarrow	Exam Score
		31256	1986	87	72%			?
Excellent								

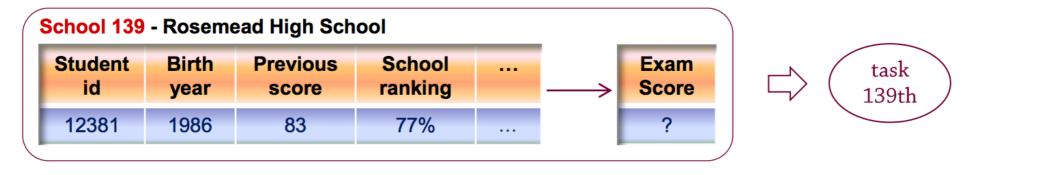
School 139	- Rosem	ead High Sch	nool				
Student id	Birth year	Previous score	School ranking	 \rightarrow	Exam Score	\downarrow $task$ 139th	- Salar
12381	1986	83	77%		?		Excellent

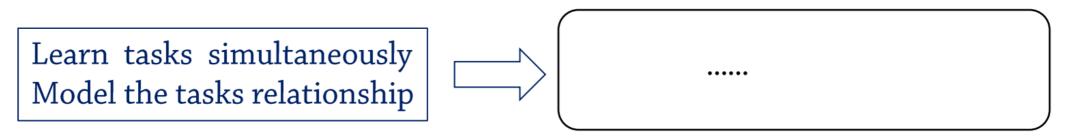
CS 584 [Spring 2016] - Ho

Solution #3: Learn Multiple Tasks Simultaneously

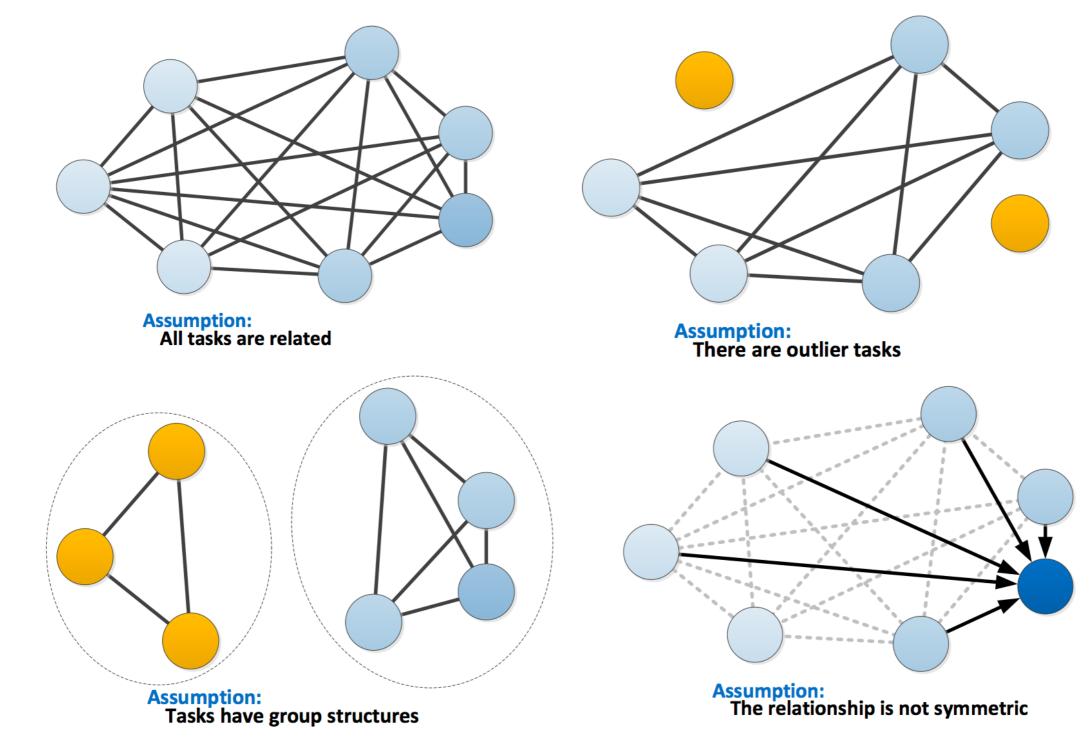








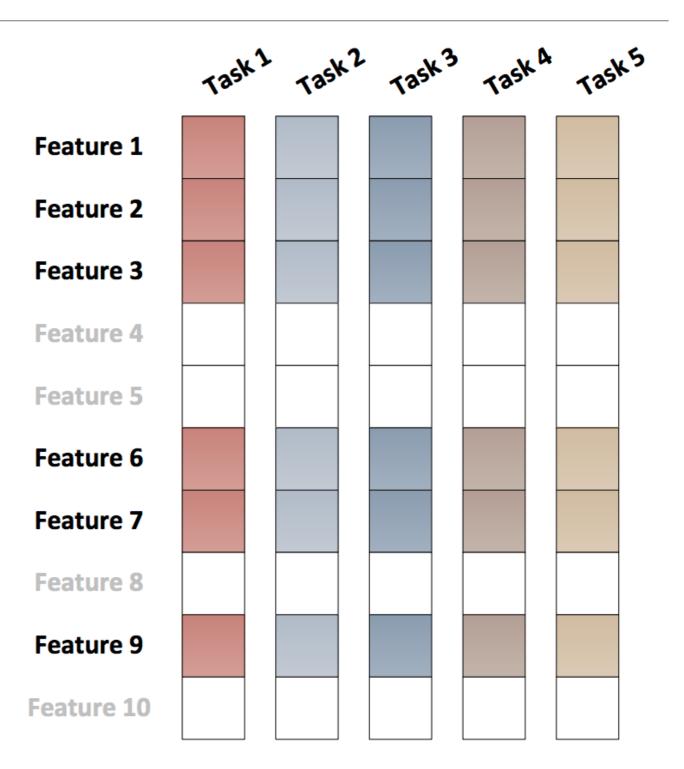
Capturing Shared Structures



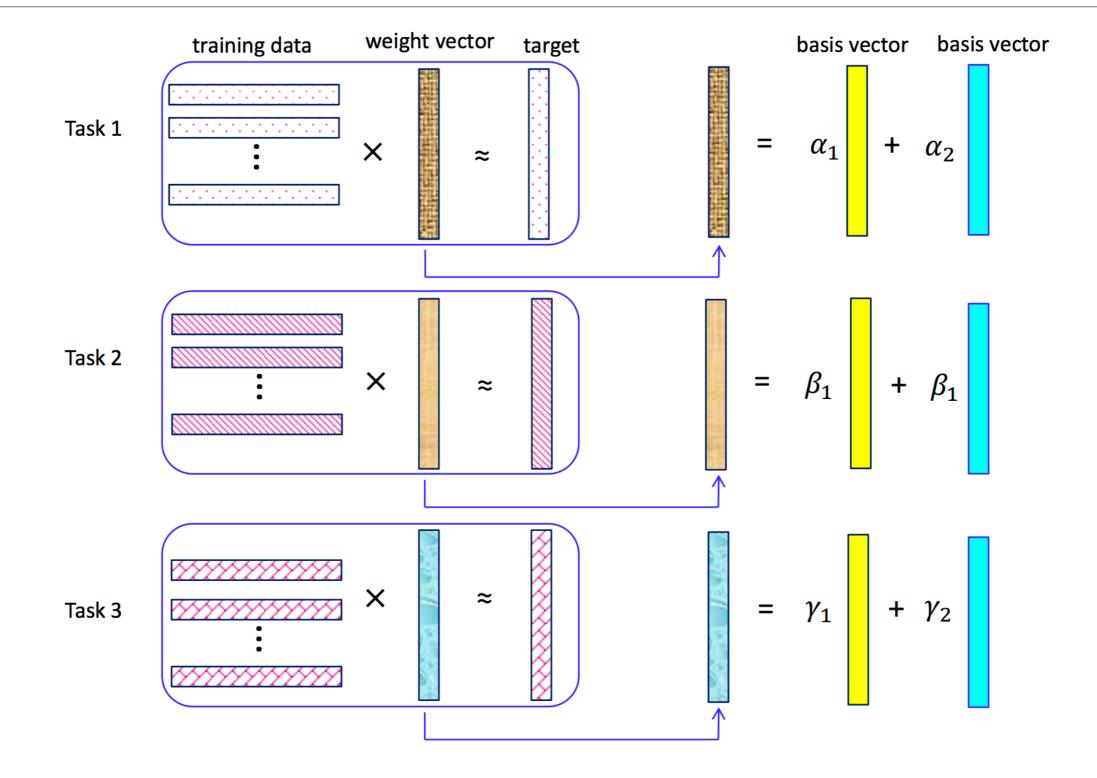
CS 584 [Spring 2016] - Ho

Multi-Task Learning with Joint Feature Learning

- Constrain all models to share a common set of features
- For example, scores from different schools may be determined by similar set of features
- Use regularization to constrain tasks to have a shared structure

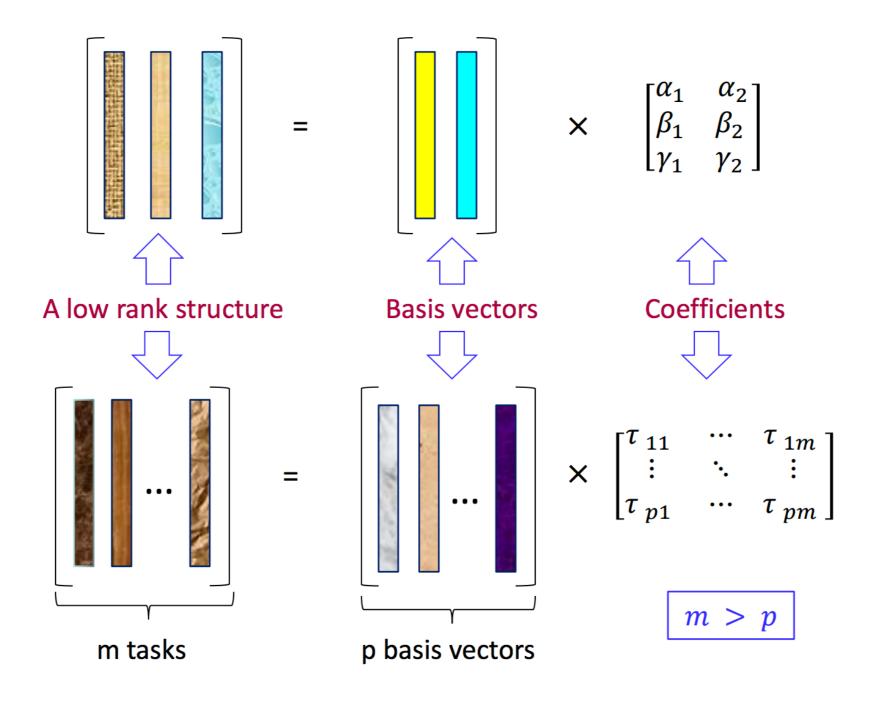


Trace-Norm Regularized MTL

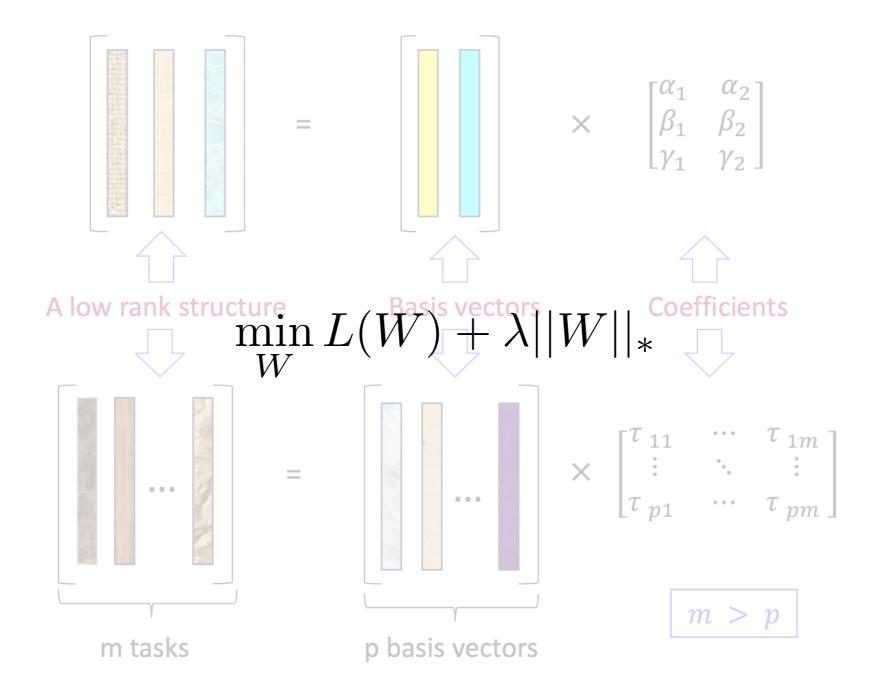


CS 584 [Spring 2016] - Ho

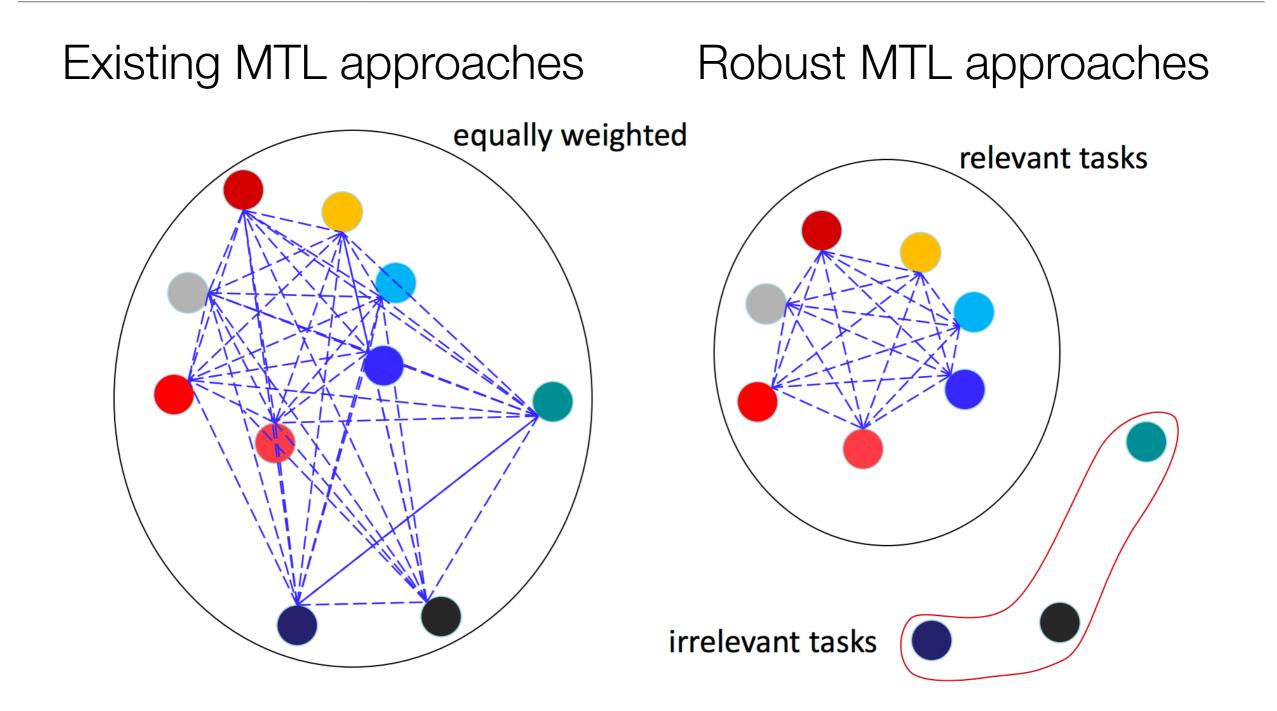
Trace-Norm Regularized MTL (2)



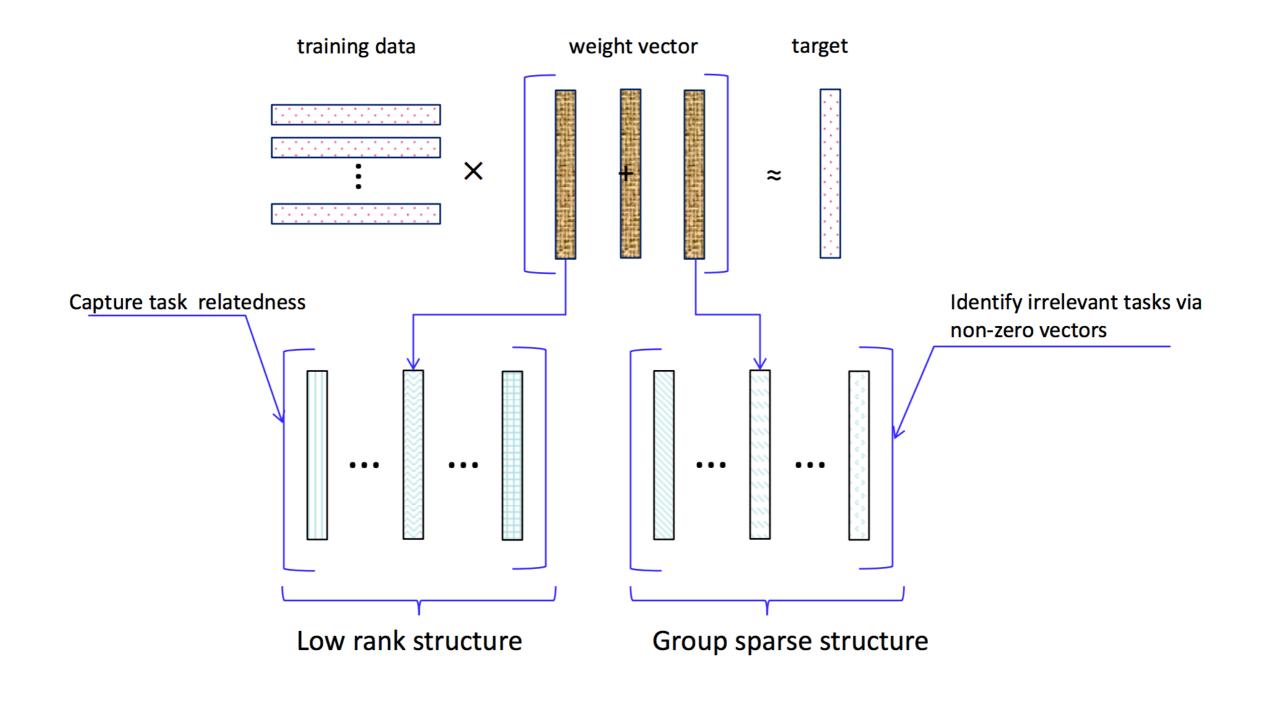
Trace-Norm Regularized MTL (3)



Robust Multi-Task Learning

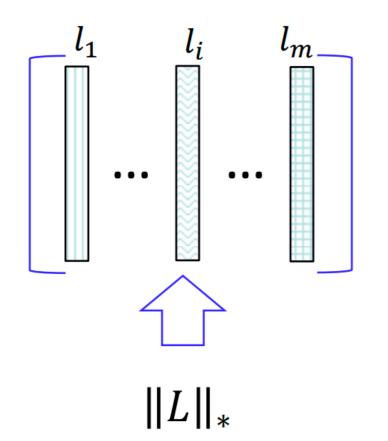


Low-Rank + Group Sparsity

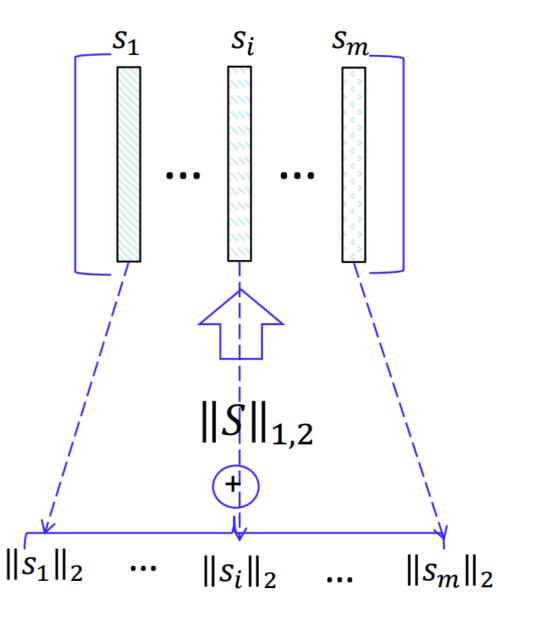


Low-Rank + Group Sparsity (2)

Low-rank structure



Group sparse structure



(Sum of singular values in L)

CS 584 [Spring 2016] - Ho

Robust Multi-Task Learning Formulation

- Simultaneously captures a common set of features amongst relevant tasks and identifies outlier tasks
- Empirical loss on ith task:

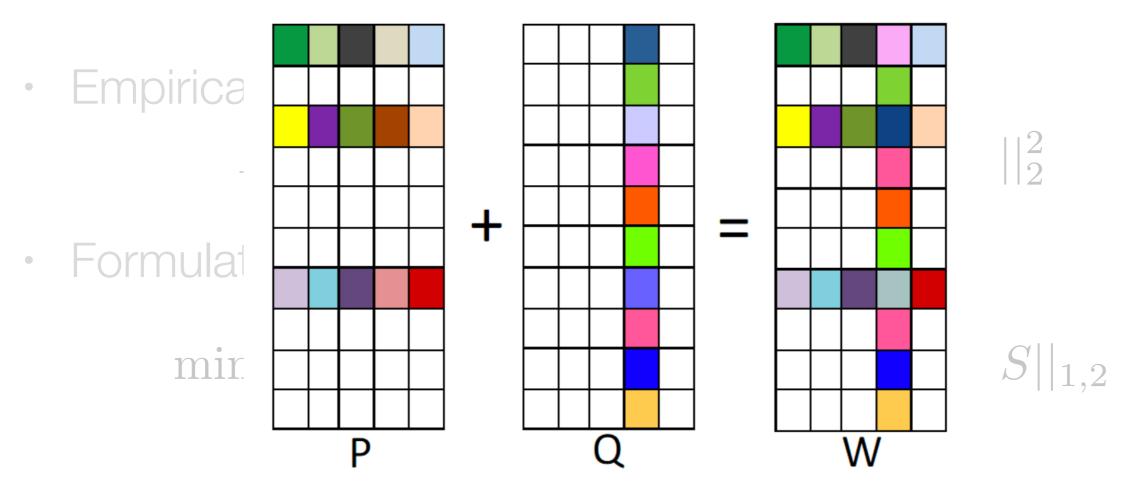
$$L_i(X_i(l_i + s), y_i) = ||X_i(l_i + s) - y_i)||_2^2$$

• Formulation:

$$\min\sum_{i} L_i(X_i(l_i+s), y_i) + \alpha ||L||_* + \beta ||S||_{1,2}$$

Robust Multi-Task Learning Formulation

 Simultaneously captures a common set of features amongst relevant tasks and identifies outlier tasks



Algorithm

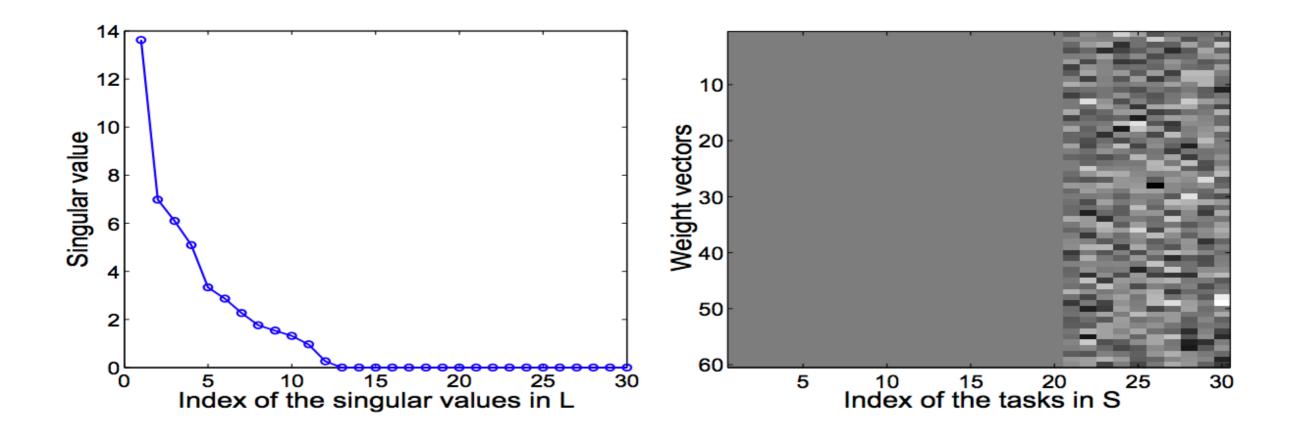
Use accelerated proximal method

- Similar to proximal gradient descent
- Includes extrapolation step in the algorithm (sometimes referred to as momentum)
- Worst-case convergence is superior to standard method

Experiment: Synthetic Data

- 30 tasks 20 related and 10 outlier
 - Each task has 50 samples with feature dimension of 60
 - Randomly generate low-rank component and set smallest 20 singular values at 0
 - Generate group-sparse component and set first 20 columns as zero vectors

Synthetic Data Results



Results are consistent with the setting of using the low-rank structure and the outlier-tasks

Experiments: Real Data

- School data exam scores of 15,362 students from 139 secondary schools
 - Each student described by 27 attributes
 - Each school is a task
- SARCOS data inverse dynamics prediction problem for 7 degrees-of-redox anthropomorphic robot arm with 48,933 observations to 7 joint torques
 - Each observation has 21 features
 - Each joint torque is a task

School Data Results

Measure	training ratio	Ridge	Lasso	TraceNorm	Sparse-LowRank	CMTL	Robust MTL
	10%	1.0398 ± 0.0038	1.0261 ± 0.0132	0.9359 ± 0.0370	0.9175 ± 0.0261	0.9413 ± 0.0021	0.9130 ± 0.0039
nMSE	20%	0.8773 ± 0.0043	0.8754 ± 0.0194	0.8211 ± 0.0032	0.8126 ± 0.0132	0.8327 ± 0.0039	0.8055 ± 0.0103
	30%	0.8171 ± 0.0090	0.8144 ± 0.0091	0.7870 ± 0.0012	0.7657 ± 0.0091	0.7922 ± 0.0052	0.7600 ± 0.0032
	10%	0.2713 ± 0.0023	0.2682 ± 0.0036	0.2504 ± 0.0102	0.2419 ± 0.0081	0.2552 ± 0.0032	0.2330 ± 0.0018
aMSE	20%	0.2303 ± 0.0003	0.2289 ± 0.0051	0.2156 ± 0.0015	0.2114 ± 0.0041	0.2131 ± 0.0071	0.2018 ± 0.0025
	30%	0.2165 ± 0.0021	0.2137 ± 0.0012	0.2089 ± 0.0012	0.2011 ± 0.0022	0.1922 ± 0.0102	0.1822 ± 0.0014

- Randomly selected 10%, 20%, 30% as training with rest as test with 15 random repetitions
- Multi-task algorithms (TraceNorm, Sparse-LowRank, CMTL, RMTL) outperform single-task learning
- RMTL outperforms all others

SARCOS Data Results

Measure	training size	Ridge	Lasso	TraceNorm	Sparse-LowRank	CMTL	Robust MTL
nMSE	50	0.2454 ± 0.0260	0.2337 ± 0.0180	0.2257 ± 0.0065	0.2127 ± 0.0033	0.2192 ± 0.0016	$\textbf{0.2123} \pm \textbf{0.0038}$
	100	0.1821 ± 0.0142	0.1616 ± 0.0027	0.1531 ± 0.0017	0.1495 ± 0.0023	0.1568 ± 0.0037	0.1456 ± 0.0138
	150	0.1501 ± 0.0054	0.1469 ± 0.0028	0.1318 ± 0.0053	0.1236 ± 0.0004	0.1301 ± 0.0034	0.1245 ± 0.0015
	50	0.1330 ± 0.0143	0.1228 ± 0.0083	0.1122 ± 0.0064	0.1073 ± 0.0026	0.1156 ± 0.0011	$\textbf{0.0982} \pm \textbf{0.0026}$
aMSE	100	0.1053 ± 0.0096	0.0907 ± 0.0023	0.0805 ± 0.0026	0.0793 ± 0.0047	0.0852 ± 0.0013	0.0737 ± 0.0083
	150	0.0846 ± 0.0045	0.0822 ± 0.0014	0.0772 ± 0.0023	0.0661 ± 0.0062	0.0755 ± 0.0025	0.0674 ± 0.0014

- Multi-task learning algorithms outperform single-task learning algorithms
- RTML performs comparably or better to all other competing algorithms
- Sparse-LowRank has similar performance to RTML => allowing each task to independently select discriminative features may improve robustness

Summary

- RTML algorithm captures task relationships using lowrank structure and identifies outlier tasks using groupsparse structure
- Adopt accelerated proximal method to solve optimization problem
- Theoretical analysis to obtain bound to characterize
 learning performance of RTML
- Experimental results on synthetic data and real-world data demonstrate effectiveness and efficiency of the algorithm