Scalable and Robust Bayesian
Inference via the Median Posterior

CS 584: Big Data Analytics

Material adapted from
David Dunson’s talk (http://bayesian.org/sites/default/files/Dunson.pdf) &
Lizhen Lin’s ICML talk (http://techtalks.tv/talks/scalable-and-robust-bayesian-inference-via-the-median-posterior/61140/)



http://bayesian.org/sites/default/files/Dunson.pdf
http://techtalks.tv/talks/scalable-and-robust-bayesian-inference-via-the-median-posterior/61140/

Big Data Analytics

- Large (big N) and complex (big P with interactions) data
are collected routinely

-+ Both speed & generality of data analysis methods are
important

- Bayesian approaches offer an attractive general approach
for modeling the complexity of big data

- Computational intractability of posterior sampling is a
major impediment to application of flexible Bayesian
methods
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Existing Frequentist Approaches: The Positives

- Optimization-based approaches, such as ADMM or
glmnet, are currently most popular for analyzing big data

- General and computationally efficient
-+ Used orders of magnitude more than Bayes methods
-+ Can exploit distributed & cloud computing platforms

-+ Can borrow some advantages of Bayes methods through
penalties and regularization

CS 584 [Spring 2016] - Ho



Existing Frequentist Approaches: The Drawbacks

+ Such optimization-based methods do not provide
measure of uncertainty

- Uncertainty quantification is crucial for most applications
- Scalable penalization methods focus primarily on convex

optimization — greatly limits scope and puts ceiling on
performance

For non-convex problems and data with complex
structure, existing optimization algorithms can fail badly
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Scalable Bayes Literature

- Number of posterior approximations have been proposed —
expectation propagation, Laplace, variational approximations

- Variational methods are most successful in practice — recent thread
on scalable algorithms for huge and streaming data

- Approaches provide an approximation to the full posterior but no
theory on how good the approximation Is

- Often underestimate the posterior variance and do not possess
robustness

- Surprisingly good performance in many predictive applications not
requiring posterior uncertainty
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Efficient Implementations of MCMC

+ Increasing literature on scaling up MCMC with various
approaches

- One approach is to rely on GPUs to parallelize steps within an
MCMC iteration (e.g., massively speed up time for updating
latent variables specific to each data point)

- GPU-based solutions cannot solve very big problems and
time gain is limited by parallelization only within iterations

+  Another approach is to accelerate bottles in calculating
likelihoods and gradients in MCMC via stochastic
approximation
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MCMC and Divide-and-Conquer

- Divide-and-conquer strategy has been extensively used
for big data in other contexts

-+ Bayesian computation on data sulbsets can enable
tractable posterior sampling

- Posterior samples from data sulbsets are informatively
combined depending on sampling model

- Limited to simple models such as Normal, Poisson, or
binomial (see consensus MCMC of Scott et al., 2013)
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Data Setting

Corrupted with the presence of outliers
Complex dependencies (interactions)

Large size (doesn’t fit on single machine)

TIME WELL SPENT™ by Tom FiclLburne
DRINKING THROUGH A FIRE HOSE

T THOUGHT YOOU SAID
YOU WERE THIRSTY
FOR LABOR DATA

WORKFORCE MANALEMENT DOESN'T HAVE To RE S0 HARD “AKRONOS
® aola KKONOS. (oM / TIME WELLSPENT

https://www.hrbartender.com/wp-content/uploads/2012/11/Kronos-Thirsty-for-Data.jpg
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Robust and Scalable Approach

+ (General: able to model complexity of big data and work
with flexible nonparametric models

- Robust: robust to outliers and contaminations

- Scalable: computationally feasible

Attractive for Bayesian inference for big data
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Basic |dea

- Each data subset can be used to obtain a noisy
approximation to the full data posterior

- Run MCMC, SMC, or your favorite algorithm on
different computers for each subset

- Combine these noisy subset posteriors in a fast and
clever way

In the albbsence of outliers and model misspecification, the
result Is a good approximation to the true posterior
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Two Fundamental Questions

- How to combine noisy estimates?
- How good is the approximation?
- Answer
- Use notion of distance among probabillity distributions

- Combine noisy subset posteriors through their median
posterior

- Working with subsets makes our approach scalable

CS 584 [Spring 2016] - Ho



Median Posterior

- Let X4, ..., Xn be 1.i.d. draws from some distribution TII,

- Divide data into R subsets (Ui, ..., Ur), each of size
approximately N / R

-+ Update a prior measure with each data subset produces R
subset posteriors TIy(- | Uy),--- ,IIg(- | Ur)

-+ Median posterior is the geometric median of sulbset posteriors

+ One can think of geometric median as some generalized
notion of median in general metric spaces
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Geometric Median

- Define a metric space: (//'\/l, p) «<— metric

set
- Example: Real space (set) and Euclidean distance (metric)

- Denote n points Iin the set as p1, ..., Pn

- Geometric median of the n points (if it exists) is defined
py = argming,e v > p(p, pi)

- For real line, this definition reducés to the usual median

- Can be applied in more complex spaces

CS 584 [Spring 2016] - Ho



Estimating Subset Posterior

- Run MCMC algorithms in an embarrassingly parallel
manner for each subset

- Independent MCMC chains for each data subset yields
draws from subset posteriors for each machine

- Yields an atomic approximation to the subset posteriors
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Median Posterior (3)

- View subset posteriors as elements in space of probability measures
OoNn parameter space

- Look for the ‘'median’ of sulbset posterior measures

. Median posterior distance between two
/~ probability measures

Iy = argminnen(@) ZP(Ha I1(- | U:))
- Problem: :

- How to define distance metric?

- How to efficiently compute median posterior?

CS 584 [Spring 2016] - Ho



Median Posterior (4)

Solution: Use

S

of

‘er embeddi

pace via are

Reproducing Kernel Hilbert Space (RKHS)
Ng the probability measures onto a Hilbert

oroducing kernel

- Computationally very convenient

- Allows accurate numerical approximation
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Hilbert Space

Generalizes the notion of Euclidean space to any finite or
INnfinite number of dimensions

-ancy hame for complete vector space with an inner
oroduct defined on space

Can think of it as a linear inner product space (with
several more additional mathematical niceties)

Most practical computations in Hilbert spaces boil down
to ordinary linear algebra

http://www.cs.columbia.edu/~risi/notes/tutorial6772.pdf
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Kernel

- Definition: Let X be a non-empty set. A function k is a
kernel If there exists an R-Hilbert space and a map such

that for all x, X’ In X

k(z,z') =< ¢(z), d(z") >m

- A kernel give rise to a valid inner product (symmetric
function) that is greater than or equal to O

-+ Can think of it as a similarity measure
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Kernels: XOR Example
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http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides4A.pdf
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Reproducing Kernel

A kernel Is a reproducing kernel it it has two properties

+ For every xo Iin X, K(y, Xo) as a function of y belongs to H
(.e., fix second variable to get function of first variable
which should be a member of the Hilbert space)

+The reproducing property, for every xo in X and fin H,

f(xo) =< f(-), k(- x0) >H

(i.e., pick any element from the set and a function from
Hilbert space, then the inner product between these

two should be eqgual to f(xo))
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Examples: Reproducing Kernels

+ Linear kernel
k(v,2')=o 2

- (Gaussian kernel

[z —a'||?

k(r,2')=e <2 , 0>0

+ Polynomial kernel

k(z,2')=(z -2’ +1)°,d €N
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Reproducing Kernel Hilbert Space

- A Hilbert space of complex-valued functions on a

nonempty set X is RKHS if the evaluation functionals are
bounded

Felf]l = 1f@)] < M|[fl|lavVf e H

- RKHS if and only if it has a reproducing kernel

+ Useful because you can evaluate functions at individual
poINts
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RKHS Distance

-+ A computationally “nice” distance by using a (RK) Hilbert
space embedding p /K VP(dz))

1P =Qllz. =1l | k(. )d(P ~Q)@)ln
- P, Q empirical measures £ = Zﬁg 2y @ = Z% Ys
71=1 71=1
1P —QllF, = Zﬁzﬁg 2 2j)+

zgl

1 2
Z%% Yis Yy) —ZLLBZ% Ziy Yj)
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Calculate Geometric Median: Weiszfeld Algorithm

+ Weiszfeld’s algorithm is an iterative algorithm

- Initialize the point so you have equal weights and the
estimate Is the average of the posteriors

- Each iteration:

QY — Q|7
- Update the weight w§t+1) T R () - —1
Zj:l HQ* — Qj“]—“k

. Update your estimate Q3" = > wiQ,
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Weiszfeld Algorithm: Practical Performance

- Advantages
- Extremely stable iterations with provable global convergence
- Simple implementation and easy extension for new data (ideal for big data)

- Relatively insensitive to choice of Bandwidth parameter in RBF kernel (good
for generic applications)

- Disadvantages:

- |terations can be slow if number of atoms across all subset posteriors are
large (use SGD to avoid iterating through all atoms)

- If all subset posteriors close to M-Posterior, Weiszfeld’s weights are
numerically unstable (use subset posterior as approximation)
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Robustness of M-Posterior

- The
can

median posterior can be proven to be robust which
nandle gamma times R number of outliers of arbitrary

nature for some appropriate constant, with R is the
number of subsets

Intuition for robustness - subset posteriors which contain

the outliers contribute little to the median posterior
calculation
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Stochastic approximation for calibration

+ Median posterior has higher variance compared to overall
posterior

+ Use stochastic approximation

- |dea: For each subset data, update the prior with a
ikelihood raised to the Rth power

R

subse

posteriorg, o< H likelihood

subset

¢ X prior

approximation of the overall likelihood
(right order of variance)
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Example: Simulated Gaussian Data

- 25 sets of 100 corrupted univariate Gaussian data

- First 99 samples are simulated from standard Gaussian
distribution

100th sample is outlier whose value linearly increases from i=1,...,
25 such that Ij100 = 1 max(xil, .. ,migg)

-+ Estimate media posterior by randomly dividing data into 10 subsets

- Assume the variance is known to be 1, subset posteriors obtainead
via stochastic approximation

- 50 such replications are performed
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(Gaussian Simulation Results
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M-posterior shows robustness to outliers!
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—xample: Simulated Gaussian Process Regression

- Simulate 100 (case 1) and 1000 (case 2) observations for x
between O and 1 and Gaussian noise via function

folz) =14 3sin(2wrx — )

+ Case 1 has 10 outliers, case 2 has 20 outliers (numlber of
subsets equal to number of outliers)

- For observations 10° and above, GP fit fails due to numerical
iInstabllity

- M-Posterior works with subsets so can always chose subsets
to avold numerical instablilities due to matrix inversion
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GP Regression Results

f(x)
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Case 1: outliers is large
compared to
observations, so
posterior inference INs
unstable

GP posterior is heavily
influenced by outliers

Both M-posterior and
GP posterior yield
similar results for case 2



EXperiment: Hormone Data

- PdG hormone levels measured in 166 women from the day of ovulation
across 41 time points

- Information about different stages of conception and non-conception
-+ Missing data and extreme observations are common
- Late ovulation cycle data is sparse

- Discard data from women missing at least half the time points

- Fit GP regression of log PdG levels on time of ovulation for 124 women

- Both GP regression and M-Posterior to estimate f for 10 fold CV
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Hormone Data: Results

log PdG levels
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Hormone Data: Discussion

- GP Posterior severely underestimates uncertainty

- M-Posterior Cl levels include most of the data in the earlier
part of the ovulation cycle

- This region has most data so it leads to most reliable
Inference

Late ovulation cycle has very few points, so Cl is wider

- M-Posterior accounts for outliers and model misspecification
—> reliable uncertainty quantification across all folds
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Summary

- Approach for scalable Bayesian inference using M-Posterior based

on RKHS embedding of probability measures for estimating median
posteriors

- Distributed learning and scales naturally to massive data

- Median provides robustness, stochastic approximation efficiency,
and Weiszfield algorithm for easy implementation

- Extensions:

-+ Extend Weiszfield using ADMM for distributed setting

- (Generalize to different choices of distances
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