
Scalable and Robust Bayesian 
Inference via the Median Posterior
CS 584: Big Data Analytics

Material adapted from 
David Dunson’s talk (http://bayesian.org/sites/default/files/Dunson.pdf) & 

Lizhen Lin’s ICML talk (http://techtalks.tv/talks/scalable-and-robust-bayesian-inference-via-the-median-posterior/61140/) 

http://bayesian.org/sites/default/files/Dunson.pdf
http://techtalks.tv/talks/scalable-and-robust-bayesian-inference-via-the-median-posterior/61140/
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Big Data Analytics
• Large (big N) and complex (big P with interactions) data 

are collected routinely 

• Both speed & generality of data analysis methods are 
important 

• Bayesian approaches offer an attractive general approach 
for modeling the complexity of big data 

• Computational intractability of posterior sampling is a 
major impediment to application of flexible Bayesian 
methods
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Existing Frequentist Approaches: The Positives

• Optimization-based approaches, such as ADMM or 
glmnet, are currently most popular for analyzing big data 

• General and computationally efficient 

• Used orders of magnitude more than Bayes methods 

• Can exploit distributed & cloud computing platforms 

• Can borrow some advantages of Bayes methods through 
penalties and regularization
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Existing Frequentist Approaches: The Drawbacks

• Such optimization-based methods do not provide 
measure of uncertainty 

• Uncertainty quantification is crucial for most applications 

• Scalable penalization methods focus primarily on convex 
optimization — greatly limits scope and puts ceiling on 
performance 

• For non-convex problems and data with complex 
structure, existing optimization algorithms can fail badly
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Scalable Bayes Literature
• Number of posterior approximations have been proposed — 

expectation propagation, Laplace, variational approximations 

• Variational methods are most successful in practice — recent thread 
on scalable algorithms for huge and streaming data 

• Approaches provide an approximation to the full posterior but no 
theory on how good the approximation is 

• Often underestimate the posterior variance and do not possess 
robustness 

• Surprisingly good performance in many predictive applications not 
requiring posterior uncertainty
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Efficient Implementations of MCMC
• Increasing literature on scaling up MCMC with various 

approaches 

• One approach is to rely on GPUs to parallelize steps within an 
MCMC iteration (e.g., massively speed up time for updating 
latent variables specific to each data point) 

• GPU-based solutions cannot solve very big problems and 
time gain is limited by parallelization only within iterations 

• Another approach is to accelerate bottles in calculating 
likelihoods and gradients in MCMC via stochastic 
approximation
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MCMC and Divide-and-Conquer
• Divide-and-conquer strategy has been extensively used 

for big data in other contexts 

• Bayesian computation on data subsets can enable 
tractable posterior sampling 

• Posterior samples from data subsets are informatively 
combined depending on sampling model 

• Limited to simple models such as Normal, Poisson, or 
binomial (see consensus MCMC of Scott et al., 2013)
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Data Setting
• Corrupted with the presence of outliers 

• Complex dependencies (interactions) 

• Large size (doesn’t fit on single machine)

https://www.hrbartender.com/wp-content/uploads/2012/11/Kronos-Thirsty-for-Data.jpg

https://www.hrbartender.com/wp-content/uploads/2012/11/Kronos-Thirsty-for-Data.jpg
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Robust and Scalable Approach
• General: able to model complexity of big data and work 

with  flexible nonparametric models 

• Robust: robust to outliers and contaminations 

• Scalable: computationally feasible

Attractive for Bayesian inference for big data 
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Basic Idea
• Each data subset can be used to obtain a noisy 

approximation to the full data posterior 

• Run MCMC, SMC, or your favorite algorithm on 
different computers for each subset 

• Combine these noisy subset posteriors in a fast and 
clever way 

• In the absence of outliers and model misspecification, the 
result is a good approximation to the true posterior
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Two Fundamental Questions
• How to combine noisy estimates? 

• How good is the approximation? 

• Answer 

• Use notion of distance among probability distributions 

• Combine noisy subset posteriors through their median 
posterior 

• Working with subsets makes our approach scalable
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Median Posterior
• Let X1, …, XN be i.i.d. draws from some distribution 

• Divide data into R subsets (U1, …, UR), each of size 
approximately N / R 

• Update a prior measure with each data subset produces R 
subset posteriors 

• Median posterior is the geometric median of subset posteriors 

• One can think of geometric median as some generalized 
notion of median in general metric spaces

⇧0

⇧1(· | U1), · · · ,⇧R(· | UR)
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Geometric Median
• Define a metric space:  

• Example: Real space (set) and Euclidean distance (metric) 

• Denote n points in the set as p1, …, pn 

• Geometric median of the n points (if it exists) is defined  

• For real line, this definition reduces to the usual median 

• Can be applied in more complex spaces

(M, ⇢) metric

set

pM = argminp2M
X

i

⇢(p, pi)
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Estimating Subset Posterior
• Run MCMC algorithms in an embarrassingly parallel 

manner for each subset 

• Independent MCMC chains for each data subset yields 
draws from subset posteriors for each machine 

• Yields an atomic approximation to the subset posteriors
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Median Posterior (3)
• View subset posteriors as elements in space of probability measures 

on parameter space 

• Look for the ‘median’ of subset posterior measures 

• Median posterior 

• Problem: 

• How to define distance metric? 

• How to efficiently compute median posterior?

⇧M = argmin⇧2⇧(⇥)

X

r

⇢(⇧,⇧(· | Ur))

distance between two 
probability measures



CS 584 [Spring 2016] - Ho

Median Posterior (4)
Solution: Use Reproducing Kernel Hilbert Space (RKHS) 
after embedding the probability measures onto a Hilbert 
space via a reproducing kernel 

• Computationally very convenient 

• Allows accurate numerical approximation
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Hilbert Space
• Generalizes the notion of Euclidean space to any finite or 

infinite number of dimensions 

• Fancy name for complete vector space with an inner 
product defined on space 

• Can think of it as a linear inner product space (with 
several more additional mathematical niceties) 

• Most practical computations in Hilbert spaces boil down 
to ordinary linear algebra

http://www.cs.columbia.edu/~risi/notes/tutorial6772.pdf

http://www.cs.columbia.edu/~risi/notes/tutorial6772.pdf
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Kernel
• Definition: Let X be a non-empty set. A function k is a 

kernel if there exists an R-Hilbert space and a map such 
that for all x, x’ in X 

• A kernel give rise to a valid inner product (symmetric 
function) that is greater than or equal to 0 

• Can think of it as a similarity measure 

k(x, x0) =< �(x),�(x0) >H
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Kernels: XOR Example

No linear classifier 
separates red from blue

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides4A.pdf

Map points to higher 
dimension feature space

�(x) =

2

4
x1

x2

x1x2

3

5

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides4A.pdf
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Reproducing Kernel
A kernel is a reproducing kernel if it has two properties 

• For every x0 in X, k(y, x0) as a function of y belongs to H 
(i.e., fix second variable to get function of first variable 
which should be a member of the Hilbert space) 

• The reproducing property, for every x0 in X and f in H,  
 
 
(i.e., pick any element from the set and a function from 
Hilbert space, then the inner product between these 
two should be equal to f(x0))

f(x0) =< f(·), k(·, x0) >H
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Examples: Reproducing Kernels
• Linear kernel 

• Gaussian kernel 

• Polynomial kernel

k(x, x0) = x · x0

k(x, x0) = e

||x�x

0||2

�

2
, � > 0

k(x, x0) = (x · x0 + 1)2, d 2 N
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Reproducing Kernel Hilbert Space
• A Hilbert space of complex-valued functions on a 

nonempty set X is RKHS if the evaluation functionals are 
bounded 
 

• RKHS if and only if it has a reproducing kernel  

• Useful because you can evaluate functions at individual 
points

|Ft[f ]| = |f(t)|  M ||f ||H8f 2 H
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RKHS Distance
• A computationally “nice” distance by using a (RK) Hilbert 

space embedding 
 
 

• P, Q empirical measures 
 
 
 

P 7!
Z

K(x, ·)P (dx))

||P �Q||F
x

= ||
Z

X

k(x, ·)d(P �Q)(x)||H

P =
N1X

j=1

�j�zj , Q =
N2X

j=1

�j�yj

||P �Q||2Fk
=

N1X

i,j=1

�i�jk(zi, zj)+

N2X

i,j=1

�i�jk(yi, yj)� 2
N1X

i=1

N2X

j=1

�i�jk(zi, yj)
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Calculate Geometric Median: Weiszfeld Algorithm

• Weiszfeld’s algorithm is an iterative algorithm 

• Initialize the point so you have equal weights and the 
estimate is the average of the posteriors 

• Each iteration: 

• Update the weight 

• Update your estimate

w(t+1)
r =

||Q(t)
⇤ �Qr||�1

FkPR
j=1 ||Q

(t)
⇤ �Qj ||�1

Fk

Q(t+1)
⇤ =

X
w(t+1)

r Qj
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Weiszfeld Algorithm: Practical Performance
• Advantages 

• Extremely stable iterations with provable global convergence 

• Simple implementation and easy extension for new data (ideal for big data) 

• Relatively insensitive to choice of Bandwidth parameter in RBF kernel (good 
for generic applications) 

• Disadvantages: 

• Iterations can be slow if number of atoms across all subset posteriors are 
large (use SGD to avoid iterating through all atoms) 

• If all subset posteriors close to M-Posterior, Weiszfeld’s weights are 
numerically unstable (use subset posterior as approximation)
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Robustness of M-Posterior
• The median posterior can be proven to be robust which 

can handle gamma times R number of outliers of arbitrary 
nature for some appropriate constant, with R is the 
number of subsets 

• Intuition for robustness - subset posteriors which contain 
the outliers contribute little to the median posterior 
calculation
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Stochastic approximation for calibration
• Median posterior has higher variance compared to overall 

posterior 

• Use stochastic approximation 

• Idea: For each subset data, update the prior with a 
likelihood raised to the Rth power

posteriorSA /
Y

subset

likelihood

R
subset ⇥ prior

approximation of the overall likelihood 
(right order of variance)
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Example: Simulated Gaussian Data
• 25 sets of 100 corrupted univariate Gaussian data 

• First 99 samples are simulated from standard Gaussian 
distribution 

• 100th sample is outlier whose value linearly increases from i=1,…, 
25 such that 

• Estimate media posterior by randomly dividing data into 10 subsets 

• Assume the variance is known to be 1, subset posteriors obtained 
via stochastic approximation 

• 50 such replications are performed

xi100 = imax(xi1, · · · , xi99)
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Gaussian Simulation Results

M-posterior shows robustness to outliers!
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Example: Simulated Gaussian Process Regression

• Simulate 100 (case 1) and 1000 (case 2) observations for x 
between 0 and 1 and Gaussian noise via function 

• Case 1 has 10 outliers, case 2 has 20 outliers (number of 
subsets equal to number of outliers) 

• For observations 105 and above, GP fit fails due to numerical 
instability 

• M-Posterior works with subsets so can always chose subsets 
to avoid numerical instabilities due to matrix inversion

f0(x) = 1 + 3 sin(2⇡x� ⇡)
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GP Regression Results
• Case 1: outliers is large 

compared to 
observations, so 
posterior inference ins 
unstable 

• GP posterior is heavily 
influenced by outliers 

• Both M-posterior and 
GP posterior yield 
similar results for case 2
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Experiment: Hormone Data
• PdG hormone levels measured in 166 women from the day of ovulation 

across 41 time points 

• Information about different stages of conception and non-conception 

• Missing data and extreme observations are common 

• Late ovulation cycle data is sparse 

• Discard data from women missing at least half the time points 

• Fit GP regression of log PdG levels on time of ovulation for 124 women 

• Both GP regression and M-Posterior to estimate f for 10 fold CV
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Hormone Data: Results
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Hormone Data: Discussion
• GP Posterior severely underestimates uncertainty 

• M-Posterior CI levels include most of the data in the earlier 
part of the ovulation cycle 

• This region has most data so it leads to most reliable 
inference 

• Late ovulation cycle has very few points, so CI is wider 

• M-Posterior accounts for outliers and model misspecification 
—> reliable uncertainty quantification across all folds
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Summary
• Approach for scalable Bayesian inference using M-Posterior based 

on RKHS embedding of probability measures for estimating median 
posteriors 

• Distributed learning and scales naturally to massive data 

• Median provides robustness, stochastic approximation efficiency, 
and Weiszfield algorithm for easy implementation 

• Extensions: 

• Extend Weiszfield using ADMM for distributed setting 

• Generalize to different choices of distances


