
LSH: A Survey of Hashing for 
Similarity Search
CS 584: Big Data Analytics



CS 584 [Spring 2016] - Ho

LSH Problem Definition
• Randomized c-approximate R-near neighbor 

or (c,r)-NN: Given a set P of points in a d-
dimensional space, and parameters R > 0,   > 
0, construct a data structure such that given 
any query point q, if there exists an R-near 
neighbor of q in P, reports some cR neighbor 
of q in P with probability 1- 

• Randomized R-near neighbor reporting: Given 
a set P pf points in a d-dimensional space, 
and parameters R > 0,    > 0, construct a data 
structure such that given any query point q, 
reports each R-near neighbor of q with a 
probability 1-

�

�

�

�



CS 584 [Spring 2016] - Ho

• Suppose we have a metric space S of points with a distance 
measure d 

• An LSH family of hash functions,                             , has the 
following properties for any  

• If                      , then  

• If                      , then 

• For family to be useful,   

• Theory leaves unknown what happens to pairs at distances between 
r and cr

LSH Definition

q, p 2 S

d(p, q)  r PH[h(p) = h(q)] � P1

PH[h(p) = h(q)]  P2d(p, q) � cr

H(r, cr, P1, P2)

P1 > P2



CS 584 [Spring 2016] - Ho

LSH Gap Amplification
• Choose L functions gj, j = 1, .., L 

•   

• hk,j are chosen at random from LSH family 

• Retain only the nonempty buckets (since total number of 
buckets may be large) - O(nL) memory cells 

• Construct L hash tables, where for each j = 1, .. L, the nth 
hash table contains the datapoint hashed using the 
function gj

gj(q) = (h1,j(q), · · · , hk,j(q))

H



CS 584 [Spring 2016] - Ho

LSH Query
• Scan through the L buckets after processing q and 

retrieve the points stored in them 

• Two scanning strategies 

• Interrupt the search after finding the first L’ points 

• Continue the search until all points from all buckets are 
retrieved 

• Both strategies yields different behaviors of the algorithm



CS 584 [Spring 2016] - Ho

LSH Query Strategy 1
Set L’ = 3L to yield a solution to the randomized c-
approximate R-near neighbor problem 

• Let  

• Set L to  

• Algorithm runs in time proportional to  

• Sublinear in n if P1 > P2

⇢ =
ln 1/P1

ln 1/P2

✓(n⇢)

n⇢



CS 584 [Spring 2016] - Ho

LSH Query Strategy 2
• Solves the randomized R-near neighbor reporting 

problem 

• Value of failure probability depends on choice of k and 
L 

• Query time is also dependent on k and L and can be 
as high as ✓(n)



CS 584 [Spring 2016] - Ho

Hamming Distance [Indyk & Motwani, 1998]

• Binary vectors: {0, 1}d 

• LSH family: hi(p) = pi, where i is a randomly chosen index 

• Probability of same bucket:  

• Exponent is ⇢ = 1/c

P (h(yi) = h(yj)) = 1� ||yi � yj ||H
d



CS 584 [Spring 2016] - Ho

Jaccard Coefficient: Min-Hash 
• Similarity between two sets C1, C2 

• Distance: 1 - sim(C1, C2) 

• LSH family: pick a random permutation  

• Probability of same bucket:

h⇡(C) = min
⇡

⇡(C)

sim(C1, C2) = ||C1 \ C2||/||C1 [ C2||

P [h⇡(C1) = h⇡(C2)] = sim(C1, C2)



CS 584 [Spring 2016] - Ho

Jaccard Coefficient: Other Options
• K-min sketch: generalization of min-wise sketch used for 

min-hash with smaller variance but cannot be used for 
ANN using hash tables like min-hash 

• Min-max hash: instead of keeping the smallest hash value 
of each random permutation, keeps both the smallest and 
largest values of each random permutation and has 
smaller variance than min-hash 

• B-bit minwise hashing: only uses lowest b-bits of the min-
hash value and has substantial advantages in terms of 
storage space



CS 584 [Spring 2016] - Ho

Angle-based Distance: Random Projection
• Consider angle between two vectors: 

• LSH family: pick a random vector w, which follows the 
standard Gaussian distribution 

• Probability of collision

arccos

✓
p · q

||p||2||q||2

◆

hw(p) = sign(w · p)

P (h(p) = h(q)) = 1� ✓(p, q)

⇡



CS 584 [Spring 2016] - Ho

Angle-Based Distance: Other Families
• Super-bit LSH: divide random projections into G groups 

and orthogonalized B random projections for each group 
to yield GB random projections and G B-super bits 

• Kernel LSH: build LSH functions with angle defined in 
kernel space 

• LSH with learnt metric: first learn Mahalanobis metric from 
semi-supervised information before forming hash function  

✓(p, q) = arccos

�(p)>�(q)

||�(p)||2||�(q)||2

✓(p, q) = arccos

p>Aq

||Gp||2||Gq||2
, G>G = A



CS 584 [Spring 2016] - Ho

Angle-Based Distance: Other Families (2)
• Concomitant LSH: uses concomitant (induced order 

statistics) rank order statistics to form the hash functions 
for cosine similarity  

• Hyperplane hashing: retrieve points closest to a query 
hyperplane

http://vision.cs.utexas.edu/projects/activehash/

http://vision.cs.utexas.edu/projects/activehash/


CS 584 [Spring 2016] - Ho

    Distance: Norms
• Norms usually computed over vector differences 

• Common examples: 

• Manhattan (p = 1) on telephone vectors capture 
symmetric set difference between two customers 

• Euclidean (p = 2) 

• Small values of p (p = 0.005) capture Hamming norms, 
distinct values

`p



CS 584 [Spring 2016] - Ho

    Distance: p-stable Distributions
• Let v in Rd and suppose Z, X1, …, Xd are drawn iid from a distribution 

D. Then D is p-stable if:  

• Known that p-stable distributions exist for  

• Examples: 

• Cauchy distribution is 1-stable 

• The standard Gaussian distribution is 2-stable 

• For 0 < p < 2, there is a way to sample from a p-stable distribution 
given two uniform random variables over [0, 1]

< v,X >= ||v||pZ

`p

p 2 (0, 2]

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides


CS 584 [Spring 2016] - Ho

    Distance: p-stable Distributions (2)
• Consider a vector, where each Xi is drawn from a p-

stable distribution 

• For any pair of vectors, a, b: 
aX - bX = (a - b) X (by linearity) 

• Thus aX - bX is distributed as (lp(a-b))X’ where X’ is a p-
stable distribution random variable 

• Using multiple independent X’s we can use a X - b X to 
estimate lp(a - b)

`p

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides


CS 584 [Spring 2016] - Ho

    Distance: p-stable Distributions (3)
• For a vector a, the dot product a X projects onto the real 

line 

• For any pair of vectors a, b, these projections are 
“close” (with respect to p) if lp(a-b) is “small” and “far” 
otherwise 

• Divide the real line into segments of width w 

• Each segment defines a hash bucket: vectors that 
project to the same segment belong to the same bucket

`p

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides


CS 584 [Spring 2016] - Ho

    Distance: Hashing family
• Hash function:  

• a is a d dimensional random vector where each entry is 
drawn from p-stable distribution 

• b is a random real number chosen uniformly from [0, w] 
(random shift)

`p

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides

ha,b(v) =

�
a · v + b

w

⌫

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides


CS 584 [Spring 2016] - Ho

    Distance: Collision probabilities
• pdf of the absolute value of p-stable distribution:  

• Simplify notation: c = ||x - q||p 

• Probability of collision: 

• Probability only depends on the distance c and is 
monotonically decreasing

`p

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides

fp(t)

P (c) =

Z w

t=0

1

c
f(

t

c
)(1� t

w
)dt

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides


CS 584 [Spring 2016] - Ho

    Distance: Comparison
• Previous hashing scheme for p = 1, 2 

• Reduction to hamming distance 

• Achieved 

• New scheme achieves smaller exponent for p = 2 

• Large constants and log factors in query time besides  

• Achieves the same for p = 1

`p

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides

⇢ = 1/c

n⇢

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides


CS 584 [Spring 2016] - Ho

    Distance: Other Families
• Leech lattice LSH: multi-dimensional version 

of the previous hash family 

• Very fast decoder (about 519 operations) 

• Fairly good performance for exponent 
with c = 2 as the value is less than 0.37 

• Spherical LSH: designed for points that are 
on unit hypersphere in Euclidean space

`p



CS 584 [Spring 2016] - Ho

      Distance (Used in Computer Vision)
• Distance over two vectors p, q: 
 

• Hash family: 

• Probability of collision:

�2

�2(p, q) =

vuut
dX

i=1

(pi � qi)2

pi � qi

hw,b(p) = bgr(w>
x) + bc, gr(p) =

1

2
(

r
8p

r

2
+ 1� 1)

P (hw,b(p) = hw,b(q)) =

Z (n+1)r2

0

1

c
f(

t

c
)(1� t

(n+ 1)r2
)dt

pdf of the absolute value of the 2-stable distribution



CS 584 [Spring 2016] - Ho

Learning to Hash
Task of learning a compound hash function to map an input 
item x to a compact code y 

• Hash function 

• Similarity measure in the coding space 

• Optimization criterion



CS 584 [Spring 2016] - Ho

Learning to Hash: Common Functions
• Linear hash function 
 

• Nearest vector assignment computed by some algorithm, 
e.g., K-means 

• Family of hash functions influences efficient of computing 
hash codes and the flexibility of partitioning the space

y = sign(w>
x)

y = argmink2{1,··· ,K}||x� ck||2



CS 584 [Spring 2016] - Ho

Learning to Hash: Similarity Measure
• Hamming distance and its variances 

• Weighted Hamming distnace 

• Distance table lookup 

• … 

• Euclidean distance 

• Asymmetric Euclidean didstance



CS 584 [Spring 2016] - Ho

Learning to Hash: Optimization Criterion
• Similarity preserving 

• Similarity alignment criterion directly compares the order of 
ANN search result to true result (order-perserving criterion) 

• Coding consistent hashing encourages the smaller 
distances in the coding space but with smaller distances in 
the input space 

• Coding balance uniformly distributes the codes amongst each 
bucket 

• Bit balance, bit independence, search efficiency, etc.



CS 584 [Spring 2016] - Ho

Coding Consistent Hashing: Spectral Hashing

• Pioneering coding consistent hashing algorithms 

• Similar items are mapped to similar hash codes based 
on the Hamming distance 

• Small number of hash bits are required 

• Bit balance and bit correlation



CS 584 [Spring 2016] - Ho

Spectral Hashing

Address&Space&

Seman-cally&&
similar&&
images&

Query&address&

Non6linear&
dimensionality&

reduc-on&

Query&&
Image&

Binary&&
code& Images&in&database&

Quite&different&
to&a&(conven-onal)&
randomizing&hash&

Spectral&
Hash&

Real6valued&
vectors&

http://cs.nyu.edu/~fergus/drafts/Spectral%20Hashing.ppt

http://cs.nyu.edu/~fergus/drafts/Spectral%20Hashing.ppt


CS 584 [Spring 2016] - Ho

Spectral Hashing: Algorithm
• Use PCA of the N dimensional reference data items to 

find principal components 

• Compute the M 1D Laplacian eigenfunctions with the 
smallest eigenvalues along each PCA direction 

• Pick the M eigenfunctions with the smallest eigenvalues 
among Md eigenfunctions 

• Threshold the eigenfunction at zero, obtaining the binary 
codes



CS 584 [Spring 2016] - Ho

Coding Consistent Hashing: Other Functions

• Kernelized spectral hashing: extension of spectral 
hashing to allow hash functions to be defined using 
kernels 

• Hypergraph spectral hashing: extension of spectral 
hashing from ordinary (pair-wise) graph to a hypergraph 
(multi-wise graph) 

• ICA hashing: achieves coding balance (average number 
of data items mapped to each hash code is the same) by 
minimizing mutual information



CS 584 [Spring 2016] - Ho

Similarity Alignment Hashing: Binary 
Reconstructive Embedding

• Learn hash codes to minimize Euclidean distance in the 
input space and the Hamming distance in the hash code 
values 

• Sample data items to form the hashing function using a 
kernel function and learn the weights

min
X

(i,j)2N

✓
1

2
||xi � xj ||2F � 1

m

||yi � yj ||22
◆2



CS 584 [Spring 2016] - Ho

Order Preserving Hashing: Minimal Loss Hashing

• Hinge-like loss function to assign penalties for similar 
points when they are too far apart 

• Optimize using a perceptron-like learning procedure

min

X

(i,j)2L

I[sij = 1]max(||yi � yj ||1 � ⇢+ 1, 0)+

I[sij = 0]�max(⇢� ||yi � yj ||1 + 1, 0)



CS 584 [Spring 2016] - Ho

Learning to Hash: Other Topics
• Many other hash learning algorithms (different objectives 

associated with different domains) 

• Moving beyond Hamming distances in the coding space (e.g., 
Manhattan, asymmetric distances) 

• Quantization (how to partition the projection values of the 
reference data items along the direction into multiple parts) 

• Active and online hashing (using small sets of pairs with 
labeled information) 

• Fast search in Hamming space



CS 584 [Spring 2016] - Ho

Future Hashing Trends
• Scalable hash function learning: existing algorithms are 

too slow and even infeasible when handling large data 

• Hash code computation speedup: improving the cost of 
encoding a data item 

• Distance table computation speedup: product 
quantization and its variants need to precompute distance 
table between query and elements of dictionary 

• Multiple and cross modality hashing: dealing with the 
variant of data types and data sources


