
Locality Sensitive Hashing & ANN
CS 584: Big Data Analytics

Material adapted from 
Piotr Indyk  (https://people.csail.mit.edu/indyk/helsinki-2.pdf) & 

Jure Leskovec and Jeffrey Ulman (http://web.stanford.edu/class/cs246/handouts.html) & 
Marc Alban (http://www.cs.utexas.edu/~grauman/courses/spring2008/slides/Marc_Demo.pdf) 
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http://web.stanford.edu/class/cs246/handouts.html
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Recap: NN
• Nearest neighbor search in Rd is very common in many 

fields of learning, retrieval, compression, etc. 

• Exact nearest neighbor: Curse of dimensionality  
 
 

• Approximate NN 

• KD-trees: optimal space, O(r)d log n query time

Algorithm Query Time Space
Full indexing O(d log n) nO(d)

Linear scan O(dn) O(dn)
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Approximate Nearest Neighbor (ANN)
• Idea: rather than retrieve the exact closest neighbor, 

make a “good guess” of the nearest neighbor 

• c-ANN: for any query q and points p: 

• r is the distance to the exact nearest neighbor q 

• Returns p in P,                        , with probability at least ||p� q||  cr

1� �, � > 0
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Locality Sensitive Hashing (LSH) [Indyk-Motwani, 
1998]

• Family of hash functions 

• Close points to same buckets 

• Faraway points to different buckets 

• Idea: Only examine those items 
where the buckets are shared 

• (Pro) Designed correctly, only a small 
fraction of pairs are examined 

• (Con) There maybe false negatives
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LSH: Bigfoot of CS
• The mark of a computer scientist is their belief in hashing 

• Possible to insert, delete, and lookup items in a large set in 
O(1) time per operation 

• LSH is hard to believe until you seen it 

• Allows you to find similar items in a large set without the 
quadratic cost of examining each pair 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Finding Similar Documents
• Goal: Given a large number of documents, find “near duplicate” pairs 

• Applications: 

• Group similar news articles from many news sites 

• Plagiarism identification 

• Mirror websites or approximate mirrors 

• Problems: 

• Too many documents to compare all pairs 

• Documents are so large or so many they can’t fit in main memory
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Finding Similar Documents: The Big Picture
• Shingling: Convert documents to sets 

• Minhashing: Convert large sets to short signatures while 
preserving similarity 

• LSH Query: Focus on pairs of signatures likely to be similar

Shingling	Docu-	
ment	

The	set	
of	strings	
of	length	k	
that	appear	
in	the	doc-	
ument	

Minhash-	
ing	

Signatures:	
short	integer	
vectors	that	
represent	the	
sets,	and	
reflect	their	
similarity	

Locality-	
sensitive	
Hashing	

Candidate	
pairs:	
those	pairs	
of	signatures	
that	we	need	
to	test	for	
similarity.	



CS 584 [Spring 2016] - Ho

Shingling: Convert documents to sets
• Account for ordering of words 

• A k-shingle (k-gram) for a document is a sequence of k 
tokens that appears in the document 

• Example: k = 2; document D1 = abcab 
Set of 2-shingles: S(D1) = {ab, bc, ca} 

• Represent each document by a set of k-shingles
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Shingles and Similarity
• Documents that are generally similar will share many singles 

• Changing a word only affects k-shingles within k-1 from the 
word 

• Example: k = 3, “The dog which chased the cat” versus 
“The dog that chased the cat” 

• Only 3-shingles replied are g_w, _wh, whi, hic, ich, ch_, h_c 

• Reordering paragraphs only affects the 2k shingles that cross 
paragraph boundaries
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Shingles and Compression
• k must be large enough, or most documents will have 

most shingles (not useful for differentiation) 

• k = 8, 9, 10 is often used in practice 

• For compression and uniqueness, hash each single into 
tokens (e.g., 4 bytes) 

• Represent a document by the tokens (set of hash values 
of its k-shingles)
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Finding Similar Documents: Distance Metric
• Each document is a binary vector in the space of the tokens 

• Each token is a dimension 

• Vectors are very sparse 

• Natural similarity measure is the Jaccard similarity 

• Size of the intersection of two sets divided by the size of 
their union 

• Notation: Sim(C1, C2) =
C1 \ C2

C1 [ C2
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From Sets to Binary Matrices
• Rows = elements of the universal set 

(i.e., the set of all tokens) 

• Columns = documents 

• 1 in row e and column s if and 
only if e is a member of s 

• Column similarity is Jaccard 
similarity of the corresponding sets  

• Typical matrix is sparse!
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Why Shingling is Insufficient
• Suppose we need to find near-duplicate items amongst 1 

million documents 

• Naively, we would have to compute all pairwise Jacquard 
similarities 

• N(N -1) /2 = 5 * 1011 comparisons 

• At 105 seconds a day and 106 comparisons per second, 
this would take 5 days! 

• If we are looking at 10 million documents, this will take more 
than 1 year
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Hashing Documents
• Idea: Hash each document (column) to a small signature h(C) 

such that 

• h(C) is “small enough” that it fits in RAM 

• sim(C1, C2) is the same as the “similarity” of h(C1) and h(C2) 

• In other words, you want to use an LSH function 

• If sim(C1, C2) is high, then P(h(C1) = h(C2)) is high 

• If sim(C1, C2) is low, then P(h(C1) = h(C2)) is low



CS 584 [Spring 2016] - Ho

Minhashing
• Hash function depends on the similarity metric 

• Not all similarity metrics have a suitable hash function 

• Suitable hash function for Jaccard similarity is minhashing 

• Imagine rows of binary matrix permuted under random permutation 

• Hash function is the index of the first (in the permuted order) row in 
which column C has value 1 

• Use several independent hash functions (i.e., permutations) to create 
signature of a column

⇡

h⇡(C) = min
⇡

⇡(C)
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Example: Minhashing

1	

2	

3	

4	
5	

6	

7	

1	
2	
3	
4	
5	
6	
7	 1	

2	
3	
4	
5	
6	
7	

Permutation
⇡

0	
0	

0	0	
0	0	

0	0	

0	
0	0	 0	
0	

0	0	0	
0	
1	
1	1	

1	
1	1	

1	1	

1	
1	1	

Input Matrix

1	2	2	 3	

1	1	 2	3	

3	5	1	 2	

Signature Matrix

3rd element of the permutation is the first to map to 1
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Minhashing Property
Claim:  

• X is a document, y is a shingle in document 

• Equally likely that any y is mapped to the min element  

• Let y be such that  
(one of the two columns had to have 1 at position y)  
=> probability that both are true is 

P [h⇡(C1) = h⇡(C2)] = sim(C1, C2)

P [⇡(y) = min(⇡(X))] = 1/|X|

⇡(y) = min(⇡(C1 [ C2))

P (y 2 C1 \ C2)

P [min(⇡(C1)) = min(⇡(C2))] = |C1 \ C2|/|C1 [ C2)|
= sim(C1, C2)
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Minhashing and Similarity
• The similarity of the signatures is the fraction of the 

minhash functions (rows) in which they agree 

• Expected similarity of two signatures is equal to the 
Jaccard similarity of the columns 

• The longer the signatures, the smaller the expected 
error
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Example: Minhashing and Similarities

1	

2	

3	

4	
5	

6	

7	

1	
2	
3	
4	
5	
6	
7	 1	

2	
3	
4	
5	
6	
7	

Permutation

0	
0	

0	0	
0	0	

0	0	

0	
0	0	 0	
0	

0	0	0	
0	
1	
1	1	

1	
1	1	

1	1	

1	
1	1	

Input Matrix

1	2	2	 3	

1	1	 2	3	

3	5	1	 2	

Signature Matrix

1-2 2-3 3-4 1-3 1-4 2-4
Jaccard 1/4 1/5 1/5 0 0 1/5

Signature 1/3 1/3 0 0 0 0
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Minhash Signatures 
• Pick K random permutations of the row 

• Permutation rows can be prohibitive for large data, so 
use row hashing to get random row permutation 

• Signature of the document can be represented as a 
column vector and is a sketch of the contents 

• Compression long bit vectors into short signatures as 
signature is no ~ k bytes!
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LSH: Signatures to Buckets
• Hash objects such as signatures many times so that 

similar objects wind up in the same bucket at least once, 
while other pairs rarely do 

• Pick a similarity threshold t which is the fraction in which 
the signatures agree to define “similar” 

• Trick: Divide signature rows into bands 

• A hash function based on one band
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Band Partition
• Divide matrix into b bands of r 

rows 

• For each band, hash its portion of 
each column to a hash table with 
k buckets 

• Candidate column pairs are those 
that hash to the same bucket for 
at least 1 band 

• Tune b and r to catch most similar 
pairs but few non similar pairs

r		rows	
per	band	

b		bands	

			One	
signature	

Matrix M
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Hash Function for One Bucket
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Example of Bands
• Suppose 100k documents (columns) 

• Signatures of 100 integers (rows) 

• Each signature takes 40MB 

• 5B pairs of signatures can take awhile to compare 

• Choose 20 bands of 5 integers / band to find pairs of 
80% similarity
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Find 80% Similar Pairs
• We want C1, C2 to be a candidate pair, which is they 

hash to at least 1 common band 

• Probability C1, C2 identical in one particular band: 
(0.8)5 = 0.328 

• Probability C1, C2 are not similar in all of the 20 bands:  
(1 - 0.328)20 = 0.00035 

• 1/3000th of the column pairs are false negatives 
(missing the actual neighbors)
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What about 30% Similarity?
• Since 30% is less than our goal of 80%, we want C1 and 

C2 to hash to NO common buckets 

• Probability C1, C2 identical in one particular band: 
(0.3)5 = 0.00243 

• Probability C1, C2 are not similar in all of the 20 bands:  
1 - (1 - 0.00243)20 = 0.0474 

• 4.74% pairs of documents with similarity of 0.3% end 
up being candidate pairs (false positives)
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LSH: What We Want

							Similarity	s		of	two	sets	

Probability	
of	sharing	
a	bucket	

t	

No	chance	
if	s	<	t	

Probability	
=	1	if	s	>	t	
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LSH: What One Band of One Row Yields

Similarity	s		of	two	sets	

Probability	
of	sharing	
a	bucket	

Remember:	
probability	of	equal	
minhash	values	
=	Jaccard	similarity	

t	

False	
positives	

False	
negatives	

Say	“yes”	if	you	
are	below	the	line.	



CS 584 [Spring 2016] - Ho

LSH Parameters
• Columns C1 and C2 have similarity t 

• Pick any band (r rows) 

• Probability that all rows in band equal: tr 

• Probability unequal: 1-tr 

• Probability that no band is identical: (1-tr)b 

• Probability that at least one band is identical: 1 - (1-tr)b
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LSH: What b Bands of r Rows yields
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LSH: S-Curves as a function of b and r
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LSH Definition
• Suppose we have a metric space S of points with a 

distance measure d 

• An LSH family of hash functions,                        , has the 
following properties for any  

• If                  , then  

• If                   , then 

• Theory leaves unknown what happens to pairs at 
distances between r and cr

q, p 2 S

d(p, q)  r PH[h(p) = h(q)] � P1

PH[h(p) = h(q)]  P2d(p, q) � cr

H(r, cr, P1, P2)
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LSH Family of Hash Functions
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k-bit LSH Functions
• A k-bit locality sensitive hash function (LSHF) is defined 

as  

• Each     is chosen randomly from  

• Each     results in a single bit 

• P(similar points collide) 

• P(dissimilar points collide)

g(p) = [h1(p), h2(p), · · · , hk(p)]
>

hi

hi

H

� 1� (1� 1

P1
)k

 (P2)
k
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LSH Preprocessing
• Select L random k-bit LSHF, g1, …, gL 

• For all points p, hash p to the buckets g1(p), …, gL(p) 

• Preprocessing space: O(L n)
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LSH Querying
• Given a new point q, retrieve the points from buckets 

g1(q), g2(q), …, until 

• Either the points from all L buckets have been 
retrieved, or 

• Total number of points retrieved exceeds 3L 

• Answer the query based on the retrieved points 

• Total Query Time: O(dL)
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Hamming Space
• Hamming space is the set of all 2N binary strings of 

length N 

• Hamming distance between two equal length binary 
strings is the number of positions for which the bits are 
different 

• || 1011101, 1001001 ||H = 2 

• || 1110101, 1111101 ||H = 1
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Hamming Space: Hashing Family
Let a hashing family be defined as hi(p) = pi where pi is the 
ith bit of p 

• Family of hash functions are locality sensitive 

• Comparison with Minhash: size of family is only d 
whereas unlimited supply of minxish functions

PH[h(p) 6= h(q)] =
||p, q||H

d

PH[h(p) = h(q)] = 1� ||p, q||H
d
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Experiment: Motorcycle Images
• 59,500 20x20 patches taken from 

motorcycle images 

• Each image is represented as 400-
dimensional column vectors 

• Convert feature vectors into binary 
strings and use Hamming hash 
functions 

• Denote B as the maximum search 
length
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Experiment: Motorcycle Example Query
• L = 20, k = 24, B = infinity 

• Query      =  

• Examples searched: 7,722 of 59,500 

• Result      =  

• Exact NN =  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Experiment: Average Search Length

• More hash bits (k) 
result in shorter 
searches 

• More hash tables (l) 
result in longer 
searches
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Experiment: Average Approximation Error

• Over hashing (high 
k) can result in too 
few candidates to 
return a good 
approximation 

• Over hashing can 
cause algorithm to 
fail
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Experiment: Average Approximation Error (2)

• Changing the 
maximum number 
of searches requires 
more bits per hash 
function (k) and 
more hash tables (l)


