
Locality Sensitive Hashing & ANN
CS 584: Big Data Analytics

Material adapted from
Piotr Indyk (https://people.csail.mit.edu/indyk/helsinki-2.pdf) &

Jure Leskovec and Jeffrey Ulman (http://web.stanford.edu/class/cs246/handouts.html) &
Marc Alban (http://www.cs.utexas.edu/~grauman/courses/spring2008/slides/Marc_Demo.pdf)

https://people.csail.mit.edu/indyk/helsinki-2.pdf
http://web.stanford.edu/class/cs246/handouts.html
http://www.cs.utexas.edu/~grauman/courses/spring2008/slides/Marc_Demo.pdf

CS 584 [Spring 2016] - Ho

Recap: NN
• Nearest neighbor search in Rd is very common in many

fields of learning, retrieval, compression, etc.

• Exact nearest neighbor: Curse of dimensionality  
 
 

• Approximate NN

• KD-trees: optimal space, O(r)d log n query time

Algorithm Query Time Space
Full indexing O(d log n) nO(d)

Linear scan O(dn) O(dn)

CS 584 [Spring 2016] - Ho

Approximate Nearest Neighbor (ANN)
• Idea: rather than retrieve the exact closest neighbor,

make a “good guess” of the nearest neighbor

• c-ANN: for any query q and points p:

• r is the distance to the exact nearest neighbor q

• Returns p in P, , with probability at least ||p� q||  cr

1� �, � > 0

CS 584 [Spring 2016] - Ho

Locality Sensitive Hashing (LSH) [Indyk-Motwani,
1998]

• Family of hash functions

• Close points to same buckets

• Faraway points to different buckets

• Idea: Only examine those items
where the buckets are shared

• (Pro) Designed correctly, only a small
fraction of pairs are examined

• (Con) There maybe false negatives

CS 584 [Spring 2016] - Ho

LSH: Bigfoot of CS
• The mark of a computer scientist is their belief in hashing

• Possible to insert, delete, and lookup items in a large set in
O(1) time per operation

• LSH is hard to believe until you seen it

• Allows you to find similar items in a large set without the
quadratic cost of examining each pair 
 
 
 

CS 584 [Spring 2016] - Ho

Finding Similar Documents
• Goal: Given a large number of documents, find “near duplicate” pairs

• Applications:

• Group similar news articles from many news sites

• Plagiarism identification

• Mirror websites or approximate mirrors

• Problems:

• Too many documents to compare all pairs

• Documents are so large or so many they can’t fit in main memory

CS 584 [Spring 2016] - Ho

Finding Similar Documents: The Big Picture
• Shingling: Convert documents to sets

• Minhashing: Convert large sets to short signatures while
preserving similarity

• LSH Query: Focus on pairs of signatures likely to be similar

Shingling	Docu-	
ment	

The	set	
of	strings	
of	length	k	
that	appear	
in	the	doc-	
ument	

Minhash-	
ing	

Signatures:	
short	integer	
vectors	that	
represent	the	
sets,	and	
reflect	their	
similarity	

Locality-	
sensitive	
Hashing	

Candidate	
pairs:	
those	pairs	
of	signatures	
that	we	need	
to	test	for	
similarity.	

CS 584 [Spring 2016] - Ho

Shingling: Convert documents to sets
• Account for ordering of words

• A k-shingle (k-gram) for a document is a sequence of k
tokens that appears in the document

• Example: k = 2; document D1 = abcab 
Set of 2-shingles: S(D1) = {ab, bc, ca}

• Represent each document by a set of k-shingles

CS 584 [Spring 2016] - Ho

Shingles and Similarity
• Documents that are generally similar will share many singles

• Changing a word only affects k-shingles within k-1 from the
word

• Example: k = 3, “The dog which chased the cat” versus
“The dog that chased the cat”

• Only 3-shingles replied are g_w, _wh, whi, hic, ich, ch_, h_c

• Reordering paragraphs only affects the 2k shingles that cross
paragraph boundaries

CS 584 [Spring 2016] - Ho

Shingles and Compression
• k must be large enough, or most documents will have

most shingles (not useful for differentiation)

• k = 8, 9, 10 is often used in practice

• For compression and uniqueness, hash each single into
tokens (e.g., 4 bytes)

• Represent a document by the tokens (set of hash values
of its k-shingles)

CS 584 [Spring 2016] - Ho

Finding Similar Documents: Distance Metric
• Each document is a binary vector in the space of the tokens

• Each token is a dimension

• Vectors are very sparse

• Natural similarity measure is the Jaccard similarity

• Size of the intersection of two sets divided by the size of
their union

• Notation: Sim(C1, C2) =
C1 \ C2

C1 [C2

CS 584 [Spring 2016] - Ho

From Sets to Binary Matrices
• Rows = elements of the universal set

(i.e., the set of all tokens)

• Columns = documents

• 1 in row e and column s if and
only if e is a member of s

• Column similarity is Jaccard
similarity of the corresponding sets

• Typical matrix is sparse!

CS 584 [Spring 2016] - Ho

Why Shingling is Insufficient
• Suppose we need to find near-duplicate items amongst 1

million documents

• Naively, we would have to compute all pairwise Jacquard
similarities

• N(N -1) /2 = 5 * 1011 comparisons

• At 105 seconds a day and 106 comparisons per second,
this would take 5 days!

• If we are looking at 10 million documents, this will take more
than 1 year

CS 584 [Spring 2016] - Ho

Hashing Documents
• Idea: Hash each document (column) to a small signature h(C)

such that

• h(C) is “small enough” that it fits in RAM

• sim(C1, C2) is the same as the “similarity” of h(C1) and h(C2)

• In other words, you want to use an LSH function

• If sim(C1, C2) is high, then P(h(C1) = h(C2)) is high

• If sim(C1, C2) is low, then P(h(C1) = h(C2)) is low

CS 584 [Spring 2016] - Ho

Minhashing
• Hash function depends on the similarity metric

• Not all similarity metrics have a suitable hash function

• Suitable hash function for Jaccard similarity is minhashing

• Imagine rows of binary matrix permuted under random permutation

• Hash function is the index of the first (in the permuted order) row in
which column C has value 1 

• Use several independent hash functions (i.e., permutations) to create
signature of a column

⇡

h⇡(C) = min
⇡

⇡(C)

CS 584 [Spring 2016] - Ho

Example: Minhashing

1	

2	

3	

4	
5	

6	

7	

1	
2	
3	
4	
5	
6	
7	 1	

2	
3	
4	
5	
6	
7	

Permutation
⇡

0	
0	

0	0	
0	0	

0	0	

0	
0	0	 0	
0	

0	0	0	
0	
1	
1	1	

1	
1	1	

1	1	

1	
1	1	

Input Matrix

1	2	2	 3	

1	1	 2	3	

3	5	1	 2	

Signature Matrix

3rd element of the permutation is the first to map to 1

CS 584 [Spring 2016] - Ho

Minhashing Property
Claim:

• X is a document, y is a shingle in document

• Equally likely that any y is mapped to the min element  

• Let y be such that  
(one of the two columns had to have 1 at position y)  
=> probability that both are true is

P [h⇡(C1) = h⇡(C2)] = sim(C1, C2)

P [⇡(y) = min(⇡(X))] = 1/|X|

⇡(y) = min(⇡(C1 [C2))

P (y 2 C1 \ C2)

P [min(⇡(C1)) = min(⇡(C2))] = |C1 \ C2|/|C1 [C2)|
= sim(C1, C2)

CS 584 [Spring 2016] - Ho

Minhashing and Similarity
• The similarity of the signatures is the fraction of the

minhash functions (rows) in which they agree

• Expected similarity of two signatures is equal to the
Jaccard similarity of the columns

• The longer the signatures, the smaller the expected
error

CS 584 [Spring 2016] - Ho

Example: Minhashing and Similarities

1	

2	

3	

4	
5	

6	

7	

1	
2	
3	
4	
5	
6	
7	 1	

2	
3	
4	
5	
6	
7	

Permutation

0	
0	

0	0	
0	0	

0	0	

0	
0	0	 0	
0	

0	0	0	
0	
1	
1	1	

1	
1	1	

1	1	

1	
1	1	

Input Matrix

1	2	2	 3	

1	1	 2	3	

3	5	1	 2	

Signature Matrix

1-2 2-3 3-4 1-3 1-4 2-4
Jaccard 1/4 1/5 1/5 0 0 1/5

Signature 1/3 1/3 0 0 0 0

CS 584 [Spring 2016] - Ho

Minhash Signatures
• Pick K random permutations of the row

• Permutation rows can be prohibitive for large data, so
use row hashing to get random row permutation

• Signature of the document can be represented as a
column vector and is a sketch of the contents

• Compression long bit vectors into short signatures as
signature is no ~ k bytes!

CS 584 [Spring 2016] - Ho

LSH: Signatures to Buckets
• Hash objects such as signatures many times so that

similar objects wind up in the same bucket at least once,
while other pairs rarely do

• Pick a similarity threshold t which is the fraction in which
the signatures agree to define “similar”

• Trick: Divide signature rows into bands

• A hash function based on one band

CS 584 [Spring 2016] - Ho

Band Partition
• Divide matrix into b bands of r

rows

• For each band, hash its portion of
each column to a hash table with
k buckets

• Candidate column pairs are those
that hash to the same bucket for
at least 1 band

• Tune b and r to catch most similar
pairs but few non similar pairs

r		rows	
per	band	

b		bands	

			One	
signature	

Matrix M

CS 584 [Spring 2016] - Ho

Hash Function for One Bucket

CS 584 [Spring 2016] - Ho

Example of Bands
• Suppose 100k documents (columns)

• Signatures of 100 integers (rows)

• Each signature takes 40MB

• 5B pairs of signatures can take awhile to compare

• Choose 20 bands of 5 integers / band to find pairs of
80% similarity

CS 584 [Spring 2016] - Ho

Find 80% Similar Pairs
• We want C1, C2 to be a candidate pair, which is they

hash to at least 1 common band

• Probability C1, C2 identical in one particular band: 
(0.8)5 = 0.328

• Probability C1, C2 are not similar in all of the 20 bands:  
(1 - 0.328)20 = 0.00035

• 1/3000th of the column pairs are false negatives
(missing the actual neighbors)

CS 584 [Spring 2016] - Ho

What about 30% Similarity?
• Since 30% is less than our goal of 80%, we want C1 and

C2 to hash to NO common buckets

• Probability C1, C2 identical in one particular band: 
(0.3)5 = 0.00243

• Probability C1, C2 are not similar in all of the 20 bands:  
1 - (1 - 0.00243)20 = 0.0474

• 4.74% pairs of documents with similarity of 0.3% end
up being candidate pairs (false positives)

CS 584 [Spring 2016] - Ho

LSH: What We Want

							Similarity	s		of	two	sets	

Probability	
of	sharing	
a	bucket	

t	

No	chance	
if	s	<	t	

Probability	
=	1	if	s	>	t	

CS 584 [Spring 2016] - Ho

LSH: What One Band of One Row Yields

Similarity	s		of	two	sets	

Probability	
of	sharing	
a	bucket	

Remember:	
probability	of	equal	
minhash	values	
=	Jaccard	similarity	

t	

False	
positives	

False	
negatives	

Say	“yes”	if	you	
are	below	the	line.	

CS 584 [Spring 2016] - Ho

LSH Parameters
• Columns C1 and C2 have similarity t

• Pick any band (r rows)

• Probability that all rows in band equal: tr

• Probability unequal: 1-tr

• Probability that no band is identical: (1-tr)b

• Probability that at least one band is identical: 1 - (1-tr)b

CS 584 [Spring 2016] - Ho

LSH: What b Bands of r Rows yields

CS 584 [Spring 2016] - Ho

LSH: S-Curves as a function of b and r

CS 584 [Spring 2016] - Ho

LSH Definition
• Suppose we have a metric space S of points with a

distance measure d

• An LSH family of hash functions, , has the
following properties for any

• If , then

• If , then

• Theory leaves unknown what happens to pairs at
distances between r and cr

q, p 2 S

d(p, q)  r PH[h(p) = h(q)] � P1

PH[h(p) = h(q)]  P2d(p, q) � cr

H(r, cr, P1, P2)

CS 584 [Spring 2016] - Ho

LSH Family of Hash Functions

CS 584 [Spring 2016] - Ho

k-bit LSH Functions
• A k-bit locality sensitive hash function (LSHF) is defined

as

• Each is chosen randomly from

• Each results in a single bit

• P(similar points collide)

• P(dissimilar points collide)

g(p) = [h1(p), h2(p), · · · , hk(p)]
>

hi

hi

H

� 1� (1� 1

P1
)k

 (P2)
k

CS 584 [Spring 2016] - Ho

LSH Preprocessing
• Select L random k-bit LSHF, g1, …, gL

• For all points p, hash p to the buckets g1(p), …, gL(p)

• Preprocessing space: O(L n)

CS 584 [Spring 2016] - Ho

LSH Querying
• Given a new point q, retrieve the points from buckets

g1(q), g2(q), …, until

• Either the points from all L buckets have been
retrieved, or

• Total number of points retrieved exceeds 3L

• Answer the query based on the retrieved points

• Total Query Time: O(dL)

CS 584 [Spring 2016] - Ho

Hamming Space
• Hamming space is the set of all 2N binary strings of

length N

• Hamming distance between two equal length binary
strings is the number of positions for which the bits are
different

• || 1011101, 1001001 ||H = 2

• || 1110101, 1111101 ||H = 1

CS 584 [Spring 2016] - Ho

Hamming Space: Hashing Family
Let a hashing family be defined as hi(p) = pi where pi is the
ith bit of p

• Family of hash functions are locality sensitive

• Comparison with Minhash: size of family is only d
whereas unlimited supply of minxish functions

PH[h(p) 6= h(q)] =
||p, q||H

d

PH[h(p) = h(q)] = 1� ||p, q||H
d

CS 584 [Spring 2016] - Ho

Experiment: Motorcycle Images
• 59,500 20x20 patches taken from

motorcycle images

• Each image is represented as 400-
dimensional column vectors

• Convert feature vectors into binary
strings and use Hamming hash
functions

• Denote B as the maximum search
length

CS 584 [Spring 2016] - Ho

Experiment: Motorcycle Example Query
• L = 20, k = 24, B = infinity

• Query =  

• Examples searched: 7,722 of 59,500

• Result =  

• Exact NN =  

CS 584 [Spring 2016] - Ho

Experiment: Average Search Length

• More hash bits (k)
result in shorter
searches

• More hash tables (l)
result in longer
searches

CS 584 [Spring 2016] - Ho

Experiment: Average Approximation Error

• Over hashing (high
k) can result in too
few candidates to
return a good
approximation

• Over hashing can
cause algorithm to
fail

CS 584 [Spring 2016] - Ho

Experiment: Average Approximation Error (2)

• Changing the
maximum number
of searches requires
more bits per hash
function (k) and
more hash tables (l)

