Hogwild: A Lock-Free Approach to
Parallelizing Stochastic Gradient
Descent

CS 584: Big Data Analytics

Sparse Separable Cost Function

- Minimize function that can be separated into small
subsets of feature components

min) fe(z.)

ec F

- Xe denotes the values of the vector x on coordinates
iIndexed by e

-+ Key observation: For many machine learning problems of
Interest, sub-vector xe contains very small number of
components (is sparse compared to n and |E|)

CS 584 [Spring 2016] - Ho

Example: Sparse Functions

- Sparse SVM: Features are very sparse (only few non-zero
components)

- Matrix Completion: Only provided entries from a sparse
sampling of data (e.g., each user rates very few movies)

- Graph Cuts: Find the minimum number of cuts to
separate entities (group similar items together)

CS 584 [Spring 2016] - Ho

Two Key Issues with SGD

- Difficult to parallelize

- Inherently serial algorithm where parameter is updated
after seeing an example

- Multi-threading may be useless as each one needs to
wait for another one to proceed

- Notoriously hard to tune

- Learning rate will drastically affect the speed of the
algorithm

CS 584 [Spring 2016] - Ho

An Attempt at Parallel SGD

+ Each thread draws random sample from training data
- Acquire a lock on current state of parameters
+ Read the parameter
- Update the parameter with SGD step

- Release lock

Acquiring locks can take 1000x longer than
to make an update!

CS 584 [Spring 2016] - Ho

HOGWILD!: Asynchronous SGD

- Remove all thread locks from parallel SGD code
+ Threads allowed to overwrite one another

- Gradients can be computed on stale versions of the
‘current solution”

+ Anything goes!

CS 584 [Spring 2016] - Ho

HOGWILD! Update for Individual Processors

Algorithm 1 HoGwiLD! update for individual processors

1: loop

2: Sample e uniformly at random from E

3: Read current state z. and evaluate G¢(x)
4: for v € e do z, « z, — Vb Ge(2)

5: end loop

Wait... What”? How can this work?

CS 584 [Spring 2016] - Ho

HOGWILD! Convergence

-+ Processors overwrite each other’s work, but the sparsity
of the gradient helps greatly

- Updates don't interfere too much with one another

Jpdates can be old by the time they are applied, but in
oractice there Is a certain bound on their age

Depending on the overlap of the nonzero components,
orocessing time, and other quantities, the algorithm can
essentially recover the behavior of SGD

CS 584 [Spring 2016] - Ho

HOGWILD! Performance Comparison

measure of sparsity algorithm that does parallel

node-regularity SGD with locking
| N

HOGWILD! ROUND ROBIN

data size P A time train test time train test
type set (GB) (s) eIror error (s) eITor error
SVM RCV1 0.9 0.44 1.0 9.5 0297 0.339 61.8 0.297 0.339
Netflix 1.5 2.5e-3 2.3e-3 301.0 0.754 0.928 2569.1 0.754 0.927
MC KDD 39 3.0e3 1.8-3 8717.5 19.5 22.6 7139.0 19.5 22.6
Jumbo 30 2.6e-7 14e-7 | 9453.5 0.031 0.013 N/A N/A N/A
Cuts DBLife 3e-3 8.6e-3 4.3e-3 230.0 10.6 N/A 413.5 10.5 N/A
Abdomen 18 92e4 92e4 | 11814 3.99 N/A | 7467.25 3.99 N/A

CS 584 [Spring 2016] - Ho

HOGWILD! CPU Time vs. Threads

RCV Abdomen DBLife
5 - - . 5 - - - - 10 - - -
al —Hogwild al —Hogwild gl —Hogwild
o --AlG o -~ AlIG a --AlG
23 RR 23 RR 2 ¢ RR
@ o (/] A N
8.2' 8_2> - 8. N
7)) (/)] (7] e
L B L] B et T D 2]
. ‘ (a) . __(b) . _©
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Number of Splits Number of Splits Number of Splits

Round robin gets worse as more threads are added!

CS 584 [Spring 2016] - Ho

Summary

- Practical lesson: Don’t lock!

- HOGWILD)! started trend in asynchronous algorithms for
model training

- We should all run HOGWILD!

CS 584 [Spring 2016] - Ho

