
Hogwild: A Lock-Free Approach to
Parallelizing Stochastic Gradient
Descent
CS 584: Big Data Analytics

CS 584 [Spring 2016] - Ho

Sparse Separable Cost Function
• Minimize function that can be separated into small

subsets of feature components

• xe denotes the values of the vector x on coordinates
indexed by e

• Key observation: For many machine learning problems of
interest, sub-vector xe contains very small number of
components (is sparse compared to n and |E|)

min
X

e2E

fe(xe)

CS 584 [Spring 2016] - Ho

Example: Sparse Functions
• Sparse SVM: Features are very sparse (only few non-zero

components)

• Matrix Completion: Only provided entries from a sparse
sampling of data (e.g., each user rates very few movies)

• Graph Cuts: Find the minimum number of cuts to
separate entities (group similar items together)

CS 584 [Spring 2016] - Ho

Two Key Issues with SGD
• Difficult to parallelize

• Inherently serial algorithm where parameter is updated
after seeing an example

• Multi-threading may be useless as each one needs to
wait for another one to proceed

• Notoriously hard to tune

• Learning rate will drastically affect the speed of the
algorithm

CS 584 [Spring 2016] - Ho

An Attempt at Parallel SGD
• Each thread draws random sample from training data

• Acquire a lock on current state of parameters

• Read the parameter

• Update the parameter with SGD step

• Release lock

Acquiring locks can take 1000x longer than
to make an update!

CS 584 [Spring 2016] - Ho

HOGWILD!: Asynchronous SGD
• Remove all thread locks from parallel SGD code

• Threads allowed to overwrite one another

• Gradients can be computed on stale versions of the
“current solution”

• Anything goes!

CS 584 [Spring 2016] - Ho

HOGWILD! Update for Individual Processors

Wait… What? How can this work?

CS 584 [Spring 2016] - Ho

HOGWILD! Convergence
• Processors overwrite each other’s work, but the sparsity

of the gradient helps greatly

• Updates don’t interfere too much with one another

• Updates can be old by the time they are applied, but in
practice there is a certain bound on their age

• Depending on the overlap of the nonzero components,
processing time, and other quantities, the algorithm can
essentially recover the behavior of SGD

CS 584 [Spring 2016] - Ho

HOGWILD! Performance Comparison

algorithm that does parallel
SGD with locking

measure of sparsity
node-regularity

CS 584 [Spring 2016] - Ho

HOGWILD! CPU Time vs. Threads

RCV1 Abdomen DBLife

Round robin gets worse as more threads are added!

CS 584 [Spring 2016] - Ho

Summary
• Practical lesson: Don’t lock!

• HOGWILD! started trend in asynchronous algorithms for
model training

• We should all run HOGWILD!

