Hogwild: A Lock-Free Approach to
Parallelizing Stochastic Gradient
Descent

CS 584: Big Data Analytics



Sparse Separable Cost Function

- Minimize function that can be separated into small
subsets of feature components

min )  fe(z.)

ec F

- Xe denotes the values of the vector x on coordinates
iIndexed by e

-+ Key observation: For many machine learning problems of
Interest, sub-vector xe contains very small number of
components (is sparse compared to n and |E|)
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Example: Sparse Functions

- Sparse SVM: Features are very sparse (only few non-zero
components)

- Matrix Completion: Only provided entries from a sparse
sampling of data (e.g., each user rates very few movies)

- Graph Cuts: Find the minimum number of cuts to
separate entities (group similar items together)
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Two Key Issues with SGD

- Difficult to parallelize

- Inherently serial algorithm where parameter is updated
after seeing an example

- Multi-threading may be useless as each one needs to
wait for another one to proceed

- Notoriously hard to tune

- Learning rate will drastically affect the speed of the
algorithm
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An Attempt at Parallel SGD

+ Each thread draws random sample from training data
- Acquire a lock on current state of parameters
+ Read the parameter
- Update the parameter with SGD step

- Release lock

Acquiring locks can take 1000x longer than
to make an update!
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HOGWILD!: Asynchronous SGD

- Remove all thread locks from parallel SGD code
+ Threads allowed to overwrite one another

- Gradients can be computed on stale versions of the
‘current solution”

+ Anything goes!
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HOGWILD! Update for Individual Processors

Algorithm 1 HoGwiLD! update for individual processors

1: loop

2:  Sample e uniformly at random from E

3:  Read current state z. and evaluate G¢(x)
4: for v € e do z, « z, — Vb Ge(2)

5: end loop

Wait... What”? How can this work?
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HOGWILD! Convergence

-+ Processors overwrite each other’s work, but the sparsity
of the gradient helps greatly

- Updates don't interfere too much with one another

Jpdates can be old by the time they are applied, but in
oractice there Is a certain bound on their age

Depending on the overlap of the nonzero components,
orocessing time, and other quantities, the algorithm can
essentially recover the behavior of SGD
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HOGWILD! Performance Comparison

measure of sparsity algorithm that does parallel

node-regularity SGD with locking
| N

HOGWILD! ROUND ROBIN

data size P A time train test time train test
type set (GB) (s) eIror  error (s) eITor  error
SVM RCV1 0.9 0.44 1.0 9.5 0297 0.339 61.8 0.297 0.339
Netflix 1.5 2.5e-3 2.3e-3 301.0 0.754 0.928 2569.1 0.754 0.927
MC KDD 39 3.0e3 1.8-3 8717.5 19.5 22.6 7139.0 19.5 22.6
Jumbo 30 2.6e-7 14e-7 | 9453.5 0.031 0.013 N/A N/A N/A
Cuts DBLife 3e-3 8.6e-3 4.3e-3 230.0 10.6 N/A 413.5 10.5 N/A
Abdomen 18 92e4 92e4 | 11814 3.99 N/A | 7467.25 3.99 N/A
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HOGWILD! CPU Time vs. Threads
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Round robin gets worse as more threads are added!
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Summary

- Practical lesson: Don’t lock!

- HOGWILD)! started trend in asynchronous algorithms for
model training

- We should all run HOGWILD!
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