FlexiFaCT: Scalable Flexible
Factorization of Coupled Tensors

on Hadoop

CS 584: Big Data Analytics

Material adapted from ICASSP 2014 Tutorial
by Nicholas Sidiropoulos & Vagelis Papelxakis
(http://www.cs.cmu.edu/~epapalex/tutorials/icassp14.html)



http://www.cs.cmu.edu/~epapalex/tutorials/icassp14.html
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Motivation for Coupled Tensors

- Not all data can be captured in single tensor

- Social network about who messages whom, who
becomes friends with whom, and when

- How can you incorporate side information like
demographic information”?

- Not all data needs to be stored as a tensor either, some
might be matrices
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Coupled Matrix-Tensor Factorization (CMTF)

Shared mode between matrix and tensor with same low-
rank basis
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Existing CMTF Algorithms

- Traditional (Single Processor)

- Alternating Least Squares

- Gradient Descent (Acar, Kolda, and Dunlavy, 2011)
- Large-scale

- Turbo-SMT (Papalexakis et al., 2014) - sampling based
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FlexiFaCT Optimization Objective

Frobenius norm
X = upoviow|[m+ Y - UAT|E
k

Frobenius + sparsity
X = upoviow|h + |[Y — UAT||Z+
k

| A([U[1 + [ V]2 + [[W]]1 + ||A]]1)
Frobenius + sparsity + nonnegative

X = ugoviowg|[EH+ Y - UAT|H+
k

AM||U + [V + [[W]1+ [|A]]1)
st. U V.W, or A >0
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FlexiFaCT Algorithm Overview

+ Solve for parameters using SGD

- For the case where there is sparsity and/or non-
negative use projection to solve each iteration

-+ Use blocks to parallelize SGD

- Implement the algorithm using MapReduce framework to
achieve scalabllity
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DSGD for MF (Gemulla, 2011)
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Process strata sequentially

Partition data into d x d blocks

Process each block in stratum in parallel
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FINnding Blocks for TF
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For d = 3 blocks per stratum, need d? strata
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Blocks for CMTF




MapReduce Framework

- Distributed file system (GFS - Google File System) where
fles are stored In the clouo

- Everything is viewed as <key, value> pairs

+ Provides a Map() function - gathers data records with
same key to one worker machine

- Provides a Reduce() function - tells system how to
combine values of all records with same key
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Example: Hadoop/ MapReduce

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear,1 ——»{ Bear, 2
Deer,1 —» Bear, 1
Deer Bear River —»{ Bear, 1
River, 1
Car, 1
Car,1 ——» Car,3 |———» Bear,?2
Deer Bear River Car, 1 Car, 1 Car, 3
CarCarRiver ————»{ CarCarRiver || Car 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 —» Deer,2 ——»
Deer, 1
Deer, 1
Deer CarBear —»{ Car, 1 /
Bear, 1 River, 1 —— »{ River, 2
River, 1

CS 584 [Spring 2016] - Ho




Bad Hadoop Algorithm

Mappers Reducers




Hadoop Challenges

- MapReduce is typically very bad for iterative algorithms
- T x d? iterations
- Sizable overhead per Hadoop job

- Little flexibility
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FlexiFaCT Algorithm using Blocks
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Blocks (2)

FlexiFaCT Algorithm using
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FlexiFaCT Algorithm using Blocks
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FlexiFaCT in Hadoop

Reducers

Mappers
ProceSS ’ "
points:

Map gach Partition
ole][p]!

&

to its block

with necessary
info to order
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FlexiFaCT in Hadoop (2)

Reducers

Mappers Update:
ProceSS ’ "
points:

Map gach Partition
ole][q]!

&

to its block

with necessary
info to order
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FlexiFaCT in Hadoop (3)

Reducers

Mappers

Process
points:

Map each
point

to its block

with necessary
info to order
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Experimental Evaluation

- Comparison with

- PSGD (Zinkevich et al., 2010)

- Gigalensor (Kang et al., 2012)
- Implementation in Hadoop 0.20.1
- 24 machines / reducers

- Synthetic data
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Results: Convergence
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Results: Data Size Scalability
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Results: Tensor Dimension Scalability
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Results: Rank Scalability
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FlexiFaCT Summary

- Versatility: wide spectrum of settings for matrices,

tensors, coupled tensor-matrix settings as well as different
loss functions

- Scalability: scales well with both input size as well as
number of model parameters

+  Convergence: proof of convergence even with constraints
iIke non-negativity

Usability and reproducibility: runs on stock Hadoop with
open-sourced code
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