FlexiFaCT: Scalable Flexible Factorization of Coupled Tensors on Hadoop

CS 584: Big Data Analytics

CP decomposition

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C}} ||\mathcal{X} - \sum_{k} \mathbf{a}_{k} \circ \mathbf{b}_{k} \circ \mathbf{c}_{k}||_{F}^{2}$$

Motivation for Coupled Tensors

- Not all data can be captured in single tensor
 - Social network about who messages whom, who becomes friends with whom, and when
 - How can you incorporate side information like demographic information?
- Not all data needs to be stored as a tensor either, some might be matrices

Coupled Matrix-Tensor Factorization (CMTF)

Shared mode between matrix and tensor with same low-rank basis

Existing CMTF Algorithms

- Traditional (Single Processor)
 - Alternating Least Squares
 - Gradient Descent (Acar, Kolda, and Dunlavy, 2011)
- Large-scale
 - · Turbo-SMT (Papalexakis et al., 2014) sampling based

FlexiFaCT Optimization Objective

Frobenius norm

$$||\mathcal{X} - \sum_{k} \mathbf{u}_{k} \circ \mathbf{v}_{k} \circ \mathbf{w}_{k}||_{F}^{2} + ||\mathbf{Y} - \mathbf{U}\mathbf{A}^{\top}||_{F}^{2}$$

Frobenius + sparsity

$$||\mathcal{X} - \sum_k \mathbf{u}_k \circ \mathbf{v}_k \circ \mathbf{w}_k||_F^2 + ||\mathbf{Y} - \mathbf{U}\mathbf{A}^\top||_F^2 +$$

$$\lambda(||\mathbf{U}||_1 + ||\mathbf{V}||_1 + ||\mathbf{W}||_1 + ||\mathbf{A}||_1)$$

Frobenius + sparsity + nonnegative

$$||\mathcal{X} - \sum_{k} \mathbf{u}_{k} \circ \mathbf{v}_{k} \circ \mathbf{w}_{k}||_{F}^{2} + ||\mathbf{Y} - \mathbf{U}\mathbf{A}^{\top}||_{F}^{2} +$$

$$\lambda(||\mathbf{U}||_1 + ||\mathbf{V}||_1 + ||\mathbf{W}||_1 + ||\mathbf{A}||_1)$$
s.t. $\mathbf{U}, \mathbf{V}, \mathbf{W}, \text{ or } \mathbf{A} \ge 0$

FlexiFaCT Algorithm Overview

- Solve for parameters using SGD
 - For the case where there is sparsity and/or nonnegative use projection to solve each iteration
- Use blocks to parallelize SGD
- Implement the algorithm using MapReduce framework to achieve scalability

DSGD for MF (Gemulla, 2011)

- Partition data into d x d blocks
- Process each block in stratum in parallel
- Process strata sequentially

Finding Blocks for TF

For d = 3 blocks per stratum, need d^2 strata

Blocks for CMTF

MapReduce Framework

- Distributed file system (GFS Google File System) where files are stored in the cloud
- Everything is viewed as <key, value> pairs
- Provides a Map() function gathers data records with same key to one worker machine
- Provides a Reduce() function tells system how to combine values of all records with same key

Example: Hadoop/ MapReduce

Bad Hadoop Algorithm

Hadoop Challenges

- MapReduce is typically very bad for iterative algorithms
 - T x d² iterations
- Sizable overhead per Hadoop job
- Little flexibility

FlexiFaCT Algorithm using Blocks

FlexiFaCT Algorithm using Blocks (2)

FlexiFaCT Algorithm using Blocks (3)

FlexiFaCT in Hadoop

FlexiFaCT in Hadoop (2)

FlexiFaCT in Hadoop (3)

Experimental Evaluation

- Comparison with
 - PSGD (Zinkevich et al., 2010)
 - GigaTensor (Kang et al., 2012)
- Implementation in Hadoop 0.20.1
- 24 machines / reducers
- Synthetic data

Results: Convergence

Results: Data Size Scalability

CS 584 [Spring 2016] - Ho

Results: Tensor Dimension Scalability

Results: Rank Scalability

FlexiFaCT Summary

- Versatility: wide spectrum of settings for matrices, tensors, coupled tensor-matrix settings as well as different loss functions
- Scalability: scales well with both input size as well as number of model parameters
- Convergence: proof of convergence even with constraints like non-negativity
- Usability and reproducibility: runs on stock Hadoop with open-sourced code