Convex Optimization Part ||

CS 584: Big Data Analytics

Material adapted from
John Duchi (https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf)
& Stephen Boyd (https://web.stanford.edu/class/ee364a)



https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf
https://web.stanford.edu/class/ee364a

Convex Optimization Problems

min fo(x) convex function
s.t. fy(x) <0,k=1,2,.--- K CONvex sets
hj(z) =0, =1,2,---,J affine constraints

.ocal minima are
global minima

Convex Nonconvex
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Why Convex Optimization?

- Achieves global minimum, no local traps
- Highly efficient software available
-+ Can be solved by polynomial time complexity algorithms

- Dividing line between “easy” and “difficult” problems
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Review: Regularized Regression

- Linear regression has low bias but suffers from high variance
(maybe sacrifice some bias for lower variance)

- Large number of predictors makes it difficult to identify the
important variables

+ Regularization term imposes penalty on “less desirable solutions’

- Ridge regression: reduces the variance by shrinking
coefficients towards zero by using the squared £5 penalty

- LASSO: feature selection by setting coefficients to zero using
an {1 penalty.
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Convex Optimization: LASSO

- LASSO: least absolute shrinkage and selection operator

- Coefficients are the solutions to the ¢; optimization
problem

+ Penalize regression coefficients by shrinking many of
them to O

min — X33
BERA |y Bll3
subject to ||B]]1 < s
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Review: Support Vector Machines (SVM)

-+ Aleading edge classier which uses “optimal” hyperplane in a
suitable feature space for classification

- Finds the hyperplane that maximizes the margin
(.e., B1 is better than B2) B,

+ Points closest to separating o
hyperplane are known as 0
support vectors

-+ Kernel trick to transform space =
iInto higher-dimensional feature
space where separable - -
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Convex Optimization: SVM

Learning SVM is formulated x_,
as an optimization problem

Quadratic optimization
problem subject to linear
constraints and there is a
unigque Minimum

mui)n HwHQ—I—CZ& )

/7

2\\/ / X
S.T. SZ > 1 — yza;;rw //% i 1

& >0

CS 584 [Spring 2016] - Ho



Convex Sets

rx1, 220 € C,.0<0<1 — 0:171—|—(1—0)$26C

Any line segment joining any two elements lies entirely in
set

CcOonNvex NON-CONveX NON-CONVEX
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Convex Function

f:R"™ — R is convex if dom f is a convex set and

flOx+(1—=0)y) <0f(x)+(1-0)f(y)

for all z,y € dom f,0< 60 <1

(y, f(y))
(x, f(x))

f lies below the line segment joining f(x), f(y)
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Properties of Convex Functions

-+ Convexity over all lines
f(x) is convex = f(xo + th) is convex in t for all xq, h
- Positive multiple

f(xz) is convex = «.f(x) is convex for all a > 0

- Sum of convex functions

fi(x), fa(x) convex = fi(z) + fo(x) is convex

- Pointwise maximum

fi(x), fa(x) convex = max{ fi(x), f2(x)} is convex
- Affine transformation of domain

f(x) is convex — f(Ax + b) is convex

CS 584 [Spring 2016] - Ho



Gradient Descent (Steepest Descent)

- Consider unconstrained, smooth convex optimization
poroblem (i.e., f is convex and differentiable)

- At each iteration, take a small step Iin the steepest
descent direction

-+ Very simple to use and implement and is a numerical
solution to the problem
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Gradient Descent: Linear Regression
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http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
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http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/

Example 2

Gradient Descent

f($1,2132) — 6:131—|—3$2—O.1 _I_ 65131—35132—0.1 _I_ 6—331—0.1

exact line search

backtracking line search

Boyd & Landenberghe’s Book on Convex Optimization
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Gradient Descent: Example 3

500
f(x) ::CTJT—-EE:log(bi—-n?ﬁj
i=1
104
10°

A problem in R0 %

~.exact |s.

:;
10-2
backtrack|ng |.s.
10~% - — — -
0 50 100 150 200

k

Boyd & Landenberghe’s Book on Convex Optimization
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Limitations of Gradient Descent

- Step size search may be expensive
- Convergence is slow for ill-conditioned problems
-+ Convergence speed depends on initial starting position

Does not work for non differentiable or constrained
oroblems
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Newton’s Method

- Assumes function is locally quadratic:

fla

+ Choose step direction:

Ax)

f(z)

Vf(z) Ax

1
5 Az ' V2 f(x)Az

Az = ~[V*f(z)] "V [f(z)

- Method is often faster than gradient descent
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Newton’s Method: Example 2

CB1—|—3$2—0.1_|_ 5131—35132—0.1_|_ —£U1—O.1

€

€

f(xlax2> — €

converges Iin only 5 steps
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Newton’s Method: Example 3
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| backtracking
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Gradient Descent Newton’s Method

CS 584 [Spring 2016] - Ho



Disadvantages of Newton’s Method

- Hesslan Is expensive 1o invert
-+ Hessian must be positive definite

- May make huge, uncontrolled steps which can cause
instability

There are several other methods which build on gradient
descent and Newton’s method such as conjugate
gradient descent and Quasi-Newton methods
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Constrained Optimization
Algorithms
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Lagrange Duality

Bound or solve an optimization problem via a different
optimization problem

- Optimization problems (even non-convex) can be
transformed to their dual problems

Purpose of the dual problem is to determine the lower
bounds for the optimal value of the original problem

Under certain conditions, solutions of both problems are
equal and the dual problem often offers easier and
analytical way to the solution
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Reasons Why Dual is Easier

- Dual problem is unconstrained or has simple constraints

- Dual objective is differentiable or has a simple non
differentiable term

+  Exploit separable structure in the decomposition for
easier algorithm
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Construct the Dual

Original optimization problem or primal problem

min fo(z)
S.t fk(x)go,k:'_,Q,- ,K
h](l‘):(),]:,z, 7J

Lagrangian
L(CIZ, )\, U) — f()(iE) —+ Z@fk (ZIZ‘) —+ 2@1] (ZIZ)

Lagrange multipliers or dual variables
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Construct the Dual

Original optimization problem or primal problem

min  fo(x)

s.t. fr(x) <0,k=1,2,--- | K infimum is the element

hi(x)=0,7=1,2,---,J that is smallest or
equal to all elements
IN the set

Dual problem  max g(\,v) = inf L(x, A, v)

' . 3 >
dual function is always subject to A = 0

lower bourp for optimal g\ v) < L(E, M) < fol#)
value of original function
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Lagrange Dual: Separable Example

min f1(z1)

SUbjeCt to Alil?l -+ AQQIZ’Q S b

f2(22) coupling constraint in
orimal problem

max — fi(=A;z) = f5(—Ayz) —b'2

subject to z > 0

dual problem can
by gradient
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L agrange Dual: SVM Example

1
min —HwH2
2

S.t. yi(waiqu) >1,1=1,---.m

classical SVM problem assuming linearly separable can
be solved using commercial quadratic programming

U

1
L(w,b,\) = §||w||2 — ZM[%(WT% +b) — 1]
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| agrange Dual: SVM Example |l

- Take derivative of L with respect to w and b and set them
{0 zero

 Replace the definitions in the Lagrangian for the dual
formulation and simplifying
1
Ni— 5 ) Yy < i,
/\zo,gaiyizo; 2 ;y Yiring < i Ly =
- Note that the formulation only uses inner products

oetween x and the support vectors which allows the
kernel trick for SVMs
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Projected Gradient Descent

- Constrained optimization subject to convex set

min f(x)
st.x e C

+ Projected gradient descent step:
o (BT pc(x(k‘) _ 77(kf)vf(x(lfc)))

+ Projection onto a set c is:

Po(z) = argmin ||z — v
veC
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Projected Gradient Descent: Example 1

- Linear regression with non-negative weights
min |ly — X 5||3
d
s.t. B € R
* Projection is of the form:

PR—I— (il?)z — max(a:i, O)

- Algorithm: same as gradient descent for linear regression
except that any values less than O are set to O
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Projected Gradient Descent: Ridge Regression

- Ridge Regression (one form):
min |ly — X 3|5
S.t. 5“2 <'S

- Projection Is of the form:

PX(Z): ©

max(s, ||2]|2)

- Algorithm: same as gradient descent for linear regression
except that all values are scaled by the norm or s
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Proximal Gradient Descent

-+ Can be referred to as composite gradient descent or
generalized gradient descent

- Formulation for decomposable functions where one of the
functions may not necessarily be differentiable

flz) = g(z) + h(z)
—~— —~—

convex, differentiable convex

- |f both are differentiable or h(x) = O, then it’s standard
gradient descent

- If h(X) Is the indicator function, then its projected gradient
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Proximal Gradient Descent Step

+ Define proximal mapping:

1
prox,(x) = argmin 2—t\|a? — z||5 + h(2)

- Proximal gradient step has the form:

vt = prox,(z — tVg(x))

-+ But... we just swapped one minimization problem for
another
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Proximal Gradient Descent Advantages

-+ The proximal mapping can be computed analytically for
many important functions h

- Mapping does not depend on g at all, just on h

- Smooth part g can be complicated, but we only need to
compute its gradients

- Simple to implement and is a fast first-order method

assuming the proximal map is well-known and
iInexpensive to compute
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Proximal Gradient Descent: LASSO

- Optimization problem:
min g(z) + ||
- Proximal mapping:

Zi—t, Zz>t

prox,(z); = < 0, —t < z; <1 /
zi +t, z; >t L 4

- Known as iterative soft-thresholding

CS 584 [Spring 2016] - Ho



Proximal Gradient Descent: Matrix Completion

-+ Given a matrix Y and only some observed entries, we
want to fill in the remaining entries (e.q., recommendation
system)

1
min Z (Yi-—Bz‘j)2+)\HBHtr

(2,7)€

Proximal gradient update step:
BT = S\ (B +t(Pa(Y) — Po(B)))

- Soft-impute algorithm, which is simple and effective for
matrix completion

http://stat.cmu.edu/~ryantibs/convexopt/lectures/08-prox-grad.pdf
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http://stat.cmu.edu/~ryantibs/convexopt/lectures/08-prox-grad.pdf

Some Resources for Today’s Lecture

- Boyd & Landenberghe’s book on Convex Optimization

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

- Nocedal & Wright’s book o

nttp://

nome.agh.edu.pl/~p

N Numerical Optimization
pa/pdfdoc/

Nume

rical_Optimization.pgo

f

- Parish & Boyd on Proximal Algorithms
https://web.stanford.edu/~boyd/papers/pdf/prox algs.pdf

- Ryan Tibshirani’s course on Convex Optimization
http://stat.cmu.edu/~ryantibs/convexopt/
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https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://home.agh.edu.pl/~pba/pdfdoc/Numerical_Optimization.pdf
https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf
http://stat.cmu.edu/~ryantibs/convexopt/

