
Convex Optimization Part II
CS 584: Big Data Analytics

Material adapted from 
John Duchi (https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf) 

& Stephen Boyd (https://web.stanford.edu/class/ee364a)

https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf
https://web.stanford.edu/class/ee364a
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Convex Optimization Problems
min
x

f0(x)

s.t. f
k

(x)  0, k = 1, 2, · · · ,K
h

j

(x) = 0, j = 1, 2, · · · , J

convex function

convex sets
affine constraints

Local minima are 
global minima
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Why Convex Optimization?
• Achieves global minimum, no local traps 

• Highly efficient software available 

• Can be solved by polynomial time complexity algorithms 

• Dividing line between “easy” and “difficult” problems
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Review: Regularized Regression
• Linear regression has low bias but suffers from high variance 

(maybe sacrifice some bias for lower variance) 

• Large number of predictors makes it difficult to identify the 
important variables 

• Regularization term imposes penalty on “less desirable solutions” 

• Ridge regression: reduces the variance by shrinking 
coefficients towards zero by using the squared     penalty 

• LASSO: feature selection by setting coefficients to zero using 
an      penalty.

`2

`1
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Convex Optimization: LASSO
• LASSO: least absolute shrinkage and selection operator 

• Coefficients are the solutions to the     optimization 
problem 

• Penalize regression coefficients by shrinking many of 
them to 0

`1

min

�2Rd
||y �X�||22

subject to ||�||1  s
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Review: Support Vector Machines (SVM)
• A leading edge classier which uses “optimal” hyperplane in a 

suitable feature space for classification 

• Finds the hyperplane that maximizes the margin  
(i.e., B1 is better than B2) 

• Points closest to separating 
hyperplane are known as  
support vectors 

• Kernel trick to transform space 
into higher-dimensional feature  
space where separable
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Convex Optimization: SVM
• Learning SVM is formulated 

as an optimization problem 

• Quadratic optimization 
problem subject to linear 
constraints and there is a 
unique minimum 
 
 
 
 

min
w

||w||2 + C

X

i

⇠i

s.t. ⇠i � 1� yix
>
i w

⇠i � 0
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Convex Sets

Any line segment joining any two elements lies entirely in 
set

x1, x2 2 C, 0  ✓  1 =) ✓x1 + (1� ✓)x2 2 C

convex non-convex non-convex
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Convex Function
f : Rn ! R is convex if dom f is a convex set and

f(✓x+ (1� ✓)y)  ✓f(x) + (1� ✓)f(y)

for all x, y 2 dom f, 0  ✓  1

f lies below the line segment joining f(x), f(y)
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Properties of Convex Functions
• Convexity over all lines 

• Positive multiple  

• Sum of convex functions 

• Pointwise maximum  

• Affine transformation of domain 

f(x) is convex =) f(x0 + th) is convex in t for all x0, h

f(x) is convex =) ↵f(x) is convex for all ↵ � 0

f1(x), f2(x) convex =) f1(x) + f2(x) is convex

f1(x), f2(x) convex =) max{f1(x), f2(x)} is convex

f(x) is convex =) f(Ax+ b) is convex
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Gradient Descent (Steepest Descent)
• Consider unconstrained, smooth convex optimization 

problem (i.e., f is convex and differentiable) 

• At each iteration, take a small step in the steepest 
descent direction 

• Very simple to use and implement and is a numerical 
solution to the problem
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Gradient Descent: Linear Regression

http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/

http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
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Gradient Descent: Example 2

f(x1, x2) = e

x1+3x2�0.1 + e

x1�3x2�0.1 + e

�x1�0.1

Boyd & Landenberghe’s Book on Convex Optimization
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Gradient Descent: Example 3

Boyd & Landenberghe’s Book on Convex Optimization

A problem in R100
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Limitations of Gradient Descent
• Step size search may be expensive 

• Convergence is slow for ill-conditioned problems 

• Convergence speed depends on initial starting position 

• Does not work for non differentiable or constrained 
problems
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Newton’s Method
• Assumes function is locally quadratic: 

• Choose step direction: 

• Method is often faster than gradient descent

f(x+�x) ⇡ f(x) +rf(x)>�x+
1

2
�x

>r2
f(x)�x

�x = �[r2
f(x)]�1rf(x)
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Newton’s Method: Example 2

f(x1, x2) = e

x1+3x2�0.1 + e

x1�3x2�0.1 + e

�x1�0.1

converges in only 5 steps
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Newton’s Method: Example 3

Gradient Descent Newton’s Method
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Disadvantages of Newton’s Method
• Hessian is expensive to invert 

• Hessian must be positive definite 

• May make huge, uncontrolled steps which can cause 
instability

There are several other methods which build on gradient 
descent and Newton’s method such as conjugate 

gradient descent and Quasi-Newton methods
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Constrained Optimization 
Algorithms

min
x

f0(x)

s.t f
k

(x)  0, k = 1, · · · ,K
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Lagrange Duality
• Bound or solve an optimization problem via a different 

optimization problem 

• Optimization problems (even non-convex) can be 
transformed to their dual problems 

• Purpose of the dual problem is to determine the lower 
bounds for the optimal value of the original problem 

• Under certain conditions, solutions of both problems are 
equal and the dual problem often offers easier and 
analytical way to the solution
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Reasons Why Dual is Easier
• Dual problem is unconstrained or has simple constraints 

• Dual objective is differentiable or has a simple non 
differentiable term 

• Exploit separable structure in the decomposition for 
easier algorithm
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Construct the Dual
Original optimization problem or primal problem
min
x

f0(x)

s.t. f
k

(x)  0, k = 1, 2, · · · ,K
h

j

(x) = 0, j = 1, 2, · · · , J

L(x,�, v) = f0(x) +
X

k

�kfk(x) +
X

j

vjhj(x)

Lagrangian

Lagrange multipliers or dual variables



CS 584 [Spring 2016] - Ho

Construct the Dual
Original optimization problem or primal problem
min
x

f0(x)

s.t. f
k

(x)  0, k = 1, 2, · · · ,K
h

j

(x) = 0, j = 1, 2, · · · , J

Dual problem

infimum is the element 
that is smallest or 

equal to all elements 
in the set

dual function is always 
lower bound for optimal 
value of original function

g(�, v)  L(x̃,�, v)  f0(x̃)

max g(�, v) = inf

x

L(x,�, v)

subject to � � 0
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Lagrange Dual: Separable Example

min f1(x1) + f2(x2)

subject to A1x1 +A2x2  b

coupling constraint in 
primal problem

max � f⇤
1 (�A>

1 z)� f⇤
2 (�A>

2 z)� b>z

subject to z � 0 dual problem can be easily solved 
by gradient projection
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Lagrange Dual: SVM Example

min
1

2
||w||2

s.t. yi(w
>
xi + b) � 1, i = 1, · · · ,m

classical SVM problem assuming linearly separable can 
be solved using commercial quadratic programming

L(w, b,�) =
1

2
||w||2 �

X

i

�i[yi(w
>
xi + b)� 1]
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Lagrange Dual: SVM Example II
• Take derivative of L with respect to w and b and set them 

to zero 

• Replace the definitions in the Lagrangian for the dual 
formulation and simplifying 

• Note that the formulation only uses inner products 
between x and the support vectors which allows the 
kernel trick for SVMs

max

��0,
P

i �iyi=0

X

i

�i �
1

2

X

i,j

yiyj�i�j < xi, xj >
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Projected Gradient Descent
• Constrained optimization subject to convex set 

• Projected gradient descent step: 

• Projection onto a set c is:

min f(x)

s.t. x 2 C

x

(k+1) = PC(x
(k) � ⌘

(k)rf(x(k)))

PC(x) = argmin
v2C

||x� v||
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Projected Gradient Descent: Example 1
• Linear regression with non-negative weights 

• Projection is of the form:  

• Algorithm: same as gradient descent for linear regression 
except that any values less than 0 are set to 0

PR+(x)i = max(xi, 0)

min ||y �X�||22
s.t. � 2 Rd

+
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Projected Gradient Descent: Ridge Regression

• Ridge Regression (one form):  
 

• Projection is of the form: 

• Algorithm: same as gradient descent for linear regression 
except that all values are scaled by the norm or s

min ||y �X�||22
s.t. ||�||2  s

PX(z) =
z

max(s, ||z||2)
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Proximal Gradient Descent
• Can be referred to as composite gradient descent or 

generalized gradient descent 

• Formulation for decomposable functions where one of the 
functions may not necessarily be differentiable 

• If both are differentiable or h(x) = 0, then it’s standard 
gradient descent 

• If h(x) is the indicator function, then its projected gradient

f(x) = g(x)|{z}
convex, di↵erentiable

+ h(x)|{z}
convex
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Proximal Gradient Descent Step
• Define proximal mapping: 

• Proximal gradient step has the form: 

• But… we just swapped one minimization problem for 
another

proxt(x) = argmin

1

2t

||x� z||22 + h(z)

x

+
= proxt(x� trg(x))
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Proximal Gradient Descent Advantages
• The proximal mapping can be computed analytically for 

many important functions h 

• Mapping does not depend on g at all, just on h 

• Smooth part g can be complicated, but we only need to 
compute its gradients 

• Simple to implement and is a fast first-order method 
assuming the proximal map is well-known and 
inexpensive to compute



CS 584 [Spring 2016] - Ho

• Optimization problem: 

• Proximal mapping: 
 
 
 
 

• Known as iterative soft-thresholding

Proximal Gradient Descent: LASSO

min g(x) + ||x||1

proxt(z)i =

8
><

>:

zi � t, zi � t

0, �t  zi  t

zi + t, zi � t
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Proximal Gradient Descent: Matrix Completion

• Given a matrix Y and only some observed entries, we 
want to fill in the remaining entries (e.g., recommendation 
system)  

• Proximal gradient update step: 

• Soft-impute algorithm, which is simple and effective for 
matrix completion

min
1

2

X

(i,j)2⌦

(Yij �Bij)
2 + �||B||tr

B+ = S�t (B + t(P⌦(Y )� P⌦(B)))

http://stat.cmu.edu/~ryantibs/convexopt/lectures/08-prox-grad.pdf

http://stat.cmu.edu/~ryantibs/convexopt/lectures/08-prox-grad.pdf
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Some Resources for Today’s Lecture
• Boyd & Landenberghe’s book on Convex Optimization  

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf 

• Nocedal & Wright’s book on Numerical Optimization  
http://home.agh.edu.pl/~pba/pdfdoc/
Numerical_Optimization.pdf 

• Parish & Boyd on Proximal Algorithms 
https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf 

• Ryan Tibshirani’s course on Convex Optimization 
http://stat.cmu.edu/~ryantibs/convexopt/

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://home.agh.edu.pl/~pba/pdfdoc/Numerical_Optimization.pdf
https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf
http://stat.cmu.edu/~ryantibs/convexopt/

