Convex Optimization Part |

CS 584: Big Data Analytics

Material adapted from
John Duchi (https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf)
& Stephen Boyd (https://web.stanford.edu/class/ee364a)



https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf
https://web.stanford.edu/class/ee364a

Optimization Problem

- Minimize a function subject to some constraints

min fo(z)
S.t fk(a:)g(),k: ) Ly ,K
h](x) :Ov.] — 1, 4, 7J

- Example: Minimize the variance of your returns while
earning at least $100 in the stock market.
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Machine Learning and Optimization
- Linear regression  min || Xw — y||*

+ Logistic regression ngn Zlog(l + eXp(—yﬂz’T w))

. SVM min |lwl|* +C ) &

s.t. & > 1 — yzai,jw

& >0

- And many more ...
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Non-Convex Problems are Everywhere

- Local (hon-global) minima

- All Kinds of constraints

No easy solution
for these problems
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Convex Sets

A set C is convex such that given any two points a, b in
that set, the line segment between the two points is in the
set

1,20 € C,.0<0<]1 = (9$1—|—(1—(9).’]32€C

CONnvex concave
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Examples: Convex Set

- Real space: R"

+ Non-negative orthant: R}

- Norm balls: {z | ||z — z.|| < r}

- Hyperplane: {z | a'z =b},a # 0

. Halfspace: {z | a'x <b},a#0
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Convexity-preserving operations

- |ntersection

- Affine functions f(x) =Ax+b, Aec R™*", be R™
(e.q., scaling, translation, projection)

+ Perspective function
P(x,t) = %, dom P = {(xz,t) |t > 0}

- Linear-fractional functions

B Ax + b

_ T
f(z) = T d dom f={x|c' x+d>0}

CS 584 [Spring 2016] - Ho



Convex Functions

Definition

f:R"™ — R is convex if dom f is a convex set and

flOr+ (1 —0)y) <O0f(x)+ (1-0)f(y)
forall z,y €edom f,0<0 <1
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Examples: Convex Functions (Real space)

- affine: ax + b,for any a,b € R

- exponential; e**, for any a € R

- powers: x%, fora>lora<0, xR,
- powers of absolute value: |z|?, for p > 1

- negative entropy: zlogx, T € Ry
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Convex Optimization Problem

Definition:

An optimization problem is convex if its objective is a
convex function, the inequality constraints are convex, and
the equality constraints are affine

min fo(x) convex function

s.t. fx(x) <0,k=1,2,--- K convex sets
hi(z)=0,7=1,2,---,J affine constraints
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Benefits of Convexity

- Theorem: If X is a local minimizer of a convex optimization
problem, it is a global minimizer

- Theorem: If the gradient at c is zero, then ¢ is the global
minimum of f(x)

Vflc)=0 < c=2a"
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Lagrange Duality

Bound or solve an optimization problem via a different
optimization problem

Reformulate the problem as an augmented objective with
a weighted sum of constraints

Remove constraints
INntroduce new variables

Form a dual function
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Constructing the dual

Original optimization problem
min fo(x)
S.T. fk()é()k -727”'7K
hj():()] -727'°'7J

g(A,v) = inf fo(z) + > Aifrlx
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dual function

)+Z’Ujhj(af)}

A > 0,0 R



Iwo Properties of Dual

- Weak Duality (Lemma): If A > 0, then g(A,v) < fo(z™)
- Always holds for convex and non convex problems

- Can be used to find nontrivial lower bound for difficult
problems

X X

- Strong Duality (Theorem): d” =«
- (Usually) holds for convex problems

+ Constraint qualifications are conditions that guarantee
strong duality in convex problems
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Unconstrained Optimization
Algorithms

min f(x)
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Gradient Descent (Steepest Descent)

- Simplest and extremely popular

- Main |ldea: take a step proportional to the negative of the
gradient

+ Easy to implement

- Each iteration is relatively cheap

- Can be slow to converge
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Gradient Descent Algorithm

Algorithm 1: Gradient Descent

while Not Converged do
(Pt = (k) _ p(R)7 f(x)
end

return (1)
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Importance of Step Size

Challenge is to find a good step size to avoid step size
that Is too long or too short

too long => divergence too short => slow convergence
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Step Size Selection

- Exact Line Search: Pick step size to minimize the function
n'*) = argmin f(z — nV f(z))
n

Too expensive to be practical

+ Backtracking (Armijo) Line Search: Iteratively shrink the
step size until a decrease Iin objective is observed

Algorithm 1: Backtracking Line Search
Let a € (0,%),8 € (0,1)
while f(z —nV f(z)) > f(z) — anl|V f(2)||* do

= P6n
end

CS 584 [Spring 2016] - Ho



Example: Linear Regression

- Optimization problem:

min || Xw — yl|2
w

- Closed form solution:
’UJ* _ (XTX)—IXTy

- Gradient update:

1
wh =w — —Z(aﬁ:w—yz)xz

m =
i
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Some Resources for Convex Optimization

- Boyd & Landenberghe’s Book on Convex Optimization
https://web.stanford.edu/~boyd/cvxbook/bv cvxbook.pdf

- Stephen Boyd'’s Class at Stanford
http://stanford.edu/class/ee364a/

- Vandenberghe’s Class at UCLA
http://www.seas.ucla.edu/~vandenbe/ee236b/ee236b.html

- Ben-Tai & Nemirovski Lectures on Modern Convex
Optimization
http://epubs.siam.org/doi/lbook/10.1137/1.9/80898718829
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