Coding for Random Projects

CS 584: Big Data Analytics

Material adapted from Li’s talk at ICML 2014
(http://techtalks.tv/talks/coding-for-random-projections/61085/)


http://techtalks.tv/talks/coding-for-random-projections/61085/

Random Projections for High-Dimensional Data

- Replace original data matrix A by B, where B = A X R

- B approximately preserves the Euclidean distance and
iInner products between any two rows of A

- Feed B into SVM or logistic regression solvers

X

projected matrix
(N X K)

random matrix (D x k)
=~ w/ 1.I.d entries sampled
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Classification Experiment on Webspam Data: Very
Sparse Random Projections

Dataset: 350K text samples, 16 million dimensions,
about 4000 nonzeros on average, 24GB disk space

- Task: Binary classification for spam vs non-spam

Projection: Instead of sampling from normal, sample from
sparse distribution parameterized by s

—1  with prob. =
with prob. =~ s = 100 means on average
Tij = 0 withprob. 1 —1

s 99% of entries are O
1  with prob. %

http://web.stanford.edu/group/mmds/slides2012/s-pli.pdf
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Sparse Random Projection Results
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Need a large number of projections for high accuracy

Random matrix can be very sparse (as long as Kk is large
enough)

http://web.stanford.edu/group/mmds/slides2012/s-pli.pdf
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Learning with Random Projections Summary

Reasonable method when data are dense and inner
oroduct is a good kernel

- Usually needs high amount of projects to achieve highly
accurate results

- Projected data are real-valued which are inconvenient for
string and cannot be used for iIndexing

A coding scheme is necessary (need integers)!
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Notations

- Random projections:
x:uxRERk, y=1v X R eR"

R = { ’L]}z 1,9=1> Fig ~ N(()?l)

»+ Assume input data has lbeen normalized (one linear scan
through the data)

|ull2 = [|v]|l2 =1
- Joint distribution of (x;, vj) is bi-variant normal

E73 0] [1 p
~ N ) P = Uiy
Y ( 0] |p 1_> g Z
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Prior Coding Scheme [Datar et. al 2004]

- Standard implementation in LSH packages
- Width must be pre-chosen => quantization is irreversible

- Random offset Is needed for closed form version of
collision probabillity

i T4 | ) (v) = | & T 4;
W $ W W

hD, () =

q; ~ uniform(0, w)
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Prior Coding Scheme [Datar et. al 2004] (2)

- Collision probability

Py, —Pr(h“)( ) (v))

— —2¢ ] —

/\

d=|lu—v|2=2(1- standard normal pdf
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Proposal: Uniform Quantization

» Drop the offset
0= |2, wo =2

- Scheme is simpler than prior coding scheme
- For fixed w, this scheme Is more accurate

- For a wide range of p values, the optimal w values for the
scheme are relatively larger (means less number of bits to
encode)
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Uniform Quantization: Collision Probability

5asic requirement: collision probability should be
monotonically increasing function of the similarity. It does
not matter whether it has a closed form expression

Theorem:

o0 (i41)w
Py=2) / b(2)x (7

i=0 YW

- t+1Dw—pz) w — pz - z
-@( Vi-p? ) (I)(Jl—/ﬂ)_d

which is a monotonically increasing function of p > 0.
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Collision Probability Comparison
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Variance of Existing Scheme

10°

2

10

g
=
>
1

10}

0
10 : ‘
10”" 10° 10 10

+ Minimum variance of 7.6797 (quite large) is attained at
1.6476

- Performance can be sensitive to choice of bin width -
practical disadvantage
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Variance Comparison at Fixed Bin Width w
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Variance Comparison at Optimal Bin Widths w

Var factor (V)
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- Uniform quantization variance is significantly lower at smaller
similarity values

- Sufficient to use 1 bit (i.e., sign of project data) if the similarity is
below 0.56
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2-Bit Non-Uniform Coding Scheme

Motivation for developing non-uniform coding schemes

- |In practice, we don’t know similarity in advance and we
often care about high similarities

- When p > 0.96, we might want to choose small w
values (e.g., w < 1)

However using a small w value will hurt the
nerformance In low similarities
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2-Bit Non-Uniform Coding Scheme (2)

- Quantize the projected data into four regions
(—o0, —w), |—w, 0), [0, w), lw, 00)

- Collision probability

Py 2 =Pr (h(j) (u) = h(j) (v)) (13)

{i- o) [ (25
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Collision Comparison: Uniform and 2-Bit
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Variance Comparison: Uniform and 2-Bit
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Optimal Comparison: Uniform and 2-Bit
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Performance is similar in most regions

For similarity between 0.2 and 0.62, it Is preferable to use
1 bit instead of 2 bits
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Linear SVM Experiments

5 coding schemes
- Original: no coding
* hw,q: prior coding scheme [Datar et al 2004]
*  hw: uniform quantization
* hwe: 2-bit coding

- hy: 1-bit coding (no bin width w is necessary)
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Example of Coding

hW,Z aﬂd W = 075

For projected value Xx:

x € (—00,0.75) = |1 0 0 0
r€[0.75,00 = [0 1 0 O
x60075):> 0 0 1 0
€ [0.75,400) = [0 0 0 1

Same trick as in b-bit minwise hashing (NIPS 201 1)
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Linear SVM: Uniform vs. Old Scheme

URL:w=1 k=256

Classification Acc (%)
Classification Acc (%)

For small bin width, two schemes are very similar

Step of random offset from the old scheme is not
necessary
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Linear SVM: No Coding vs. Proposed
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Coding for LSH Hash Tables
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Use coded values to
determine which
buckets correspond
points are placed In

Always preferable to
use No random offset

Often only a small
numiber of bits are
needed



Summary

Method of random projections is standard approach for
machine learning and data mining

- Compact representation of projected data is crucial for
efficient transmission, retrieval, and energy consumption

Introduced uniform quantization that is operationally
simpler, more accurate, less sensitive to parameters, and
uses fewer bits

Introduced 2-bit non-uniform coding scheme which
performs similarly to uniform quantization

CS 584 [Spring 2016] - Ho



