
Bayesian Methods for Machine 
Learning
CS 584: Big Data Analytics

Material adapted from 
Radford Neal’s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), 

Zoubin Ghahramni (http://hunch.net/~coms-4771/Zoubin_Ghahramani_Bayesian_Learning.pdf), 
Taha Bahadori (http://www-scf.usc.edu/~mohammab/sampling.pdf)  

http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf
http://hunch.net/~coms-4771/Zoubin_Ghahramani_Bayesian_Learning.pdf
http://www-scf.usc.edu/~mohammab/sampling.pdf
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Frequentist vs Bayesian
Frequentist 

• Data are a repeatable 
random sample 
(there is a frequency) 

• Underlying parameters 
remain constant during 
repeatable process 

• Parameters are fixed 

• Prediction via the estimated 
parameter value

Bayesian 

• Data are observed from the 
realized sample 

• Parameters are unknown and 
described probabilistically 
(random variables) 

• Data are fixed 

• Prediction is expectation over 
unknown parameters 
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The War in Comics

http://www.xkcd.com/1132/

http://conversionxl.com/bayesian-frequentist-ab-testing/

http://www.xkcd.com/1132/
http://conversionxl.com/bayesian-frequentist-ab-testing/
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Classic Example: Binomial Experiment
• Given a sequence of coin tosses x1, x2, …, xM, we want 

to estimate the (unknown) probability of heads  

• The instances are independent and identically distributed 
samples 

• Note that x can take on many possible values potentially 
if we decide to use a multinomial distribution instead

P (H) = ✓
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Likelihood Function
• How good is a particular parameter? 

Ans: Depends on how likely it is to generate the data 

• Example: Likelihood for the sequence H, T, T, H, H

L(✓;D) = P (D|✓) =
Y

m

P (xm|✓)

0 0.2 0.4 0.6 0.8 1 θ 

L(
θ 

:D
) L(✓;D) = ✓(1� ✓)(1� ✓)✓✓

= ✓3(1� ✓)2
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Maximum Likelihood Estimate (MLE)
• Choose parameters that maximize the likelihood function 

• Commonly used estimator in statistics 

• Intuitively appealing 

• In the binomial experiment, MLE for probability of heads 

• Optimization problem approach

✓̂ =
NH

NH +NT
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Is MLE the only option?
• Suppose that after 10 observations, MLE estimates the 

probability of a heads is 0.7, would you bet on heads for 
the next toss? 

• How certain are you that the true parameter value is 0.7? 

• Were there enough samples for you to be certain?



CS 584 [Spring 2016] - Ho

Bayesian Approach
• Formulate knowledge about situation probabilistically 

• Define a model that expresses qualitative aspects of our knowledge (e.g., 
forms of distributions, independence assumptions) 

• Specify a prior probability distribution for unknown parameters in the 
model that expresses our beliefs about which values are more or less likely 

• Compute the posterior probability distribution for the parameters, given 
observed data 

• Posterior distribution can be used for: 

• Reaching conclusions while accounting for uncertainty 

• Make predictions by averaging over posterior distribution
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Posterior Distribution
• Posterior distribution for model parameters given the observed 

data combines the prior distribution with the likelihood function 
using Bayes' rule 

• Denominator is just a normalizing constant so you can write it 
proportionally as 

• Predictions can be made by integrating with respect to posterior 
 

P (✓|D) =
P (✓)P (D|✓)

P (D)

Posterior / Prior⇥ Likelihood

P (new data|D) =

Z

✓
P (new data|✓)P (✓|D)
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Revisiting Binomial Experiment
• Prior distribution: uniform for    in [0, 1] 

• Posterior distribution:  

• Example: 5 coin tosses with 4 heads, 1 tail 

• MLE estimate:  

• Bayesian prediction: 
 

✓

P (✓|x1, x2, · · · , xM ) / P (x1, x2, · · · , xM |✓)⇥ 1

P (✓) =
4

5
= 0.8, P (xM+1 = H|D) = 0.8

P (xM+1 = H|D) =

Z
✓P (✓|D)d✓ =

5

7

0 0.2 0.4 0.6 0.8 1 
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Bayesian Inference and MLE
• MLE and Bayesian prediction differ 

• However… 

• IF prior is well-behaved (i.e., does not assign 0 density 
to any “feasible” parameter value) 

• THEN both MLE and Bayesian prediction converge to 
the same value as the number of training data 
increases
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Features of the Bayesian Approach
• Probability is used to describe “physical” randomness 

and uncertainty regarding the true values of the 
parameters 

• Prior and posterior probabilities represent degrees of 
belief, before and after seeing the data 

• Model and prior are chosen based on the knowledge of 
the problem and not, in theory, by the amount of data 
collected or the question we are interested in answering
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Priors
• Objective priors: noninformative priors that attempt to capture 

ignorance and have good frequentist properties 

• Subjective priors: priors should capture our beliefs as well as 
possible. They are subjective but not arbitrary. 

• Hierarchical priors: multiple levels of priors 

• Empirical priors: learn some of the parameters of the prior from the 
data (“Empirical Bayes”) 

• Robust, able to overcome limitations of mis-specification of prior 

• Double counting of evidence / overfitting
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Conjugate Prior
• If the posterior distribution are in the same family as prior 

probability distribution, the prior and posterior are called 
conjugate distributions 

• All members of the exponential family of distributions 
have conjugate priors

Likelihood Conjugate prior 
distribution

Prior 
hyperparameter

s

Posterior 
hyperparameters

Bernoulli Beta
Multinomial Dirichlet

Poisson Gamma

↵,�

↵

↵,�

↵+
X

xi,� + n�
X

xi

↵+
X

xi,� + n

↵+
X

xi
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Linear Regression (Classic Approach)
y = w

>
x+ ✏, ✏ ⇠ N(0,�2)

P (yi|w, xi,�
2) = N(w>

xi,�
2)

P (y|w,X,�

2) =
Y

i

P (yi|w, xi,�
2)

maximize log likelihood

max ln(P (y|w, x,�2
) = max

X

i

ln(N(yi|w, xi,�
2
))

wMLE = argminw
1

2

X

i

(yi � x

>
i w)

2

w = (X

>
X)

�1
X

>
y
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Bayesian Linear Regression
• Prior is placed on either the weight, w, or the variance, 

sigma 

• Conjugate prior for w is normal distribution

mean is weighted average 
of OLS estimate and prior 

mean, where weights reflect 
relative strengths of prior 

and data information

P (w) ⇠ N(µ0, S0)

P (w|y) ⇠ N(µ, S)

S�1 = S�1
0 +

1

�2
X>X

µ = S(S�1
0 µ0 +

1

�2
X>y)
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Computing the Posterior Distribution
• Analytical integration: works when “conjugate” prior distributions can be 

used, which combine nicely with the likelihood —usually not the case 

• Gaussian approximation: works well when there is sufficient data 
compared to model complexity — posterior distribution is close to 
Gaussian (Central Limit Theorem) and can be handled by finding its 
mode 

• Markov Chain Monte Carlo: simulate a Markov chain that eventually 
converges to the posterior distribution —currently the dominant 
approach 

• Variational approximation: cleverer way to approximate the posterior 
and maybe faster than MCMC but not as general and exact
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Approximate Bayesian Inference
Stochastic approximate inference 
(MCMC) 

• Design an algorithm that draws 
sample from distribution 

• Inspect sample statistics 

• (Pros) Asymptotically exact 

• (Cons) Computationally expensive 

• (Cons) Tricky Engineering 
concerns

Structural approximate inference 
(variational Bayes) 

• Use an analytical proxy that is 
similar to original distribution 

• Inspect distribution statistics of 
proxy 

• (Pros) Often insightful & fast 

• (Cons) Often hard work to derive 

• (Cons) Requires validation via 
sampling

http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf
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Marko Chain Monte Carlo (MCMC)
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A Simple Markov Chain

http://bit-player.org/wp-content/extras/markov/art/weather-model.png

http://bit-player.org/wp-content/extras/markov/art/weather-model.png
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Markov Chains Review
• A random process has Markov property if and only if: 

• Finite-state Discrete Time Markov Chains can be 
completely specified by the transition matrix P 

• Stationarity: As t approaches infinity, the Markov chain 
converges in distribution to its stationary distribution 
(independent of starting position)

p(Xt|xt�1, Xt�2, · · · , X1) = p(Xt|xt�1)

P = [pij ]; pij = P [Xt = j|Xt�1 = i]
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Markov Chains Review (2)
• Irreducible: any set of states can be reached from any other 

state in a finite number of moves 

• Assuming a stationary distribution exists, it is unique if the 
chain is irreducible 

• Aperiodicity: greatest common divisor of return times to any 
particular state i is 1 

• Ergodicity: if the Marko chain has station distribution, is 
aperiodic and irreducible then:  
 

E⇡[h(X)] =
1

N

X
h(X(t)) as N ! 1
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MCMC Algorithms
• Posterior distribution is too complex to sample from directly, simulate a 

Markov chain that converge (asymptotically) to the posterior distribution 

• Generating samples while exploring the state space using a Markov 
chain mechanism 

• Constructed so the chain spends more time in the important regions 

• Irreducible and aperiodic Markov chains with target distribution as 
the stationary distribution 

• Can be very slow in some circumstances but is often the only viable 
approach to Bayesian inference using complex models
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The Monte Carlo Principle
• General Problem: 

• Instead, draw samples from the target density to 
estimate the function

E⇡[h(X)] =

Z
h(x)⇡(x)dx

X

(1)
, X

(2)
, · · · , X(N) ⇠ ⇡(x)

E⇡[h(X)] ⇡ 1

N

X
h(X(t))
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Metropolis-Hastings Algorithm
• Most popular MCMC (Metropolis, 1953; Hastings 1970) 

• Main Idea: 

• Create a Markov chain whose transition matrix does not 
depend on the normalization term 

• Make sure the chain has a stationary distribution and is 
equal to the target distribution 

• After sufficient number of iterations, the chain 
converges to the stationary distribution
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Metropolis-Hasting Algorithm
At each iteration t 

• Step 1: Sample a candidate point from proposal 
distribution 

• Step 2: Accept the next point with probability

y ⇠ q(y | x(t))

“candidate” point “proposal” distribution

↵(x(t)
, y) = min

⇢
1,

p(y)q(x(t)|y)
p(x(t))q(y|x(t))

�
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Illustration of Metropolis-Hasting Algorithm

http://www2.geog.ucl.ac.uk/~mdisney/teaching/GEOGG121/sivia_skilling/mterop_hastings.pdf

http://www2.geog.ucl.ac.uk/~mdisney/teaching/GEOGG121/sivia_skilling/mterop_hastings.pdf
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Variations of Proposal Distribution
• Random-walk is when proposal is dependent on previous 

state 

• Symmetric proposal originally proposed by Metropolis 
(e.g., Gaussian distribution) 

• Independent sampler uses a proposal independent of x

q(x|y) ⌘ q(y|x)

q(y|x) ⌘ q(y)

y ⇠ q(y|x(t))
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Metropolis-Hastings Notes
• Normalizing constant of the target distribution is not 

required 

• Choice of proposal distribution is very important: too 
narrow —> not enough mixing, too wide —> high 
correlations 

• Usually q is chosen so the proposal distribution is easily 
to sample with 

• Easy to simulate several independent chains in parallel
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Acceptance Rates
• Important to monitor the acceptance rate (fraction of candidate 

draws that are accepted) 

• Too high means the chain is not mixing well and not moving around 
the parameter space quickly enough 

• Too low means algorithm is too inefficient (too many candidate 
draws) 

• General rules of thumb: 

• Random walk: Somewhere between 0.25 and 0.50 

• Independent: Closer to 1 is preferred
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Gibbs Sampling (Geman & Geman, 1984)
• Popular in statistics and graphical models 

• Special form of Metropolis-Hastings where we always 
accept a candidate point and we know the full 
conditional distributions 

• Easy to understand, easy to implement 

• Open-source, black-box implementations available
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Gibbs Sampling
Sample or update in turn:

X

(t+1)
1 ⇠ ⇡(x1|x(t)

2 , x

(t)
3 , · · · , x(t)

k )

X

(t+1)
2 ⇠ ⇡(x2|x(t+1)

1 , x

(t)
3 , · · · , x(t)

k )

X

(t+1)
3 ⇠ ⇡(x3|x(t+1)

1 , x

(t+1)
2 , x

(t)
4 , · · · , x(t)

k )

...
...

X

(t+1)
k ⇠ ⇡(xk|x(t+1)

1 , x

(t+1)
2 , · · · , x(t+1)

k�1 )
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Illustration of Gibbs Sampler

http://vcla.stat.ucla.edu/old/MCMC/MCMC_tutorial/Lect2_Basic_MCMC.pdf

http://vcla.stat.ucla.edu/old/MCMC/MCMC_tutorial/Lect2_Basic_MCMC.pdf
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Practicalities: Burn-in
• Convergence usually occurs regardless of our starting point, 

so can pick any feasible starting point 

• Chain convergence varies depending on the starting point 

• As a matter of practice, most people throw out a certain 
number of the first draws, known as the burn-in 

• The remaining draws are closer to the stationary distribution 
and less dependent on the starting point 

• Plot the time series for each quantity of interest and the auto-
correlation functions to see if the chain has converged
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Practicalities: Number of Chains
• Suggestion: Experiment with different number of chains 

• Several long runs (Gelman & Rubin, 1992) 

• Gives indication of convergence 

• Sense of statistical security 

• One very long run (Geyer, 1992) 

• Reaches parts other schemes cannot reach
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Other Flavors of MC
• Auxiliary Variable Methods for MCMC 

• Hybrid Monte Carlo (HMC) 

• Slice Sampler 

• Reversible jump MCMC 

• Adaptive MCMC 

• Sequential Monte Carlo (SMC) and Particle Filters
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Variational Approximation
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Bayesian Inference via Variational Approximation

• Related to “mean field” and other approximation methods 
from physics 

• Idea: Find an approximate density that is maximally 
similar to the true posterior
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The Mean-field Form
• A common way of restricting the class of approximate 

posterior is to consider those posteriors that factorize into 
independent partitions 

• Each           is the approximate posterior for the ith subset 
of parameters  

• This implies a straightforward algorithm for inference by 
cycling over each set of parameters given current sets of 
others

q(✓) =
Y

i

qi(✓i)

qi(✓i)
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Example: Variational Inference

Figure 10.4 from Bishop PRML 
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Parametric vs. Nonparametric
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Parametric vs Nonparametric Models
• Parametric models: finite fixed number of parameters, 

regardless of the size of the dataset (e.g., mixture of k 
Gaussians) 

• Non-parametric models: number of parameters are allowed to 
grow with the data set size, or the predictions depend on the 
data size 

• Doesn’t limit the complexity of our model a priori 

• More flexible and realistic model 

• Better predictive performance
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Nonparametric Overview
• Dirichlet Process / Chinese Restaurant Process 

• Often used in clustering context and for latent class 
models 

• Beta Process / Indian Buffet Process 

• Latent feature models 

• Gaussian Process 

• Regression
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Example: Number of Clusters?

https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/nonparametric/slides.pdf

https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/nonparametric/slides.pdf
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Example: A Frequentist Approach
• Gaussian mixture model with K 

mixtures 

• Distribution over the K 
classes 

• Each cluster has a mean 
and covariance 

• Use Expectation Maximization 
(EM) to maximize the likelihood 
with respect to distribution and 
cluster points
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Example: Bayesian Parametric Approach
• Bayesian Gaussian mixture models with K mixtures 

• Distribution over classes that is drawn from a Dirichlet 

• Each cluster has a mean and covariance that is a 
Normal-Inverse-Wishart distribution 

• Use sampling or variational inference to learn posterior
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Example: Bayesian Parametric Approach
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Example: Nonparametric Bayesian Approach

• Likelihood term looks identical to the parametric case 

• Prior distribution uses the Dirichlet Process 

• Flexible, non-parametric prior over infinite number of 
clusters and their parameters 

• Distribution over distributions 

• Use Gibbs sampling to find the right distributions



CS 584 [Spring 2016] - Ho

Example: Nonparametric Bayesian Approach
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Limitations and Criticisms of Bayesian Methods

• It is hard to come up with a prior (subjective) and the 
assumptions may be wrong 

• Closed world assumption: need to consider all possible 
hypotheses for the data before observing the data 

• Computationally demanding (compared to frequentist 
approach) 

• Use of approximations weakens coherence argument


