Nearest Neighbor / Similarity
Search

CS 584: Big Data Analytics

Material adapted from
Piotr Indyk
(https://people.csail.mit.edu/indyk/helsinki-1.pdf) & Andrew Moore

https://people.csail.mit.edu/indyk/helsinki-1.pdf

Nearest Neighbor (NN)

- Problem Statement: Given a set of points or samples {p1, ..., pN},
and a new point g, find the data point nearest to g

- (AKA) Closest-point problem or post office problem

- Many problems can be expressed as finding “similar” sets
- Data compression
- Information retrieval

- Pattern recognition

CS 584 [Spring 2016] - Ho

Applications: Image Completion

https://graphics.stanford.edu/courses/cs468-06-fall/Slide/aneesh-michael.pdf

CS 584 [Spring 2016] - Ho

https://graphics.stanford.edu/courses/cs468-06-fall/Slide/aneesh-michael.pdf

Applications: Patient Prognosis

¥
Patient C% ,.o " Doctor

Doctor’s Supervision
@sg@g‘% s 2888

220l 0008 a70 e
gﬁ ey 20ty

2
000, 030%6225,5, 2

= A Y

2%°8 83 % 2% g

http://engr.uconn.edu/~fwang/tutorials/CIKM14 Tutorial.pdf

CS 584 [Spring 2016] - Ho

http://engr.uconn.edu/~fwang/tutorials/CIKM14_Tutorial.pdf

-NN Algorithm

—xamine the k-“closest”
training data points to new

poINt X
- Closest depends on the . k=1
distance metric used et o o koS
Ce ‘./]
- Assign the object the most AN
frequently occurring class S e
Example

http://www.theparticle.com/
applets/ml/nearest neighbor

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf

CS 584 [Spring 2016] - Ho

http://www.theparticle.com/applets/ml/nearest_neighbor
http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf

Example: k-NN Results

7-Nearest Neighbors

o
o
o
Te)
A
o
L o
g o
o ©
c
g
g s
(2]}
n
©
&) o
@2 T
= ° —— Test Error
0 — 10-fold CV
3 — Training Error
---- Bayes Error
o_
o
|] | | | l l Test Error:
0 5 10 15 20 25 30 BayeSEI'I'OI'I 0.2100

Number of Neighbors

Figures from Chapter 13 of ESL by Hastie & Tibshirani

CS 584 [Spring 2016] - Ho

Notable Distance Metrics

Weighting function (gaussian) mil=1 mlZ-mZ1=0 m22=U.5 Welghting function

N

Scaled Euclidean Mahalanobis
(diagonal covariance) (full covariance)

D(z,y) = /(z — y) TS5 1z —)

CS 584 [Spring 2016] - Ho

Notable Distance Metrics (2)

<

Manhattan or taxicab Maximum norm
1 norm

d

d
D(z,y) = > |z — yil D(x,y) = max [x; — y|
i=1 -

CS 584 [Spring 2016] - Ho

NN (and kNN) Advantages

+ Instance-based learning or lazy learning so building the
model Is very cheap

- Easy to understand and easy to implement
-+ Can be quite accurate (dependent on distance metric)

- Well-suited of multi-modal classes as well as a variety of
applications

- One of the most popular algorithms
(ranked 8th by KD Nuggets)

CS 584 [Spring 2016] - Ho

NN: When d = 2 (Euclidean Distance)

-+ Compute Voronoi diagram from
the set of points

- Each line segment is
equidistant between two
points

- Given g, perform point location

- Performance:

- Space: O(n)

https://en.wikipedia.org/wiki/Voronoi diagram

- Query time: O(log n)

CS 584 [Spring 2016] - Ho

https://en.wikipedia.org/wiki/Voronoi_diagram

NN: When d > 2 (Euclidean Distance)

- Generalization of Voronoi to higher dimension achieves
~O(n%2) space

- Impractical on a dataset of even just a million points for
d greater than or equal to 3

- Query can be performed via linear scan: O(dn) time

- Tree-based data structures with pre-processing: kd-trees

CS 584 [Spring 2016] - Ho

kd-Trees

CS 584 [Spring 2016] - Ho

kd-Trees [Bentley '75]

- Not the most efficient solution in theory but used In
practice

- Name originally meant 3d-trees, 4d-trees, ..., where k
was the number of dimensions

- |dea: Each level of the tree compares against 1
dimension

CS 584 [Spring 2016] - Ho

kd-Trees

+ Binary tree (data structure) for storing finite set of points from
a k-dimensional space

- Applications
 Nearest neighbor search
- Range queries
- Fast look-up

+ Guaranteed loge n depth where n is the number of points in
the set

CS 584 [Spring 2016] - Ho

kd-Tree Construction

- If just one point, form a leaf with that point

- Otherwise, choose an axis and divide the points in half via the
median of the axis

- Recursively construct kd-trees for the two sets of points
- Binary tree with:

- Size: O(n)

- Depth: O(log n)

- Construction: O(n log n)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction

i@
90 h .
° Select an axis (x) and choose the
y| 4 o fo . .
median line
be
? Co
l@
Je he
y| 4 ve fo
b
3 ° 1 Co

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

CS 584 [Spring 2016] - Ho

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

Example: kd-Tree Construction (1)

X
s1
y
s2
@
g. h.
e
y | 4 O fo
s2
be
% Co
s3

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction (2)

X
. s1
l@
g y
© he s2
e
y| ¢ © fo X
= s3
be
% Co a b
s3 1
X
X : s1
'@
g y
© he s2
s4 e
S © fo X y
s3 s4
s2
be
% Co a b
s3 1

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction (3)

X
. s1
'@
Je he syz
s4
y|"d | % f
O X y
89 s3 s4
s2
be
X
% Co a b
s3 s1 sb
X
X . s1
'@
g y
® he s2
s4
% “e fo X y
&= s3 s4
s2
be
X
% Co a b s5 9
s3 s1
X d e

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction (4)

s4

sd5

s2

s3

s6

X
s1
y y
s2 s6
y
s4
b |[X g
s5
d e
S
g. s8 h ®
y s4 % e ® s6 f.
- s5
b. 7
? Ce
s3 1

CS 584 [Spring 2016] - Ho

k-d tree cell

kd-Tree NN Search

- Search recursively to find the point in the same cell as the
query

-+ On return search the each subtree where a closer point
other than the one you know about might be found

-+ Has been shown to run in O(log n) average time per
search Iin a reasonable model (assuming d is constant)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query

B query point

X
s1
g Y y
= - S5 h. S2 S6
s4 e sS6
Y1 % © fo X y y y
2 s3 s4 s7 s8
s2
a o | a b [X g C f h |
® Co S5
s3 s1
X d e

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

CS 584 [Spring 2016] - Ho

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

Example: kd-Tree Query (1)

B query point

h

'@
he
R,

s4

s7
Co

s1

Yy
S2
X
s3
/
a b | X
19)
d

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query (2)

B query point

'@
g 2
s4 e ‘w /3/6
s5 f © 2
- s3
. b‘ S7C‘ . b x
s3 s1 SO
X d

CS 584 [Spring 2016] - Ho

s1

s4

Example: kd-Tree Query (3)

B query point

s1

Tl 2

s4 eg” 6 R
Y1 % . fo X y
sS2 s3
b. s’/ A k
a a b [X g
® Co =
s3 s1

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query (4)

Bl query point

s4 E ‘W/S/6 -
y f O X
s5 s3 s4
s2 o* .
b. s’/ = g
3 C. da b X
SH
s3 s1 .
X d e

CS 584 [Spring 2016] - Ho

%e

s1

‘O
L 2
*
*
o®

NN and the Curse of Dimensionality

NN breaks down in high-dimensional spaces because the
“neighborhood” becomes very large

-+ d dimensions means d independent neighlboring
directions to the point

- \olume-distance ratio explodes O(rd)

- Points become “equidistant” from a new point

CS 584 [Spring 2016] - Ho

KNN-Trees Summary

- Tons of variants

+ Construction of trees (e.qg., heuristics for splitting,
stopping, representing branches)

- Other representational data structures for fast NN
search (e.qg., ball trees, ...)

- High-dimensional spaces are hard

CS 584 [Spring 2016] - Ho

Python: Scikit-learn

Previous Up
1.5. 1.
le...

- kd-tree: O(d log n) for d < 20

scikit-learn version 0.17
— Other versions

Brute force: O(dn?)

- Ball tree: O(d log n) but tree construction

1.6. Nearest Neighbors .

1.6.1. Unsupervised Nearest I S m O re COSt |y th an kd _t ree

Neighbors

= 1.6.1.1. Finding the Nearest
Neighbors

= 1.6.1.2. KDTree and BallTree

Fi - Benchmarking using NN: https://

1.6.2. Nearest Neighbors

e Nowon Nigors lakevdp.qithub.io/blog/2013/04/29/

Regression

penchmarking-nearest-neighbor-
e searches-in-python/

Neighbors Algorithm
= 1.6.4.5. Effect of 1leaf_size

CS 584 [Spring 2016] - Ho

https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/

Approximate Nearest Neighbor (ANN)

- |dea: rather than retrieve the exact closest neighbor,
Make a “good guess” of the nearest neighbor

-+ ¢c-ANN: for any query g and points p:

+ 1 is the distance to the exact nearest neighbor g

+ Returnspin P, ||p — q|| < ¢r , with probability at least

1—09, 0>0

CS 584 [Spring 2016] - Ho

ANN: Altering kd-Tree Search

(Augmented) kd-Trees are used but interrupt search earlier
|Arya et al., 1994

- Prune when distance to bounding box is greater than
some distance r over some value alpha

+ Saves lots of search time by removing some nodes of
the tree

- |In practice can get O(d log n) but worst case still has
exponential running time

CS 584 [Spring 2016] - Ho

Beyond kd-Trees

- Works for low and medium dimensional data, but has
problems with high-dimensional data

- Non-trivial to iImplement efficiently and still requires some
computation of object similarities

+ Can we represent similarities between objects in a more
succinct manner?

+ Sacrifice exactness for efficiency by using randomization

- Obtain a “sketch” of the object instead

CS 584 [Spring 2016] - Ho

Johnson-Lindenstrauss Lemma

Main Idea: small set of points in high-dimensional space
can be embedded into a space of much lower dimension In
such a way that distances between the points are nearly
preserved

- One proof of the lemma uses projection onto random
subspace

-+ Used iIn compressed sensing, manifold learning,
dimensionality reduction, and graph emlbedding

CS 584 [Spring 2016] - Ho

Hash Functions

- A hash function, h, is a function which transforms a key from
a set K, into an index In a table of size n
h: K —>{0, 1, ..., n-2, n-1}

- A good hash function should:
- Minimize collisions
+ Be easy and quick to compute

- Distribute key values evenly amongst the buckets

- Use all the information provided in the key

CS 584 [Spring 2016] - Ho

| ocality Sensitive Hashing (LSH)

- (General idea: Use a hash function that tells whether x and
v is a candidate pair (a pair of elements whose similarity
must be evaluated)

- A hash function, h, is LSH if it satisfies for some similarity
function d:

© P) =hly)) ishighit d(z,y) <7, r>0
+ P(h(x) = h(y) is low if dlxz,y) >ar, r>0, a>1

- (In between, not sure about probability)

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/Ish-hashkernels-annotated.pdf

CS 584 [Spring 2016] - Ho

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/lsh-hashkernels-annotated.pdf

Random Projection lllustrated

Pick a random vector v
using independent
(Gaussian coordinates

& _ -
. = - Project the points onto this
ot - T random vector
+$ LT - -
U - 0= - For most vectors, it will

preserve some notion of
separability

CS 584 [Spring 2016] - Ho

