
Nearest Neighbor / Similarity
Search
CS 584: Big Data Analytics

Material adapted from
Piotr Indyk

 (https://people.csail.mit.edu/indyk/helsinki-1.pdf) & Andrew Moore

https://people.csail.mit.edu/indyk/helsinki-1.pdf

CS 584 [Spring 2016] - Ho

Nearest Neighbor (NN)
• Problem Statement: Given a set of points or samples {p1, …, pN},

and a new point q, find the data point nearest to q

• (AKA) Closest-point problem or post office problem

• Many problems can be expressed as finding “similar” sets

• Data compression

• Information retrieval

• Pattern recognition

• …

CS 584 [Spring 2016] - Ho

Applications: Image Completion

https://graphics.stanford.edu/courses/cs468-06-fall/Slide/aneesh-michael.pdf

https://graphics.stanford.edu/courses/cs468-06-fall/Slide/aneesh-michael.pdf

CS 584 [Spring 2016] - Ho

Applications: Patient Prognosis

http://engr.uconn.edu/~fwang/tutorials/CIKM14_Tutorial.pdf

http://engr.uconn.edu/~fwang/tutorials/CIKM14_Tutorial.pdf

CS 584 [Spring 2016] - Ho

k-NN Algorithm
• Examine the k-“closest”

training data points to new
point x

• Closest depends on the
distance metric used

• Assign the object the most
frequently occurring class

• Example  
http://www.theparticle.com/
applets/ml/nearest_neighbor

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf

http://www.theparticle.com/applets/ml/nearest_neighbor
http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf

CS 584 [Spring 2016] - Ho

Example: k-NN Results

Figures from Chapter 13 of ESL by Hastie & Tibshirani

CS 584 [Spring 2016] - Ho

Notable Distance Metrics

Scaled Euclidean 
(diagonal covariance)

Mahalanobis 
(full covariance)

D(x, y) =
q
(x� y)>S�1(x� y)

CS 584 [Spring 2016] - Ho

Notable Distance Metrics (2)

Manhattan or taxicab 
L1 norm

Maximum norm

D(x, y) =
dX

i=1

|xi � yi| D(x, y) =

d
max

i=1
|xi � yi|

CS 584 [Spring 2016] - Ho

NN (and kNN) Advantages
• Instance-based learning or lazy learning so building the

model is very cheap

• Easy to understand and easy to implement

• Can be quite accurate (dependent on distance metric)

• Well-suited of multi-modal classes as well as a variety of
applications

• One of the most popular algorithms 
(ranked 8th by KD Nuggets)

CS 584 [Spring 2016] - Ho

NN: When d = 2 (Euclidean Distance)
• Compute Voronoi diagram from

the set of points

• Each line segment is
equidistant between two
points

• Given q, perform point location

• Performance:

• Space: O(n)

• Query time: O(log n)
https://en.wikipedia.org/wiki/Voronoi_diagram

https://en.wikipedia.org/wiki/Voronoi_diagram

CS 584 [Spring 2016] - Ho

NN: When d > 2 (Euclidean Distance)
• Generalization of Voronoi to higher dimension achieves

~O(nd/2) space

• Impractical on a dataset of even just a million points for
d greater than or equal to 3

• Query can be performed via linear scan: O(dn) time

• Tree-based data structures with pre-processing: kd-trees

CS 584 [Spring 2016] - Ho

kd-Trees

CS 584 [Spring 2016] - Ho

kd-Trees [Bentley ’75]
• Not the most efficient solution in theory but used in

practice

• Name originally meant 3d-trees, 4d-trees, …, where k
was the number of dimensions

• Idea: Each level of the tree compares against 1
dimension

CS 584 [Spring 2016] - Ho

kd-Trees
• Binary tree (data structure) for storing finite set of points from

a k-dimensional space

• Applications

• Nearest neighbor search

• Range queries

• Fast look-up

• Guaranteed log2 n depth where n is the number of points in
the set

CS 584 [Spring 2016] - Ho

kd-Tree Construction
• If just one point, form a leaf with that point

• Otherwise, choose an axis and divide the points in half via the
median of the axis

• Recursively construct kd-trees for the two sets of points

• Binary tree with:

• Size: O(n)

• Depth: O(log n)

• Construction: O(n log n)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction

Select an axis (x) and choose the  
median line

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction (1)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction (2)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction (3)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Construction (4)

CS 584 [Spring 2016] - Ho

kd-Tree NN Search
• Search recursively to find the point in the same cell as the

query

• On return search the each subtree where a closer point
other than the one you know about might be found

• Has been shown to run in O(log n) average time per
search in a reasonable model (assuming d is constant)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query (1)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query (2)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query (3)

CS 584 [Spring 2016] - Ho

Example: kd-Tree Query (4)

CS 584 [Spring 2016] - Ho

NN and the Curse of Dimensionality
NN breaks down in high-dimensional spaces because the
“neighborhood” becomes very large

• d dimensions means d independent neighboring
directions to the point

• Volume-distance ratio explodes O(rd)

• Points become “equidistant” from a new point

CS 584 [Spring 2016] - Ho

kNN-Trees Summary
• Tons of variants

• Construction of trees (e.g., heuristics for splitting,
stopping, representing branches)

• Other representational data structures for fast NN
search (e.g., ball trees, …)

• High-dimensional spaces are hard

CS 584 [Spring 2016] - Ho

Python: Scikit-learn
• Brute force: O(dn2)

• kd-tree: O(d log n) for d < 20

• Ball tree: O(d log n) but tree construction
is more costly than kd-tree

• Benchmarking using NN: https://
jakevdp.github.io/blog/2013/04/29/
benchmarking-nearest-neighbor-
searches-in-python/

https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/

CS 584 [Spring 2016] - Ho

Approximate Nearest Neighbor (ANN)
• Idea: rather than retrieve the exact closest neighbor,

make a “good guess” of the nearest neighbor

• c-ANN: for any query q and points p:

• r is the distance to the exact nearest neighbor q

• Returns p in P, , with probability at least ||p� q|| cr

1� �, � > 0

CS 584 [Spring 2016] - Ho

ANN: Altering kd-Tree Search
(Augmented) kd-Trees are used but interrupt search earlier
[Arya et al., 1994]

• Prune when distance to bounding box is greater than
some distance r over some value alpha

• Saves lots of search time by removing some nodes of
the tree

• In practice can get O(d log n) but worst case still has
exponential running time

CS 584 [Spring 2016] - Ho

Beyond kd-Trees
• Works for low and medium dimensional data, but has

problems with high-dimensional data

• Non-trivial to implement efficiently and still requires some
computation of object similarities

• Can we represent similarities between objects in a more
succinct manner?

• Sacrifice exactness for efficiency by using randomization

• Obtain a “sketch” of the object instead

CS 584 [Spring 2016] - Ho

Johnson-Lindenstrauss Lemma
Main Idea: small set of points in high-dimensional space
can be embedded into a space of much lower dimension in
such a way that distances between the points are nearly
preserved

• One proof of the lemma uses projection onto random
subspace

• Used in compressed sensing, manifold learning,
dimensionality reduction, and graph embedding

CS 584 [Spring 2016] - Ho

Hash Functions
• A hash function, h, is a function which transforms a key from

a set K, into an index in a table of size n  
h: K —> {0, 1, …, n-2, n-1}

• A good hash function should:

• Minimize collisions

• Be easy and quick to compute

• Distribute key values evenly amongst the buckets

• Use all the information provided in the key

CS 584 [Spring 2016] - Ho

Locality Sensitive Hashing (LSH)
• General idea: Use a hash function that tells whether x and

y is a candidate pair (a pair of elements whose similarity
must be evaluated)

• A hash function, h, is LSH if it satisfies for some similarity
function d:

• P(h(x) = h(y)) is high if

• P(h(x) = h(y) is low if

• (in between, not sure about probability)

d(x, y) r, r > 0

d(x, y) > ↵r, r > 0, ↵ > 1

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/lsh-hashkernels-annotated.pdf

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/lsh-hashkernels-annotated.pdf

CS 584 [Spring 2016] - Ho

Random Projection Illustrated
• Pick a random vector v

using independent
Gaussian coordinates

• Project the points onto this
random vector

• For most vectors, it will
preserve some notion of
separability

