
Nearest Neighbor / Similarity 
Search
CS 584: Big Data Analytics

Material adapted from 
Piotr Indyk  

 (https://people.csail.mit.edu/indyk/helsinki-1.pdf) &  Andrew Moore 

https://people.csail.mit.edu/indyk/helsinki-1.pdf
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Nearest Neighbor (NN)
• Problem Statement: Given a set of points or samples {p1, …, pN}, 

and a new point q, find the data point nearest to q 

• (AKA) Closest-point problem or post office problem 

• Many problems can be expressed as finding “similar” sets 

• Data compression 

• Information retrieval 

• Pattern recognition 

• …
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Applications: Image Completion

https://graphics.stanford.edu/courses/cs468-06-fall/Slide/aneesh-michael.pdf

https://graphics.stanford.edu/courses/cs468-06-fall/Slide/aneesh-michael.pdf
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Applications: Patient Prognosis

http://engr.uconn.edu/~fwang/tutorials/CIKM14_Tutorial.pdf

http://engr.uconn.edu/~fwang/tutorials/CIKM14_Tutorial.pdf


CS 584 [Spring 2016] - Ho

k-NN Algorithm
• Examine the k-“closest” 

training data points to new 
point x 

• Closest depends on the 
distance metric used 

• Assign the object the most 
frequently occurring class 

• Example  
http://www.theparticle.com/
applets/ml/nearest_neighbor

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf

http://www.theparticle.com/applets/ml/nearest_neighbor
http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf
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Example: k-NN Results

Figures from Chapter 13 of ESL by Hastie & Tibshirani
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Notable Distance Metrics

Scaled Euclidean 
(diagonal covariance)

Mahalanobis 
(full covariance)

D(x, y) =
q
(x� y)>S�1(x� y)
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Notable Distance Metrics (2)

Manhattan or taxicab 
L1 norm

Maximum norm

D(x, y) =
dX

i=1

|xi � yi| D(x, y) =

d
max

i=1
|xi � yi|
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NN (and kNN) Advantages
• Instance-based learning or lazy learning so building the 

model is very cheap 

• Easy to understand and easy to implement 

• Can be quite accurate (dependent on distance metric) 

• Well-suited of multi-modal classes as well as a variety of 
applications 

• One of the most popular algorithms 
(ranked 8th by KD Nuggets)



CS 584 [Spring 2016] - Ho

NN: When d = 2 (Euclidean Distance)
• Compute Voronoi diagram from 

the set of points 

• Each line segment is 
equidistant between two 
points 

• Given q, perform point location 

• Performance: 

• Space: O(n) 

• Query time: O(log n) 
https://en.wikipedia.org/wiki/Voronoi_diagram

https://en.wikipedia.org/wiki/Voronoi_diagram
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NN: When d > 2 (Euclidean Distance)
• Generalization of Voronoi to higher dimension achieves 

~O(nd/2) space 

• Impractical on a dataset of even just a million points for 
d greater than or equal to 3 

• Query can be performed via linear scan: O(dn) time 

• Tree-based data structures with pre-processing: kd-trees
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kd-Trees
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kd-Trees [Bentley ’75]
• Not the most efficient solution in theory but used in 

practice 

• Name originally meant 3d-trees, 4d-trees, …, where k 
was the number of dimensions 

• Idea: Each level of the tree compares against 1 
dimension
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kd-Trees
• Binary tree (data structure) for storing finite set of points from 

a k-dimensional space 

• Applications 

• Nearest neighbor search 

• Range queries 

• Fast look-up 

• Guaranteed log2 n depth where n is the number of points in 
the set
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kd-Tree Construction
• If just one point, form a leaf with that point 

• Otherwise, choose an axis and divide the points in half via the 
median of the axis 

• Recursively construct kd-trees for the two sets of points 

• Binary tree with: 

• Size: O(n) 

• Depth: O(log n) 

• Construction: O(n log n)
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Example: kd-Tree Construction

Select an axis (x) and choose the  
median line

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf
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Example: kd-Tree Construction (1)
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Example: kd-Tree Construction (2)
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Example: kd-Tree Construction (3)
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Example: kd-Tree Construction (4)
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kd-Tree NN Search
• Search recursively to find the point in the same cell as the 

query 

• On return search the each subtree where a closer point 
other than the one you know about might be found 

• Has been shown to run in O(log n) average time per 
search in a reasonable model (assuming d is constant)
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Example: kd-Tree Query

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf

https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf
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Example: kd-Tree Query (1)
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Example: kd-Tree Query (2)
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Example: kd-Tree Query (3)
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Example: kd-Tree Query (4)
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NN and the Curse of Dimensionality
NN breaks down in high-dimensional spaces because the 
“neighborhood” becomes very large 

• d dimensions means d independent neighboring 
directions to the point 

• Volume-distance ratio explodes O(rd) 

• Points become “equidistant” from a new point



CS 584 [Spring 2016] - Ho

kNN-Trees Summary
• Tons of variants 

• Construction of trees (e.g., heuristics for splitting, 
stopping, representing branches) 

• Other representational data structures for fast NN 
search (e.g., ball trees, …) 

• High-dimensional spaces are hard
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Python: Scikit-learn
• Brute force: O(dn2) 

• kd-tree: O(d log n) for d < 20 

• Ball tree: O(d log n) but tree construction 
is more costly than kd-tree 

• Benchmarking using NN: https://
jakevdp.github.io/blog/2013/04/29/
benchmarking-nearest-neighbor-
searches-in-python/

https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/
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Approximate Nearest Neighbor (ANN)
• Idea: rather than retrieve the exact closest neighbor, 

make a “good guess” of the nearest neighbor 

• c-ANN: for any query q and points p: 

• r is the distance to the exact nearest neighbor q 

• Returns p in P,                        , with probability at least ||p� q||  cr

1� �, � > 0
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ANN: Altering kd-Tree Search
(Augmented) kd-Trees are used but interrupt search earlier 
[Arya et al., 1994] 

• Prune when distance to bounding box is greater than 
some distance r over some value alpha 

• Saves lots of search time by removing some nodes of 
the tree 

• In practice can get O(d log n) but worst case still has 
exponential running time
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Beyond kd-Trees
• Works for low and medium dimensional data, but has 

problems with high-dimensional data 

• Non-trivial to implement efficiently and still requires some 
computation of object similarities 

• Can we represent similarities between objects in a more 
succinct manner? 

• Sacrifice exactness for efficiency by using randomization 

• Obtain a “sketch” of the object instead
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Johnson-Lindenstrauss Lemma
Main Idea: small set of points in high-dimensional space 
can be embedded into a space of much lower dimension in 
such a way that distances between the points are nearly 
preserved 

• One proof of the lemma uses projection onto random 
subspace 

• Used in compressed sensing, manifold learning, 
dimensionality reduction, and graph embedding



CS 584 [Spring 2016] - Ho

Hash Functions
• A hash function, h, is a function which transforms a key from 

a set K, into an index in a table of size n  
h: K —> {0, 1, …, n-2, n-1} 

• A good hash function should: 

• Minimize collisions 

• Be easy and quick to compute 

• Distribute key values evenly amongst the buckets 

• Use all the information provided in the key
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Locality Sensitive Hashing (LSH)
• General idea: Use a hash function that tells whether x and 

y is a candidate pair (a pair of elements whose similarity 
must be evaluated) 

• A hash function, h, is LSH if it satisfies for some similarity 
function d: 

• P(h(x) = h(y)) is high if  

• P(h(x) = h(y) is low if 

• (in between, not sure about probability)

d(x, y)  r, r > 0

d(x, y) > ↵r, r > 0, ↵ > 1

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/lsh-hashkernels-annotated.pdf

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/lsh-hashkernels-annotated.pdf
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Random Projection Illustrated
• Pick a random vector v 

using independent 
Gaussian coordinates 

• Project the points onto this 
random vector 

• For most vectors, it will 
preserve some notion of 
separability


