Alternating Direction Method of
Multipliers

CS 584: Big Data Analytics

Material adapted from
Stephen Boyd (https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf) &
Ryan Tibshirani (http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf)

https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf
http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf

Goals of ADMM

- Arbitrary-scale optimization
Machine learning / statistics with huge data-sets
Dynamic optimization on large-scale network
Decentralized optimization

- Use many machines to solve large problem by passing
relatively small messages

CS 584 [Spring 2016] - Ho

Dual Decomposition Review

+ Convex equality constrained problem

min f(x)
st. Az =0

+ Construct the Lagrangian
L(z,y) = f(z) +y (Az —b)

+ Solve the dual problem for optimal y*
max ¢(y) = inf L(z, y)

- Recover the optimal point ™ = argmin, L(x,y")

CS 584 [Spring 2016] - Ho

Dual ascent

+ Gradient method for dual problem

y T =y + Vg (y")
Dual ascent method:

k+1

2"t = argmin,, L(x, y")

y" T =y + (At —b)

CS 584 [Spring 2016] - Ho

Dual Decomposition: Separability

+ Suppose the objective function is separable (x can be
divided into N blocks of variables)

N
f(@) = fi(z:)
1=1
- Then the Lagrangian is separable in X
Li(zi,y) = fi(zi) + yTAz'CE‘?;

- Then we can do dual ascent and have N separate
minimizations carried out In parallel

CS 584 [Spring 2016] - Ho

Dual Decomposition: Separability

- Dual decomposition algorithm:

1

N
" T =yF + () Aiaf - B)

i=1
- Can think of this as a two step process

- Broadcast: send y to each of
the N processors, each optimizes
in parallel to find x;

- Gather: collect Ax; from each
processor, and update the
global variable y

CS 584 [Spring 2016] - Ho

el — argmin,f;(x;) + (y™) " Az

Dual Methods Properties

- (Pro) Decomposability and separability

- (Con) Require strong conditions to ensure primal iterates
converge to solutions

+ (Con) Can be slow to converge

CS 584 [Spring 2016] - Ho

Augmented Lagrangian

- A modification to the Lagrangian or a shifted quadratic
penalty function (rho > 0)

Lix.y, p) = f(z) +y" (Azx = b) + 5| Az — bl[3

- Adjust y and rho to encourage convergence (and
feasibility of the iterates)

- Method of multipliers to solve:

2" = argmin, L, (z, y")

y" T =y" + (At b)

CS 584 [Spring 2016] - Ho

Method of Multipliers Properties

+ Converges under more relaxed conditions

- Unconstrained minimizer of the augmented Lagrangian
coincides with constrained solution of original problem

+ Bad news: quadratic penalty destroys splitting of the x-
update so you can’t do decomposition

L(z,y, A\, p) =f(x) + g(y)+
min f(z) + g(y) j> AT (Az + By — o)+

s.t. Ar+ By =c

0
|| Az + By - cll3

CS 584 [Spring 2016] - Ho

Alternating Direction Method of Multipliers (ADMM)

- Proposed by Gabay, Mercier, Glowinski, Marrocco in 1976
- Largely lost favor as an approach until recent revival

- Good robustness of method of multipliers and can
support decomposition

-+ "Robust dual decomposition” or “decomposable method
of multipliers”

- Best of both worlds (separability + better convergence)!

CS 584 [Spring 2016] - Ho

ADMM Formulation

- Set of variables that have separable objective

min f(z) + g(z)
s.t. Ar+ Bz = c
+ Construct the Augmented Lagrangian

Ly(z,2,y) =f(z) +g(2) +y (Az + Bz —c)+
gHA.CIZ‘ + Bz — cH%

+ Instead of doing the standard method of multipliers, we
solve for each variable separately and sequentially

CS 584 [Spring 2016] - Ho

ADMM Algorithm

k+1

2" = argmin, L, (x, 2", ") // X-minimization

k+1 k+1

2" =argmin, L,(z 2, y") // Z-minimization

y" T =9 4+ p(Ax" T + B2FT —¢) // dual update

CS 584 [Spring 2016] - Ho

ADMM Properties

- Each iteration does a round of block-coordinate descent
in (X,2)

- Minimizations over x and z only add a quadratic term to f
and h, so doesn’t alter cost much

- Can be performed inexactly
- Embraces distributed computing for big data

-+ Convergence is often slow, but sufficient for many
applications

CS 584 [Spring 2016] - Ho

Practicalities and Iricks

- ADMM usually obtains a relatively accurate solution in a

handful of iterations, but requires a very large number of
iterations for a highly accurate solution

+ Choice of p can greatly influence convergence

- Too large —> not enough emphasis on minimizing
objective

-+ Too small —> not enough emphasis on feasibility

-+ Boyd offers a strategy for varying p that can e useful in
practice (but does not have convergence guarantees)

CS 584 [Spring 2016] - Ho

Example: LASSO

+ Original problem
1
min || Az — bl +]|,

. ADMM form .
mmfﬂAx—Mg+Mbm

st.x—z=10
- ADMM updates
= (AT A+ pD)THA b+ (2" — b))

k—l—l — G /p(k—l—l_l_y)

J
k+1 k+1 k+1

T T e

CS 584 [Spring 2016] - Ho

Example: Lasso Results

Dense A with 1500 measurements and 5000 regressors

Computation times

Factorization (A" A + pI)~! 1.3s
Subsequent ADMM iterations 0.03 s
Lasso solve (~ 50 ADDM iterations) 2.9s
Full regularization path (30 lambdas) 4.4s

Not bad for a very short Matlalb script

CS 584 [Spring 2016] - Ho

Example: Group LASSO

Extension of LASSO for variable selection on groups of
variables in regression models

Motivated by real-world examples where certain groups
of variables are jointly activated

Lobes of the Cerebrum

o P
}/((’(ﬁ \ ‘Parietal lobe<
il

Froh\tal lobe

st o PO
z& T),/ Ocup\ltal lobe

// emporallgtg\e
{ \7_’\& >
""""" / “‘"/////////

e,bellum

CS 584 [Spring 2016] - Ho

Example: Group LASSO (2)

- Optimization problem with J pre-defined groups
J

1
mm—HA:L‘—bH% —I—AZCJ'H%'HQ

. ADMM form: =1
min —HA:IS—[?HQ—F)\ZCJHZJHZ
71=1

st.r—z2z=0

- ADMM updates:

= (AT A4 pD)THA T+ p(2" — YY)

k—l—l R /p(]C—l—l_l_y)

J
k+1 k+1 k+1

Yt =yf a2

CS 584 [Spring 2016] - Ho

Example: Group LASSO (3)

- Main difference between Lasso and Group Lasso is the z
update replaces the block soft thresholding with a vector
soft thresholding operation

Aofa) = (1 ||;i|2>+“

- ADMM algorithm can be developed for the case of
overlapping groups (which is otherwise quite a hard
problem to optimize!)

CS 584 [Spring 2016] - Ho

Consensus Optimization

-+ Solve a problem with N objective terms (e.g., the loss function for the

ith block of training data) N
min Z fi(x)
1=1

N
- ADMMform: min 37 fi(x)
1=1

s.t. x; —z =20
- X; are the local variables

-z I1s the global variable

- X - 2 Is the consistency or consensus constraints

CS 584 [Spring 2016] - Ho

Consensus Optimization Algorithm

- ADMM update:
= al‘gmiﬂ(fz'(ﬂfi) +(y7) " (s

2P —Z 4 (1))

yv{{_l_l _yz —I_IO(

k—l—l k—l—l)

- Note that z update is an average
Zk—l—l _ Cl_?k—l_l (1/,0) —k+1

gk—l—l _ y _I_p(k+1 k—l—l)

CS 584 [Spring 2016] - Ho

= 2%) + p/2||z; — 2¥[|3)

—k+1 _ O

Consensus Optimization Algorithm (2)

- Actual ADMM update: .
_k _ k

2t = argmin(f;(z;) + (vF) ' (2 — %) + p/2||2i — 77| 13)
k-+1 (xf—l—l . jk—kl)

yi T =y 4
- For each iteration
- Gather x; and average the values
- Scatter the average value to each processor

- Update y; locally

- Update x; locally

CS 584 [Spring 2016] - Ho

Example: Consensus SVM

- Data (xi, yi) where x; are the features and vi is the label
- Linear SVM with weight and offset: sign(a'w + v)

+ Hinge loss with ridge regression
(1= yi(z; w+v))y + Bllwl]
- Baby problem with d = 2, and N = 400

+ Examples split into 20 groups such that each group
contains only positive or negative examples

CS 584 [Spring 2016] - Ho

1

ION

Consensus SVM lterat

Example

CS 584 [Spring 2016] - Ho

Example: Consensus SVM lteration 5

10 1 < % T Lo IR 1 T T

\ \ LR R LU I

\ Vovvew wu "

81 \\ \ “vawv Yy i 1" 7
Yovvwaw g I"ni *

N
T

CS 584 [Spring 2016] - Ho

Example: Consensus SVM lteration 40

10 I I] I I
8t -
X
X
6 X i
0O . % X
O % X e X
© o O X X
00 O X
4r- o ©0800 X xxx * X Xx 1
O OO O O @@ v xX SO X %)gvx X
O X v X xxx)osg(X x
2F CB % @) O X X w X Xy -
O X X
0008 % O 088% 00 o)d?‘ 25 xx) xxizxx xx:x
%P 0® 8 %o |9 x ErGE wx
To v 6% B 80 q & AN Lt e
0O @b 00 O O » o xxx"x ® X “ xxxx
O %% ’% X x x X % %
o 0 ® § 9% x X % XX XX y
o0o® o 00 O ® ol x _x o C
-4} ©O o o ®) % & X X % % .
®) X
00 o 8 X o * X % X
O ®) @ X
-6} o o ot x -
O
-8} .
_10 L L L
-3 -2 -1 0 1 2 3

CS 584 [Spring 2016] - Ho

Distributed Model Fitting

+ General Fitting Problem with additive loss:
mini li(a; © —b;) + r(z)
- ITwo methods of di;r]iLbution
- Split across samples (consensus)

- Split across features

CS 584 [Spring 2016] - Ho

Distributed Model Across Data

- Consider this when you have a modest number of
features but a large number of training examples

- Examples: Social network data, wireless network
sensors, and many cloud computing applications

- Partition your data based on the rows

A= : |, b=

CS 584 [Spring 2016] - Ho

Distributed Model Across Data Update

+ Solve using the consensus ADMM algorithm

xf“ = argmin(l;(A;x; — b;) + gHaz@ R ufH%)
T
2= arg min(r(2)
A
uf“ = uf + :L‘f“ — kTl
- For each Iteration

Np _k __k
= Rk

- Carry out regularization model fitting on each data block
- Gathering variables to form the average

- Update the dual variable to reflect the gap between local and global

CS 584 [Spring 2016] - Ho

Example: Distributed LASSO (by Samples)

- ADMM update:
F = (AT Ay + p) T (AT D, + p(2F — ul))
PRl — SA/pN(Tk_H + ﬂk)

uF Tl .= uf + gl _ kel

- Very similar to non-distributed LASSO except the z-
update collects and averages the computations for the
different data blocks

CS 584 [Spring 2016] - Ho

Example: Distributed Lasso Results

- Dense A with 400000 measurements and 8000 regressors (~30 GB)
-+ No optimization or tuned libraries (written in C)

- Split using 80 subsystems across 10 (8-core) machines on Amazon EC2

- Each subsystem has 5000 samples

- Computation times

Loading Data 30 s
Factorization S5m
Subsequent ADMM iterations 0.5-2s
Lasso solve (~ 15 ADDM iterations) 5-6 m
Total runtime 6m

CS 584 [Spring 2016] - Ho

Distributed Model Across Features

+ Consider this when you have a modest number of trying
examples but a large number of features

- Examples: natural language processing, bioinformatics

- Partition the data based on features

xz(:zzl :UN)
A:[Al AN}

r(z) = Z X

1=1

CS 584 [Spring 2016] - Ho

Distributed Model Across Features Update

+ Solve using the sharing ADMM algorithm (dual to consensus)

el = arg min(r;(x;) + gHAZxZ — Azt — ZF 4 Az + ug||3)

()

N _
= argmin(U(Nz —b) + =F[= Ar T — uM|3)
wFtt = F + A—:z:kle — gkt

- For each iteration
- Solve regularized least square problem for each feature block

+ Collect and sum the partial predictors to perform quadratically regularized
loss minimization problem

+ Simple update of the dual variable

CS 584 [Spring 2016] - Ho

ADMM lteration in Hadoop/MapReduce

Easily represented using MapReduce Task
Parallel local computations performed by maps

Global aggregation performed by Reduce

Algorithm 2 An iteration of global consensus ADMM in Hadoop/ MapReduce.

function map(key i, dataset D;)
1. Read (z;,u;,2) from HBase table.
2. Compute z := prox, y,((1/N)Z2).
3. Update u; :=u; + x; — 2.
4. Update z; := argmin, (fi(z) + (p/2)||z — z + u;|3).
5. Emit (key CENTRAL, record (z;,u;)).

function reduce(key CENTRAL, records (z1,u1),..., (zn,un))
1. Update 2 := S0 | z; + wi.
2. Emit (key j, record (xj,uj,2)) to HBase for j =1,...,N.

CS 584 [Spring 2016] - Ho

ADDM Summary and Conclusions

- Has been around since the 190s and Is the same or
closely related to many methods with other names

- GIves simple single-processor algorithms that can be
competitive with state-of-the-art algorithms

-+ Can be used to coordinate many processors, each
solving a substantial problem, to solve a very large
problem

CS 584 [Spring 2016] - Ho

