
Alternating Direction Method of
Multipliers
CS 584: Big Data Analytics

Material adapted from
Stephen Boyd (https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf) & 

Ryan Tibshirani (http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf)

https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf
http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf

CS 584 [Spring 2016] - Ho

Goals of ADMM
• Arbitrary-scale optimization

• Machine learning / statistics with huge data-sets

• Dynamic optimization on large-scale network

• Decentralized optimization

• Use many machines to solve large problem by passing
relatively small messages

CS 584 [Spring 2016] - Ho

Dual Decomposition Review
• Convex equality constrained problem

• Construct the Lagrangian  

• Solve the dual problem for optimal y* 

• Recover the optimal point

min f(x)

s.t. Ax = b

L(x, y) = f(x) + y

>(Ax� b)

max g(y) = inf

x

L(x, y)

x

⇤ = argmin
x

L(x, y⇤)

CS 584 [Spring 2016] - Ho

Dual ascent
• Gradient method for dual problem  

• Dual ascent method:
yk+1 = yk + ⌘krg(yk)

x

k+1 = argmin
x

L(x, yk)

y

k+1 = y

k + ⌘

k

(Axk+1 � b)

CS 584 [Spring 2016] - Ho

Dual Decomposition: Separability
• Suppose the objective function is separable (x can be

divided into N blocks of variables)

• Then the Lagrangian is separable in x  

• Then we can do dual ascent and have N separate
minimizations carried out in parallel

f(x) =
NX

i=1

fi(xi)

Li(xi, y) = fi(xi) + y

>
Aixi

CS 584 [Spring 2016] - Ho

• Dual decomposition algorithm:

• Can think of this as a two step process

• Broadcast: send y to each of 
the N processors, each optimizes 
in parallel to find xi

• Gather: collect Aixi from each  
processor, and update the  
global variable y

Dual Decomposition: Separability

x

k+1
i

= argmin
xi
f

i

(x
i

) + (yk)>A
i

x

i

y

k+1 = y

k + ⌘

k

(
NX

i=1

A

i

x

k

i

�B)

y

y
y

x1

x3

x2

CS 584 [Spring 2016] - Ho

Dual Methods Properties
• (Pro) Decomposability and separability

• (Con) Require strong conditions to ensure primal iterates
converge to solutions

• (Con) Can be slow to converge

CS 584 [Spring 2016] - Ho

Augmented Lagrangian
• A modification to the Lagrangian or a shifted quadratic

penalty function (rho > 0)

• Adjust y and rho to encourage convergence (and
feasibility of the iterates)

• Method of multipliers to solve:

L(x, y, ⇢) = f(x) + y

>(Ax� b) +
⇢

2
||Ax� b||22

x

k+1 = argmin
x

L

⇢

(x, yk)

y

k+1 = y

k + ⇢(Ax

k+1 � b)

CS 584 [Spring 2016] - Ho

• Converges under more relaxed conditions

• Unconstrained minimizer of the augmented Lagrangian
coincides with constrained solution of original problem

• Bad news: quadratic penalty destroys splitting of the x-
update so you can’t do decomposition

Method of Multipliers Properties

min f(x) + g(y)

s.t. Ax+By = c

L(x, y,�, ⇢) =f(x) + g(y)+

�

>(Ax+By � c)+
⇢

2
||Ax+By � c||22

CS 584 [Spring 2016] - Ho

Alternating Direction Method of Multipliers (ADMM)

• Proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

• Largely lost favor as an approach until recent revival

• Good robustness of method of multipliers and can
support decomposition

• “Robust dual decomposition” or “decomposable method
of multipliers”

• Best of both worlds (separability + better convergence)!

CS 584 [Spring 2016] - Ho

ADMM Formulation
• Set of variables that have separable objective  
 

• Construct the Augmented Lagrangian  
 
 

• Instead of doing the standard method of multipliers, we
solve for each variable separately and sequentially

min f(x) + g(z)

s.t. Ax+Bz = c

L⇢(x, z, y) =f(x) + g(z) + y

>(Ax+Bz � c)+
⇢

2
||Ax+Bz � c||22

CS 584 [Spring 2016] - Ho

ADMM Algorithm

x

k+1 = argmin
x

L

⇢

(x, zk, yk)

z

k+1 = argmin
z

L

⇢

(xk+1
, z, y

k)

y

k+1 = y

k + ⇢(Ax

k+1 +Bz

k+1 � c)

// x-minimization
// z-minimization
// dual update

CS 584 [Spring 2016] - Ho

ADMM Properties
• Each iteration does a round of block-coordinate descent

in (x,z)

• Minimizations over x and z only add a quadratic term to f
and h, so doesn’t alter cost much

• Can be performed inexactly

• Embraces distributed computing for big data

• Convergence is often slow, but sufficient for many
applications

CS 584 [Spring 2016] - Ho

Practicalities and Tricks
• ADMM usually obtains a relatively accurate solution in a

handful of iterations, but requires a very large number of
iterations for a highly accurate solution

• Choice of can greatly influence convergence

• Too large —> not enough emphasis on minimizing
objective

• Too small —> not enough emphasis on feasibility

• Boyd offers a strategy for varying that can be useful in
practice (but does not have convergence guarantees)

⇢

⇢

CS 584 [Spring 2016] - Ho

Example: LASSO
• Original problem 

• ADMM form

• ADMM updates

min
1

2
||Ax� b||22 + �||x||1

min
1

2
||Ax� b||22 + �||z||1

s.t. x� z = 0

x

k+1 = (A>
A+ ⇢I)�1(A>

b+ ⇢(zk � y

k))

z

k+1
j = S�/⇢(x

k+1 + y

k)

y

k+1 = y

k + x

k+1 � z

k+1

CS 584 [Spring 2016] - Ho

Example: Lasso Results
• Dense A with 1500 measurements and 5000 regressors

• Computation times

• Not bad for a very short Matlab script

Factorization 1.3s
Subsequent ADMM iterations 0.03 s
Lasso solve (~ 50 ADDM iterations) 2.9 s
Full regularization path (30 lambdas) 4.4s

(A>A+ ⇢I)�1

CS 584 [Spring 2016] - Ho

Example: Group LASSO
• Extension of LASSO for variable selection on groups of

variables in regression models

• Motivated by real-world examples where certain groups
of variables are jointly activated

CS 584 [Spring 2016] - Ho

Example: Group LASSO (2)
• Optimization problem with J pre-defined groups  

• ADMM form:

• ADMM updates:

min
1

2
||Ax� b||22 + �

JX

j=1

cj ||xj ||2

min
1

2
||Ax� b||22 + �

JX

j=1

cj ||zj ||2

s.t. x� z = 0

x

k+1 = (A>
A+ ⇢I)�1(A>

b+ ⇢(zk � y

k))

z

k+1
j = Rcj�/⇢(x

k+1 + y

k)

y

k+1 = y

k + x

k+1 � z

k+1

CS 584 [Spring 2016] - Ho

Example: Group LASSO (3)
• Main difference between Lasso and Group Lasso is the z

update replaces the block soft thresholding with a vector
soft thresholding operation

• ADMM algorithm can be developed for the case of
overlapping groups (which is otherwise quite a hard
problem to optimize!)

R(a) =

✓
1�

||a||2

◆

+

a

CS 584 [Spring 2016] - Ho

Consensus Optimization
• Solve a problem with N objective terms (e.g., the loss function for the

ith block of training data)

• ADMM form:

• xi are the local variables

• z is the global variable

• xi - z is the consistency or consensus constraints

min
NX

i=1

fi(x)

min
NX

i=1

fi(x)

s.t. xi � z = 0

CS 584 [Spring 2016] - Ho

Consensus Optimization Algorithm
• ADMM update:

• Note that z update is an average

x

k+1
i = argmin(fi(xi) + (yki)

>(xi � z

k) + ⇢/2||xi � z

k||22)

z

k+1 =
1

N

NX

i=1

(xk+1
i + (1/⇢)yki)

y

k+1
i = y

k
i + ⇢(xk+1

i � z

k+1)

z

k+1 = x̄

k+1 + (1/⇢)ȳk+1

ȳ

k+1 = ȳ

k + ⇢(x̄k+1 � z

k+1)
ȳk+1 = 0

CS 584 [Spring 2016] - Ho

Consensus Optimization Algorithm (2)
• Actual ADMM update:

• For each iteration

• Gather xi and average the values

• Scatter the average value to each processor

• Update yi locally

• Update xi locally

x̄

k =
1

N

NX

i=1

x

k
i

x

k+1
i = argmin(fi(xi) + (yki)

>(xi � x̄

k) + ⇢/2||xi � x̄

k||22)
y

k+1
i = y

k
i + ⇢(xk+1

i � x̄

k+1)

CS 584 [Spring 2016] - Ho

Example: Consensus SVM
• Data (xi, yi) where xi are the features and yi is the label

• Linear SVM with weight and offset:

• Hinge loss with ridge regression  

• Baby problem with d = 2, and N = 400

• Examples split into 20 groups such that each group
contains only positive or negative examples

sign(a>w + v)

(1� yi(x
>
i w + v))+ + �||w||2

CS 584 [Spring 2016] - Ho

Example: Consensus SVM Iteration 1

CS 584 [Spring 2016] - Ho

Example: Consensus SVM Iteration 5

CS 584 [Spring 2016] - Ho

Example: Consensus SVM Iteration 40

CS 584 [Spring 2016] - Ho

Distributed Model Fitting
• General Fitting Problem with additive loss:

• Two methods of distribution

• Split across samples (consensus)

• Split across features

min
mX

i=1

li(a
>
i x� bi) + r(x)

CS 584 [Spring 2016] - Ho

Distributed Model Across Data
• Consider this when you have a modest number of

features but a large number of training examples

• Examples: Social network data, wireless network
sensors, and many cloud computing applications

• Partition your data based on the rows

A =

2

64
A1
...

AN

3

75 , b =

2

64
b1
...
bN

3

75

CS 584 [Spring 2016] - Ho

Distributed Model Across Data Update
• Solve using the consensus ADMM algorithm

• For each iteration

• Carry out regularization model fitting on each data block

• Gathering variables to form the average

• Update the dual variable to reflect the gap between local and global

x

k+1
i

:= argmin
xi

(l
i

(A
i

x

i

� b

i

) +
⇢

2
kx

i

� z

k + u

k

i

k22)

z

k+1 := argmin
z

(r(z) +
N⇢

2
kz � x

k+1 � u

kk22)

u

k+1
i

:= u

k

i

+ x

k+1
i

� z

k+1

CS 584 [Spring 2016] - Ho

Example: Distributed LASSO (by Samples)
• ADMM update:

• Very similar to non-distributed LASSO except the z-
update collects and averages the computations for the
different data blocks

x

k+1
i := (AT

i Ai + ⇢I)�1(AT
i bi + ⇢(zk � u

k
i))

z

k+1 := S�/⇢N (xk+1 + u

k)

u

k+1
i := u

k
i + x

k+1
i � z

k+1

CS 584 [Spring 2016] - Ho

Example: Distributed Lasso Results
• Dense A with 400000 measurements and 8000 regressors (~30 GB)

• No optimization or tuned libraries (written in C)

• Split using 80 subsystems across 10 (8-core) machines on Amazon EC2

• Each subsystem has 5000 samples

• Computation times 
 
 
 
 
 
 

Loading Data 30 s
Factorization 5m
Subsequent ADMM iterations 0.5 - 2s
Lasso solve (~ 15 ADDM iterations) 5-6 m
Total runtime 6 m

CS 584 [Spring 2016] - Ho

Distributed Model Across Features
• Consider this when you have a modest number of trying

examples but a large number of features

• Examples: natural language processing, bioinformatics

• Partition the data based on features
x =

�
x1 . . . xN

�

A =
⇥
A1 . . . AN

⇤

r(x) =
NX

i=1

rixi

CS 584 [Spring 2016] - Ho

Distributed Model Across Features Update
• Solve using the sharing ADMM algorithm (dual to consensus)

• For each iteration

• Solve regularized least square problem for each feature block

• Collect and sum the partial predictors to perform quadratically regularized
loss minimization problem

• Simple update of the dual variable

x

k+1
i

:= argmin
xi

(r
i

(x
i

) +
⇢

2
kA

i

x

i

�A

i

x

k

i

� z̄

k +Ax

k

+ u

k

||22)

z̄

k+1 := argmin
z̄

(l(Nz̄ � b) +
N⇢

2
kz̄ �Ax

k+1 � u

kk22)

u

k+1 := u

k +Ax

k+1 � z̄

k+1

CS 584 [Spring 2016] - Ho

ADMM Iteration in Hadoop/MapReduce
• Easily represented using MapReduce Task

• Parallel local computations performed by maps

• Global aggregation performed by Reduce

CS 584 [Spring 2016] - Ho

ADDM Summary and Conclusions
• Has been around since the 190s and is the same or

closely related to many methods with other names

• Gives simple single-processor algorithms that can be
competitive with state-of-the-art algorithms

• Can be used to coordinate many processors, each
solving a substantial problem, to solve a very large
problem

