Validation

CS 534: Machine Learning

Slides adapted from Lee Cooper and Ryan Tibshirani



Review: Bias & Variance Tradeoff
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Bias, Variance, and Model Complexity
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Figure 7.1 (Hastie et al.)
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Bais-Variance [radeoff: Key in ML
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Fundamental Questions

- Model selection: How to compare performance of
multiple models to choose the best (iIdentify the best
oDarameters or methods)?

- Model Assessment: What is the performance of the
model on data that it has not seen yet”
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Model Selection
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Example: Smoothing Splines

f: argmin ; Z(yz — f(XZ>)2 -+ )\/(f"(x))zda:

A too small A just right A too big

How to choose the tuning parameter?
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Model Setup

* SUPPOSe we observe some data (x;, vi), =1, ..., n

+ Prediction model f(X) that has been estimated from a
training set T

- Expected prediction error (EPE)
Err = E[L(Y, f(X))]

= E[E[L(Y, f(X))|T]]
= F|Erry|
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Training & lest Error

- Training error is average loss over the training sample
. 1 ;
TrainErr = N Z L(y;, f(x;))

- Test error Is average loss over data that was not used to
build our estimator

1 ! /)
TestbErr = Vi Z L(y@'a f(Xi>)

- Jest error Is estimate for EPE
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Training Only??

- What if we don’t have test data’” Should we use only
training error”?

't seems like training and test error shouldn’t be too
different...

Estimator adapts to the training data and thus will have
an overly optimistic estimate of the generalization error!
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Example: Smoothing Splines

TrainError= 0.221 TestError=1.834

Curves over 100
simulations for different
parameters

—— Training error
—— Test error

Small value of tuning parameter

1e-07 1e-05 1e-03 1e-01
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Validation / Holdout Set Method

- Split data into two groups

T

+ Report error on holdout set ‘ Training | Test |

- Train final model using all data

- Common split size: 70%-30%

- Gold standard for measuring model’s true prediction error

http://scott.fortmann-roe.com/docs/MeasuringError.htmi
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Holdout Set Method: Properties

- Pros - Cons
- No parametric or - Potential conservative
theoretic assumptions bias
- Highly accurate with - Model contamination
sufficient data (use of holdout set prior

to completion)
- Simple to implement
- Size of holdout set
- Conceptually simple impacts training sample
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Cross-validation
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K-fold Cross-validation

- Simple, intuitive way to estimate prediction error /
generalization error

- Widely used method
- Procedure given training data and an estimator:
- Split the training data into K parts or “folds”
-+ Train on all but the kth part and validate on the kth part

- Rotate and report average over K error measurements
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5-fold Cross-validation Graphically

Data
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http://scott.fortmann-roe.com/docs/MeasuringError.html
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Cross-validation Error Curve
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Example: Simulated Linear Model
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Example: Simulated Linear Model
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Selected regularization parameter is close to real parameter
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Cross-validation Standard Errors

- For k-fold cross-validation (small K << n), we can
estimate standard deviation at each parameter

- Average validation errors:

CVie(0) = — Y (v — [y " (x:))?

T
: 1€ F

- Sample standard deviation:

SD(6) = v/var(CV1(8), -+ ,CVg(6))

- Standard error: SE(6) = SD(# )/\ﬁ
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Example: Simulated Linear Model
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One Standard Error Rule

- Alternative rule for selection of tuning parameter

- |dea: “All else equal (up to one standard error), go for the
simpler (more regularized) model”

- FInd usual minimizer as before

- Move parameter in direction of increasing regularization
such that cross-validation error curve is within one
standard error

CV(0) < CV(0) + SE(H)
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Example: One Standard Rule
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Choice of K

- Want to train using as much data as possible
- Allows for more complex models
 Improves accuracy of the models

- Common values of K
- K =2 (two-fold cross validation)

- K=5, 10 (5-fold, 10-fold cross validation)

- K =N (leave one out cross validation or LOOCV)
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| OOCV

N - 1 samples for training, 1 sample for test
More samples for training, what can go wrong?

How does it do for the bias / variance tradeoft?
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. OOCV Bias

- Training with N-1 samples approximates training with N
samples

- Large number of training samples means the average
LOOCV estimation will be close to Err for a predictor
trained on N samples
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| OOCV Variance

- Not independent looks at the data
- Any two training folds share N-2 samples
- No measure of sensitivity to training data

+ Error can change considerably from one training dataset
to another —> high variance!
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2-fold CV: Bias

- Prediction accuracy for a model trained with N/2 samples
could be lower than for a model trained with N samples

- Repeating two-fold CV over many training datasets, we
would not expect the mean to converge to the true
generalization error —> higher bias!
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2-fold CV: Variance

- Training folds are completely independent of one
another

- Provides a better measure of the sensitivity to training
data —> lower variance
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K=5vs K=10

- Depends on the size of the training data available
- Returns back to the bias versus variance tradeoft
- K =5 will have higher bias, lower variance

- K =10 will have lower bias, higher variance
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5-fold CV: Hypothetical Learning
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Figure 7.8 (Hastie et al.)
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10-fold CV
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Conditional and Expected Error
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K-Fold Cross-Validation: Best Practices

- Typically choose K=5, K=10

- Depends on how much data is available, how sensitive
our method is to amount of training data

- Be cautious with LOOCV

- “Abundant” data should not use LOOCV
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Cross-validation Question

- Classification problem with a large number of predictors

- Strategy 1:

1. Find a “subset” of good predictors that show fairly
strong (univariate) correlation with class labels

2. Use this subset of predictors to build a multivariate
classifier using K-fold CV

3. Estimate the prediction error of the final model
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Cross-validation Question

- Strategy 2:
- Divide the samples into K-fold CV at random
- For each fold

1. FInd a subset of good predictors that show fairly strong
(univariate) correlation with class labels using all
samples except those In fold k

2. Build a multivariate classifier using the samples

3. Use classifier to predict class labels for samples in fold k
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Which Strategy is Right”?

-+ Imagine a case where N = 50 samples of equal-sized
classes and p = 5000 features independent of class

labels

- True error rate of any classifier is 50%
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Strategy 1

-+ Step 1: 100 predictors having highest correlation with
class labels

- Step 2: Build a model based on these 100 predictors

-+ Step 3: Over 50 simulations, average CV error rate is 3%

What went wrong?
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5-fold CV: Hypothetical Learning

Wrong way
o _
(4p]
(>J\ p—
5 N
3 p—
8§ 2
L —
° T T T T |
-1.0 -0.5 0.0 0.5 1.0
Correlations of Selected Predictors with Outcome
Right way
o _
(4p)
5 p—
5 N
: p—
3 2 -
L —
O —

I [ [ [
-1.0 -0.5 0.0 0.5 1.0

Correlations of Selected Predictors with Outcome

Figure 7.10 (Hastie et al.)
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(Generalized Cross-validation

- Shortcut for linear fitted models using squared error |0ss
and LOOCV

- Consider ridge regression:

A A

fia(x;) = XiTﬁ — XiT(XTX + )\I)_lXTy

- GV can be computed as: ) -

1 i — (%)
DIUERCIETDME  l

Where S=X'X"X+A)"'X"y
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(Generalized Cross-validation

- For a general linear fitting model where:
?2: (f(X1)7°°° 7f(XTL>> — Sy

- General CV approximation is:

- ~ 1 2
n 1 yi — f(X)

GOV = n Z 1 — Trace(S)/N

T L i

Huge computational savings when trace of S can be
computed more easily than individual elements S;
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CV: Properties

Pros - Cons

- No parametric or - Computationally
theoretic assumptions Intensive
Highly accurate with -+ Must choose fold size

sufficient data

Potential conservative
- Conceptually simple bias

CS 534 [Spring 2017] - Ho



Monte-Carlo Cross-Validation

+ AKA random sub-sampling

- Randomly select (without replacement) some fraction
of your data to form training set

- Assign rest to test set
- Repeat multiple times with new partitions

- Major difference to k-fold cross-validation: same point
can appear in multiple test sets!
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K-Fold vs Monte-Carlo

- Cross-validation only explores a few of the possible ways
to partition the data

-+ Unbiased estimate but with high variance

- Monte-Carlo allows you to explore many more possible
partitions

- Less variance but more biased estimate
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Validation Methods: Graphically
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Figures 3.6, 3.7, 3.8 (Remesan & Mathew. Hydrological Data Driven Modeling: A Case Study Approach)
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CV Notes

- GV must be applied to the entire sequence of modeling
Steps

- Samples should e “left out” before any selection or
filtering steps are applied

Initial unsupervised screening steps can lbe done before
samples are left out
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