
Bias-Variance & Learning Theory
CS 534: Machine Learning

Slides adapted from Lee Cooper, David Sontag, Carlos Guestrin, Luke Zettlemoyer, and Yan Liu 
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Review: Linear Classification
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Bayes Classifier

• MAP classifier (maximum a posterior) 

• Classifier is optimal — statistically minimizes the error rate 

• Unrealistic — class conditional densities and prior 
probabilities must be known

f(x) = argmaxj=1,...,KPr(X = x|G = k)⇡k
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Linear Discriminant Analysis (LDA)

• Assume each class density is a multivariate Gaussian 

• LDA assumes class have common covariance matrix 

• Discriminant function: 

fk(x) =
1

(2⇡)p/2|⌃k|1/2
exp

✓
�1

2

(x� µk)
>
⌃

�1
k (x� µk)

◆

�k(x) = x

>
⌃

�1µk � 1

2

µ>
k ⌃

�1µk + log ⇡k
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Quadratic Discriminant Analysis (QDA)

• Covariances are not equal 

• Quadratic discriminant functions: 

• Covariance matrix must be estimated for each class

�k(x) = �1

2

log |⌃k|�
1

2

(x� µk)
>
⌃

�1
k (x� µk) + log ⇡k
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LDA vs. QDA Decision Boundaries

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 4
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FIGURE 4.1. The left plot shows some data from
three classes, with linear decision boundaries found
by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by
finding linear boundaries in the five-dimensional space
X1, X2, X1X2, X

2
1 , X2

2 . Linear inequalities in this space
are quadratic inequalities in the original space.

Figure 4.1 (Hastie et al.)

LDA QDA
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Logistic Regression
• Apply sigmoid to linear function of the input features 

• Logistic regression estimates coefficients directly based 
on maximum likelihood (harder!) 

• Parameters have useful interpretations 

• Quite robust, well developed

Pr(G = 0|X,�) =
1

1 + exp(X�>
)

Pr(G = 1|X,�) =
exp(X�>

)

1 + exp(X�>
)
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Fundamental Questions

• Model selection: How to compare performance of 
multiple models to choose the best (identify the best 
parameters or methods)? 

• Model Assessment: What is the performance of the 
model on data that it has not seen yet?
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Model Assessment
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What is a “Good” Model?

http://www.cs.cmu.edu/~10601b/slides/learning_theory.pdf

http://www.cs.cmu.edu/~10601b/slides/learning_theory.pdf
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Review: Loss Functions
• Supervised learning: Find a function f(x) to predict true value y 

associated with x 

• If a mistake is made, a loss is incurred  

• Examples for regression 

• Quadratic loss function (RSS) 

• Absolute deviation 

`(f(x), y)

`(f(x), y) = (y � f(x))2

`(f(x), y) = |y � f(x)|
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Review: Loss Functions (2)

• Example for classification 

• 0/1 loss 

• Cross-entropy (logistic) loss 

`(f(x), y) = y 6=f(x)

`(f(x), y) = �y log f(x)

� (1� y) log(1� f(x))
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Measure of Predictor

• Assume we know the true distribution of the data p(x, y), 
the risk is 

• Since we cannot compute risk in practice, we use 
empirical risk on a training dataset 

R[f(x)] =

Z
`(f(x), y)p(x, y)dxdy

REMP[f(x)] =
1

N

X

n

`(f(xn), yn)

As N ! +1, REMP[f(x)] ! R[f(x)]
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Empirical Risk Minimization

• Turns out we have been doing empirical risk minimization 

• Linear regression: 

• Logistic regression: 

f(x) = �>
x, `(f(x), y) = (y � f(x))2

f(x) = �(�>
x),

`(f(x), y) = �y log f(x)� (1� y) log(1� f(x))
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Potential Problem with ERM

• If our function (hypothesis) is complicated enough, the 
empirical risk will approach 0 

• What is wrong with this? 

• What about new data that is outside the training 
dataset?

REMP[f(x)] ! 0
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Generalization & Overfitting

• Generalization — model performance of a model on 
independent / future unseen data (data not used in 
training) 

• Overfitting — model is specific to the training set and is 
learning the noise from the data instead of generalizable 
rule
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Bias and Variance: Conceptually
• Error due to bias: Difference between expected (or 

average) prediction of our model and the correct value we 
are trying to predict 

• How far off are the models if we repeat the process on 
new data several times? 

• Error due to variance: Variability of the model prediction 
for a given data point 

• How different are the predictions for a given point 
between various realizations of the model?

http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html
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Bias-Variance Tradeoff: Intuition

• Too “simple” model —> does 
not fit data well (biased solution) 

• Too complex model —> small 
changes to the data changes 
the solution a lot (high variance 
solution)
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Bias and Variance: Graphically

http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html
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Bias-Variance Decomposition

Err(x0) = E[(Y � f̂(x0))
2|x = x0]

= E[(f(x0) + ✏� f̂(x0))
2|x = x0]

= (E[f̂(x0)]� f(x0))
2 + E[f̂(x0)� E[f̂(x0)]]

2 + �2
✏

= Bias2(f̂(x0)) + Var(f̂(x0)) + �2
✏
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Effect of Finite Samples

• Every training sample D is a sample from the true joint 
distribution 

• Prediction function fD(x) is a random function with respect 
to this distribution 

• Risk: R[fD(x)] =

Z

x

Z

y
(fD(x)� y)2p(x, y)dxdy
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Average Over Training Set Distribution

• Averaged risk to remove randomness with respect to D 

• Averaged prediction 

ED[fD(x)] =

Z

D
fD(x)P (D)dD

With many training datasets, use the average of the 
predicted functions learned on each dataset

ED[R[fD(x)]] =

Z

D

✓Z

x

Z

y
(fD(x)� y)2p(x, y)dxdy

◆
P (D)dD
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Bias/Variance Detailed Analysis

variance

cross-term

ED[R[f(Dx)]] =

Z

D

✓Z

x

Z

y
(fD(x)� y)2p(x, y)dxdy

◆
P (D)dD

=

Z

D

Z

x

Z

y
[fD(x)� ED[fD(x)]

+ ED[fD(x)]� y]2p(x, y)dxdyP (D)dD

=

Z

D

Z

x

Z

y
[fD(x)� ED[fD(x)]]2p(x, y)dxdyP (D)dD

+

Z

D

Z

x

Z

y
[ED[fD(x)]� y]2p(x, y)dxdyP (D)dD

+

Z

D

Z

x

Z

y
(fD(x)� ED[fD(x)])(ED[fD(x)]� y)p(x, y)dxdyP (D)dD
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Cross-Term = 0

Z

D

Z

x

Z

y
(fD(x)� ED[fD(x)])(ED[fD(x)]� y)p(x, y)dxdyP (D)dD

Z

x

Z

y

⇢Z

D
fD(x)� ED[fD(x)]P (D)dD

�

| {z }
=0

(ED[fD(x)]� y)p(x, y)dxdy
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Variance Analysis: Sources

• Noise in labels or features 

• Training sample too small 

• “Too local” algorithms that easily fit data 

• Randomness in learning algorithm  
(i.e., non-convex algorithms)

Z

D

Z

x

Z

y
[fD(x)� ED[fD(x)]]2p(x, y)dxdyP (D)dD

High variance —> 
overfitting the data
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Variance Analysis: Reduction

• Use a lot of data (increase size of D) 

• Use a simple function so that fD(x) does not vary much 
across different training sets 
(e.g., f(x) = c)

Z

D

Z

x

Z

y
[fD(x)� ED[fD(x)]]2p(x, y)dxdyP (D)dD
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Remaining Term
Z

D

Z

x

Z

y
[ED[fD(x)]� y]2p(x, y)dxdyP (D)dD

=

Z

x

Z

y
[ED[fD(x)]� y]2p(x, y)dxdy

=

Z

x

Z

y
[ED[fD(x)]� Ey[y] + Ey[y]� y]2p(x, y)dxdy

=

Z

x

Z

y
[ED[fD(x)]� Ey[y]]

2p(x, y)dxdy

+

Z

x

Z

y
[Ey[y]� y]2p(x, y)dxdy

bias

noise
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Noise Analysis

• Nothing we can do! 

• Quantity depends on joint distribution only, choosing 
function or training dataset has no effect

Z

x

Z

y
[Ey[y]� y]2p(x, y)dxdy



CS 534 [Spring 2017] - Ho

Bias Analysis: Sources

• Inability to represent certain decision boundaries 

• Incorrect assumptions 

• Classifiers are “too global”  
(e.g., single linear separator)

High bias —> 
underfitting the data

Z

x

Z

y
[ED[fD(x)]� Ey[y]]

2p(x, y)dxdy
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Bias Analysis: Reduction

• More complex models 

• Function as flexible as possible 

• Better function approximates Ey[y] —> smaller bias

Z

x

Z

y
[ED[fD(x)]� Ey[y]]

2p(x, y)dxdy
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Bias, Variance, and Model Complexity

Figure 7.1 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].
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Underfitting vs Overfitting
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Example: Linear Regression
• Gauss-Markov Theorem: Least squares estimate has the 

minimum variance among all linear unbiased estimates 

• Truth: 

• Observed: 

• Bias: 

f(x) = X�

y = f(x) + ✏, E[✏] = 0

f(x0)� E[f̂(x0]

= x0� � E[x>
0 (X

>
X)�1

X

>(X� + ✏)]

= x0� � E[x>
0 � + x

>
0 (X

>
X)�1

X

>✏]

= x0� � x

>
0 � + x

>
0 (X

>
X)�1

X

>E[✏] = 0
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Example: Linear Regression (2)

• Variance: 

E[(f̂(x0 � E[f̂(x0])
2]

= E[(f̂(x0 � f(x0))
2]

= E[(x>
0 (X

>
X)�1

X

>(X� + ✏)� x

>
0 �)

2]

= E[(x>
0 � + x

>
0 (X

>
X)�1(X✏)� x

>
0 �)

2]

= E[(x>
0 (X

>
X)�1

X✏)2]

= �2
✏
p

N
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Refined Decomposition of Bias

• Bias = model bias + estimation bias 

• Model bias: price for choosing linear functions to model 
data 

• Estimation bias: difference between optimal model and 
estimated model

E
x0 [f(x0)� E[

ˆf(x0)]]
2

= E
x0 [f(x0)� x

>
0 �⇤]

2
+ E

x0 [x
>
0 �⇤ � E[x

>
0
ˆ�↵]]

2

= Ave[Model Bias]

2
+Ave[Estimation Bias]

2
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Regularized Linear Regression Tradeoff

• For regularized regression, estimation bias becomes 
positive compared to zero for least squares 

• No longer unbiased estimate 

• However, variance can be reduced 

E
x0 [x

>
0 �⇤ � E[x>

0 �̂↵ + �||�||p]]2

Var(f̂(x0)) = ||X(X>
X+ �I)�1

x0||2�2
✏



CS 534 [Spring 2017] - Ho

Bais-Variance Tradeoff: Key in ML

• Choice of hypothesis 
class introduces 
learning bias 

• More complex class 
—> less bias 

• More complex class 
—> more variance

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 7

Realization
Closest fit in population

Estimation Bias

SPACE

Variance
Estimation

Closest fit

Truth

Model bias

RESTRICTED

Shrunken fit

MODEL SPACE

MODEL

FIGURE 7.2. Schematic of the behavior of bias and
variance. The model space is the set of all possible
predictions from the model, with the “closest fit” la-
beled with a black dot. The model bias from the truth is
shown, along with the variance, indicated by the large
yellow circle centered at the black dot labeled “closest
fit in population.” A shrunken or regularized fit is also
shown, having additional estimation bias, but smaller
prediction error due to its decreased variance.

Figure 7.2 (Hastie et al.)
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Learning Theory: An Introduction
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Background: Union Bound

Let A1, A2, …, Ak be k different events (need not be 
independent) 

P (A1 [ · · · [Ak)  P (A1) + · · ·+ P (Ak)

Probability of any of k events happening is at 
most the sum of the probabilities of the k events
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Background: Hoeffding Inequality

Let Z1, Z2, …, Zm be m iid random variables drawn from a 
Bernoulli distribution, Bernoulli(   ). Let    represent the mean 
of these random variables, and let any          be fixed. Then 

Also known as Chernoff bound tells us the 
probability of how far our estimate of the 

parameter is from the true value

� �̂
� > 0

P (|�� ˆ�| > �)  2 exp(�2�2m)
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Simple Setting
• Classification problem 

• m data points 

• Finite number of possible hypothesis  
(e.g., 40 spam classifiers) 

• A learner finds a hypothesis h that is consistent with 
training data 

• Gets zero error in training (i.e., one of the classifier gets 
100% accuracy on the m emails)
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Simple Setting: Notation
• Training Error: fraction of training examples misclassified 

• Generalization Error: probability of drawing a new sample 
from distribution D and f will misclassify it 

• Hypothesis class H to be the set of all classifiers considered in 
the algorithm 

• Linear:

✏̂(h) =
1

m

X

i

{h(xi) 6=yi}

✏(h) = P(x,y)⇠D

(h(x) 6= y)

H = {h
✓

: h
✓

(x) = {✓>
x�0}, ✓ 2 Rn+1}
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Finite Hypothesis Case

• k hypothesis 

• ERM selects the one that has the smallest training error 

• Training error: 

✏̂(h
i

) =
1

m

X

j

Z
j

, Z
j

= {hi(xj) 6=yj}
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Finite Hypothesis: Bounds

• For a particular hypothesis, training error and 
generalization error bound 

• For the entire hypothesis class  

P (|✏(hi)� ✏̂(hi)| > �)  2 exp(�2�2m)

P (9h 2 H | |✏(hi)� ✏̂(hi)| > �)  2k exp(�2�2m)

P (¬9h 2 H | |✏(hi)� ✏̂(hi)| > �) � 1� 2k exp(�2�2m)
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Generalization Error [Haussler, 1998]

• Theorem: 

If the hypothesis space H is finite and D is a sequence of       
m        independent random examples of some target 
concept c, then for any                , the probability that the 
version space with respect to H and D is not   -exhausted 
its less than  

Bounds the probability that any consistent 
learner will output a hypothesis with error(h) 

greater than or equal to epsilon 

� 1
0  ✏  1

✏
|H| exp(�m✏)
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Sample Complexity

• How large must m be before we can guarantee that with 
probability at least          and          , the training error will 
be within    of generalization error? 

• Bound tells us how many training examples are needed 
to achieve a certain performance (aka sample complexity)

1� � � > 0
�

m � 1

2�2
log

2k

�
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PAC Bound & Bias-Variance

• What if we hold number of samples and probability fixed 
and want to solve for distance of generalization error?  

• Theorem: With probability at least          ,  1� �

✏(ˆh) 
✓
min

h2H
✏(h)

◆
+ 2

r
1

2m
log

2k

�

bias variance
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Infinite Hypothesis Class

• How can we generalize the bounds to infinite number of 
functions (i.e., linear classification parameterized by real 
numbers)? 

• Variance is obviously not infinite… 

• Idea: only care about the maximum number of points that 
can be classified exactly
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Vapnik-Chernovenkis (VC) Dimension

• Classic measure of complexity of infinite hypothesis 
classes 

• Answers the question of whether we can find a 
hypothesis that correctly classifies the data no matter 
how the data points were labeled 

• Maximum number of points K so that you can always find 
the correct 
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Example: VC Dimension 1-D

• How many points can a linear boundary classify in one 
dimension? 

• 2 points? 

• 3 points?
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Example: VC Dimension 2-D

• How many points can a linear boundary classify in two 
dimension? 

• 3 points? 

• 4 points? 
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PAC Bound via VC Dimension

• VC dimension: Measures relevant size of hypothesis 
space 

• Same bias/variance tradeoff as before, now just a 
function of VC 

• Theory is for binary classification — can be generalized 
for multi-class and regression

✏(ˆh) 
✓
min

h2H
✏(h)

◆
+O

 s
V C(H)

m
log

m

V C(H)

+

1

m
log

1

�

!


