Statistical Decision Theory &
LInear Regression

CS 534: Machine Learning

Slides adapted from Lee Cooper, Joydeep Ghosh, Carlos Carvalho, and Ryan Tibshirani



Supervised Learning

-+ Given a set of variables (features, input, predictors, or
independent variables), can we predict the value of one
Or more outputs (responses, or dependent variables)?

Paired inputs/outputs

{(x5,9:)},i=1,---,N X -

Learner - Yi
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Response lypes

- Quantitative — typically continuous valued, natural
ordering

- Qualitative — values in a finite set

- Categorical (discrete): no natural ordering (think object
classes)

» Ordered categorical: ordering between values with no
distance

- Example: small, medium, or large
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Quantitive Response: Examples

Predict future CO2 level given
economic growth data

(0-? ppm)

Predict value of a pixel In a
digitized image from the
values of neighbor pixels
(0-255)

Predict risk groups of cancer
Oatients given genomic data

(poor, moderate, good)

http://news.mit.edu/2016/teaching-machines-to-predict-the-future-0621
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http://news.mit.edu/2016/teaching-machines-to-predict-the-future-0621

Qualitative Response: Examples

Given height, weight, predict sex {male, female}
Predicting handwritten digit from image {0,...,9}

Predict species of iris from petal measurements
{Virginica, Setosa, Versacolor} (R.A. Fisher, 19306)
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Prediction Tasks

 Regression is used for quantitative responses
- Classification for predicting qualitative responses

+  Responses encoded numerically
e.qg., {O0,1}, {1,2,3,...} or {-1, 1})

- Sometimes referred to as targets

CS 534 [Spring 2017] - Ho



Notation Conventions: Inputs

- X: features or inputs
- N: number of samples

-+ P: number of features per sample
Beware: Not all texts

- X: N X p feature matrix and algorithms use the
same notation!
- Each row is a sample / datapoint

- Each column is a dimension
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Notation Conventions: Outputs

- Y : N x 1 vector with quantitative response
- ¢ N x 1 vector with qualitative response
.Y, G : Predicted responses

* (x4,1y;) or (x;,g;) : training data
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Statistical Decision Theory
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Two Basic Predictor Models

Linear Model K-Nearest Neighbors
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Decision Theory

-+ Can we build a theory of decision making that has
foundations in statistical science”?

- Let’s start with quantitative responses
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Decision Theory Preliminaries

- Let X be a real-valued input vector and Y a real valued
random output variable

- Let X, Y be jointly distributed Pr(X, Y)

- Find a function f(X) that predicts Y from X
f(X):RF >R
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Decision Theory: Loss Function

- Loss function: definition of performance to penalize errors

IN prediction

L(Y, f(X))

—xpected (squared) predictio

EPE(f) = E[Y — f(X)

N error (
2

=PE)

= ExEy x[(Y — (X)) X]

- Optimal solution:

f(x) = argmin Fy x[(Y — ¢)*|X = z]

= E[Y|X = 2
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2017] - Ho

Conditional mean is
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Interpretation of 2 Basic Predictors

- Squared error loss: L(Y, f(X)) = (Y — f(X))?

- KNN takes average over local neighborhood

f(z) = Ave(y;|z; € Ni(z))
- Linear regression uses a model-based approach
f=(E[XX"])T E[XY]

- Different approximations for conditional expectations
- KNN uses locally constant piecewise functions

-+ LS uses global function Y = BX
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Different Loss Function

- Effect of different loss function

L(Y, (X)) =[Y — f(X)]
- Optimal solution:

f(z) = median(Y| X = z)

- Median vs average!
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Linear Regression
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Regression Overview

Most widely used statistical tool for understanding
relationships amongst variables

-+ Conceptually simple method for investigating functional
relationships between one or more factors and an
outcome of interest

Relationship is expressed in form of equation or model
connecting the dependent variable (response) to one or
more explanatory or predictor variables
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Regression Examples

- Straight prediction questions

- How much will my house sell for?

ow many runs will the Braves score in 20177

- What rating will | give this movie”
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Regression Examples (2)

- Explanation and understanding
- What is the impact of an MBA on income”?

- Does Walmart discriminate against women with
regards to salaries?
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Regression Formulation

- Given an input vector xT = (x1, Xo, ..., Xp), we want to
oredict the quantitative response Y

- Linear regression form:

f(x) = Bo + Z%ﬁz‘
i=1
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L east Squares

f square errors (RSS)
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Figure 3.1 (Hastie et al.)
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L east Squares Solution

- Differentiate with respect to 3 and set to zero

ORSS
0B
- Show second derivative is positive
0*RSS
0BoB"

- Unigue solution:

= —2X'(y — XB) =0

—2X'X >0

B=X'X)"'X"y
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Geometry of Least Squares

- Qutcome vector is
orthogonally projected onto
hyperplane spanned by input
features

y=X8=XX"X)"'X"y

- Takeaway: Restriction by the
choice of features

CS 534 [Spring 2017] - Ho

Figure 3.2 (Hastie et al.)



Model Inference and Parameters

- How certain are we
about our model and
the parameters?

- What Iif we have only
the purple points on the *
graph (dashed line)?
What if we have all the
points (solid)? Which
ine Is better?

Need notion of “true line” and a prolbabillity distribution
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Regression Model Assumptions

- Conditional mean of y is linear in the predictor variables
- Error terms
- Normally distributed (Gaussian)

- |ID (constant variance)

y:E[Y‘Xla'” 7Xp]_|_87 gNN(()?O-Q)
p
:5O+ZXj5j+€
j=1
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Coefficient Interpretation

- Jth regression coefficient:

8E[Y‘X17 S 7Xp]
an

- Interpretation: Holding all other variables constant, 5; is
the average change in y per unit change in x;

b =
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Coefficient Distribution

- Sample distribution tells us how close we expect the
estimator to be from true value

B~ N(B,(X"X) 's?)

A

- Estimator is unbiased E|S]| =

- Standard deviation or standard error determines how
close estimator Is to true value
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Model Variance

. Observations uncorrelated and have constant variance o~

A

var(8) = (X' X) 1o?

+Variance estimate (regression standard error)
N

|
A2 2
7 _N—p—lz(yz i)

1=1

- Chi-squared distribution

(N — D — 1)62 ~ O-QX?V—p—l
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Coefficient Z-score

- Impact of feature on our model (null hypothesis
coefficient is zero)

- /-score IS normalized coefficient that measures the
predictive value of this feature

- t-distribution with N - p - 1 degrees of freedom

- Large values means we can reject null hypothesis

CS 534 [Spring 2017] - Ho



Correlation vs Causation

Top 10 Best (and Worst) Educated States, and How They Voted

ranked by percentage of residents 25 years of age or older with college degree or more

ezt Best Educated e Worst Educated
39.1% 1. Massachusetts i 18.5% 1.West Virginia
36.9% 2.Maryland | 19.8% 2. Mississippi

36.7% 3.Colorado

36.2% 4. Connecticut
354% 5.Vermont

35.3% 6. New Jersey
35.1% 7.Virginia

334% 8. New Hampshire
32.9% 9. New York
324% 10. Minnesota

20.3% 3. Arkansas
21.1% 4. Kentucky
21.1% 5. Louisiana
22.3% 6.Alabama
22.5% 7.Nevada
23.0% 8.Indiana
23.6% 9. Tennessee
23.8% 10.0klahoma

000)® 0 100 00’0

Research Statistics provided by FoxBusiness.com, based on education data from the U.S. Census Bureau’s’American Community Survey. 24/7 Wall St. identified the U.S. states with the largest and
smallest percentages of residents 25 or older with a college degree or more. http://www.foxbusiness.com/personal-finance/2012/10/15/americas-best-and-worst-educated-states/

HappyPlace.com
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Understanding MLR

-+ Extremely hard to find “causal” relationships between
features and outcome

- Any correlation (association) could lbe caused by other
variables in the background — correlation is NOT
causation

Multivariate regression allows us to control for all
important variables by including them in the regression
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[T usep o NG | [ THEN T Took A ] [sounds Lke HE |
CoRRELATION MPUED| | STATISTICS Cuass, cwss HELPED.
CAUSATION. ) Now I DON'T. WELL, MAYBE

74015 %

http://imgs.xkcd.com/comics/correlation.png
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Example: Prostate Cancer

Predict prostate-specific antigen (PSA) levels in blood test
using the following clinical variables:

- SVI: seminal vesicle

- lweight: log(prostate vasion

weight)

- lcp: log(capsular

* age: patient age penetration)

- lbph: log(benign prostatic

hyperplasia) + gleason: pathologic grade

* pgg4b: % gleason score

- |cavol: log(cancer volume) 40r 5
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Example: Prostate Cancer

Term Coefficient Std. Error Z Score
Intercept 2.46 0.09 27.60
lcavol 0.68 0.13 5.37
lweight 0.26 0.10 2.75
age —0.14 0.10 —1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lcp —0.29 0.15 —1.87
gleason —0.02 0.15 —0.15
pgegls 0.27 0.15 1.74
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Gauss-Markov Theorem

- One of most famous results in statistics

A

+ Unbiased estimator: FE|3| =

-+ Least squares estimates of the parameters have smallest
variance among all linear unbiased estimates

- AKA best linear unbiased estimator (BLUE)
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Linearly Dependent Features

- Solution assumes that columns of X are linearly
iIndependent and full rank

B=(X'X)"'X'"y
- \What happens when two features are correlated?
- Least squares coefficients not uniquely defined

+ Features should be reduced by filtering or
regularization
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Regression Coefficients: Formula

et z; be the residual from regression of x; on all other
oredictors, the nth coefficient can be expressed as

A < Z;,y >
B = ==
! ;][5

+ Jth coefficient is the univariate regression coefficient of y
on the residuals after regressing x; on the others

- If X5 1s highly correlated with the rest, residual z;is close
to O which makes coetficient unstable
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Variance Inflation

- Variance of jth multiple regression coefficient
Var(< zj,y >) _ ||z]30% _ o
12,]5 z;llz  Z;ll5

- Correlated predictors inflates the variance of the
coefficients

-+ Regression coefficient of highly correlated value will likely
not be significant
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Regression: Basis Functions

- (Generalize features to basis functions

p
f(x) = Bo + Z ¢i(xi)Bi
1=1
- Special case: linear regression

- Special case: polynomial regression

@(CU) = 7'
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Polynomial Curve Fitting

f(@) = Bo+ Bra + Box® + - + Bya™ =) B2
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LS Estimates: Shortcomings

- Prediction accuracy: Large variance for models
- Shrink or remove variables to reduce variance

- Interpretation: Large number of predictors makes it hard
to understand

- Sacrifice small details for “big picture”
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Feature Selection
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Selecting the Best Features

- Brute force method: try all combinations
- Computationally infeasible for large number of features

-+ EBEven with unlimited computational power, what is the
optimal number of features”?

- How to weigh complexity of the model against the error
(RSS)”
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Best-Subset Selection

- Finds the subset of size k with the smallest residual sum
of squares

- Leaps and bounds procedure (Furnival and Wilson,
1974) is an efficient algorithm for p < 40

- Best-subset curve is necessarily decreasing — cannot be
used to select subset size k

- Tradeoft will be discussed in a few lectures
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Stepwise Selection

-+ Forward: Start with O features and sequentially add
feature that best improves fit

- (Can be used whenever

- Backward: Start with full model, remove feature that is
least detrimental to fit

- Can only be used when N > p
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Feature Selection Comparison
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Figure 3.6 (Hastie et al.)
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Regularization
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Model Regularization

- Basic idea: Add penalty term on model parameters to
achieve a more simple model or reduce sensitivity to
training data

mﬁin L(X3,y) + Apenalty(3)

+ Reasons:
- Less prone to overtitting

- Get the “right” model complexity
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Popular Penalties

Name Penalty function

Ridge Bll2
Lasso Bl
Lo regularization Bllo

Elastic net o||B][1 + (1 — a)]|B]]2
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Ridge Regularization

- Regularization coefficient controls effective model complexity

mﬁinL(Xﬁ,Y) + 8|2

- Discourage large values

+ Also known as shrinkage (statistics) or weight decay (neural
nets)

- Closed form solution leads to

B=M+X"X)"'XTy numerical stability
too!
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Ridge Regression: Tuning Parameter

- Tuning parameter ( \ ) controls the strength of the penalty
term

- When O, linear regression estimate
- When Infinity, coefficients go to O

- For In between, balance the fit of the model with
shrinking coefticients
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Coefficient Path: Ridge
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Figure 3.8 (Hastie et al.)
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[ asso Regularization

- Subtle difference from the ridge is the use of the 1-norm

mﬁinL(Xﬁ,Y) + A1

Large values drive coefficients to zero (continuous subset
selection)

- Also known as basis pursuit in signal processing

No closed form solution but efficient algorithms exist with

approximately same computational cost as ridge
Lasso: Least Absolute Selection and Shrinkage Operator
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Coefficient Path: Lasso

Coefficients

I T I | T |
0.0 0.2 0.4 0.6 0.8 1.0

Shrinkage Factor s

Figure 3.10 (Hastie et al.)
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Ridge & Lasso Regularization: Notes

- If intercept term is included in regression, this coefficient
S left unpenalized

- Usually center the columns of X to exclude intercept

- Penalty term can be unfair it predictors are on different
scales

+ Scale columns of X to have same sample variance
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Ridge and Lasso Comparison

Lasso Ridge

Figure 3.11 (Hastie et al.)
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Intuition: Ridge and Lasso

What happens for gradient descent?
Ridge Lasso

8x)\\|:c|\2 + )z ax)\Hle +)\
Push towards O gets weaker Always pushes elements
as x gets smaller towards O
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What You Should Be Thinking

- How to choose an appropriate value of 7
- Hard question that will be discussed a bit |later
- What happens if none of the coefficients are small”

- Regularization may still help as it greatly reduces the
variance of our prediction while introducing some bias

- This will be discussed further in a few lectures
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Fffect of Selection on Coefficients

Term LS Best Subset Ridge Lasso
Intercept 2.465 2.477 2.452  2.468
lcavol 0.680 0.740 0.420 0.933
lweight 0.263 0.316 0.238 0.169
age —0.141 —0.046
1bph 0.210 0.162 0.002
svi 0.305 0.227 0.094
lcp —0.288 0.000
gleason —0.021 0.040
pegg4sb 0.267 0.133
Test Error 0.521 0.492 0.492 0.479
Std Error 0.179 0.143 0.165 0.164
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Elastic Net Regularization

- Compromise between ridge and lasso

min L(X3,y) + Alel|Bllz + (1 = a)l|B]])

- Selects variables like lasso
- Shrinks coefficients of correlated predictions like ridge

- Computational advantages over general Lq penalties
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Group Lasso for Sparse Learning

- SLEP package (http://www.yelab.net/software/SLEP/)

+ Variety of methods to shrink parameters

G G2 Gs Ga

+ Group Lasso BN N NNEEEE N NEEE o

Group
NNNNNREED EEREEER .

° Sparse Group LaSSO Sparse Group
il I ENER Lasso

+ Overlapping Group Lasso

- Tree Structured Group Lasso

https://turbosnu.wordpress.com/2016/01/20/note-down-feature-selection-for-adc/
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Multilevel Models
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Multilevel Models (MLM)

- "Multilevel modeling is a generalization of generalized
inear modeling” (Gelman, 2005)

- Multilevel model also known as
- Hierarchical model

- Mixed effect model

- “Level” In multilevel refers to hierarchy of parameters
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Why MLM?

MLM Is useful when:

Insufficient data for lowest level models while higher
level models are too coarse

Desire to get similar results for individuals within a
group

MLM models entities at the lowest level but “borrows
strength” from higher levels
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Classical Regression vs. MLM

- When there is very little group-level variation, multileve

modeling reduces to classical regression with no grou
iIndicators

- \When group-level coefficients vary greatly, multilevel
modeling reduces to classical regression with group
indicators (group dummy codes)

- Advantage occurs between these two cases
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Example: Alcohol Abuse

- Study alcohol abuse among young people (Dominici,
2005)

- A person is a member of a family and a resident of a
state

- Level 1 (person): person’s ability to metabolize alcohol
- Level 2 (family): alcohol abuse in the family

-+ Level 3 (state): state laws
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Example: Alcohol Abuse Data

- 3 years of longitudinall data
- 82 adolescents beginning at age 14

- Covariates:

- COA: indicator variable whether adolescent is a child of
alcoholic parent

- PEER: 8-point scale that shoes the proportion of their
friends who drink alcohol

- Time: 0, 1, 2
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Example: Proposed MLM

Alcoholuse  PEER of individual COA of individual |

n individual |  at time t at time t
at time t
~
Yit = Boi + BpPit + BecCit + B1it + €44
Boi = Boo + bos

— ,
Noise effects
Bii = Bio+ b1y «
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MLM Computational

- Maximum Likelihood Estimation

- Finds it with respect to all the parameters through EM
iterations

- Restricted Maximum Likelihood Estimation

+ Focuses only on D (random-effect covariance) through EM
terations (Harville, 19706)

-+ Bayes Posterior Estimation

+ Gibbs sampling (Gelman and Hill, 2007)
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Example: Fitted Results

fixed.fit multi-level.fit

e =
P ——

E ———— ——

e 7"\
O -
| | | | | |
0 1 2 0 1 2
year
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Example: Fitted Results (2)

variable -®- alcuse.true =& fixed.fit =8 multi-level.fit
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