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Linear Regression
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Supervised Learning

• Given a set of variables (features, input, predictors, or 
independent variables), can we predict the value of one 
or more outputs (responses, or dependent variables)? 
 
 
 
 

Paired inputs/outputs
{(xi, yi)}, i = 1, · · · , N xi yiLearner
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Response Types
• Quantitative — typically continuous valued, natural 

ordering 

• Qualitative — values in a finite set 

• Categorical (discrete): no natural ordering (think object 
classes) 

• Ordered categorical: ordering between values with no 
distance 

• Example: small, medium, or large
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Quantitive Response: Examples
• Predict future C02 level given 

economic growth data 
(0-? ppm) 

• Predict value of a pixel in a 
digitized image from the 
values of neighbor pixels 
(0-255) 

• Predict risk groups of cancer 
patients given genomic data 
(poor, moderate, good)

http://news.mit.edu/2016/teaching-machines-to-predict-the-future-0621

http://news.mit.edu/2016/teaching-machines-to-predict-the-future-0621
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Qualitative Response: Examples
• Given height, weight, predict sex {male, female} 

• Predicting handwritten digit from image {0,…,9} 

• Predict species of iris from petal measurements 
{Virginica, Setosa, Versacolor} (R.A. Fisher, 1936)
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Prediction Tasks

• Regression is used for quantitative responses 

• Classification for predicting qualitative responses 

• Responses encoded numerically 
(e.g., {0,1}, {1,2,3,…} or {-1, 1}) 

• Sometimes referred to as targets
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Notation Conventions: Inputs

• X: features or inputs 

• N: number of samples 

• p: number of features per sample 

• X: N x p feature matrix 

• Each row is a sample / datapoint 

• Each column is a dimension

Beware: Not all texts 
and algorithms use the 

same notation! 
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Notation Conventions: Outputs

•   : N x 1 vector with quantitative response 

•   : N x 1 vector with qualitative response 

•        : Predicted responses 

•                           : training data

Y

G

Ŷ , Ĝ

(xi, yi) or (xi, gi)
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Statistical Decision Theory
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Two Basic Predictor Models

Linear Model k-Nearest Neighbors
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Decision Theory

• Can we build a theory of decision making that has 
foundations in statistical science? 

• Let’s start with quantitative responses
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Decision Theory Preliminaries

• Let X be a real-valued input vector and Y a real valued 
random output variable 

• Let X, Y be jointly distributed Pr(X, Y) 

• Find a function f(X) that predicts Y from X  

f(X) : Rp ! R
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Decision Theory: Loss Function

• Loss function: definition of performance to penalize errors 
in prediction 

• Expected (squared) prediction error (EPE) 

• Optimal solution: 

L(Y, f(X))

EPE(f) = E[Y � f(X)]2

= EXEY |X [(Y � f(X))2|X]

f(x) = argmincEY |X [(Y � c)2|X = x]

= E[Y |X = x] Conditional mean is 
best predictor
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Interpretation of 2 Basic Predictors
• Squared error loss: 

• kNN takes average over local neighborhood  

• Linear regression uses a model-based approach  

• Different approximations for conditional expectations 

• KNN uses locally constant piecewise functions 

• LS uses global function Y = BX

f̂(x) = Ave(yi|xi 2 Nk(x))

� = (E[XX>])�1E[XY ]

L(Y, f(X)) = (Y � f(X))2
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Different Loss Function

• Effect of different loss function 

• Optimal solution: 
 

• Median vs average!

L(Y, f(X)) = |Y � f(X)|

f̂(x) = median(Y |X = x)
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Linear Regression
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Regression Overview

• Most widely used statistical tool for understanding 
relationships amongst variables 

• Conceptually simple method for investigating functional 
relationships between one or more factors and an 
outcome of interest 

• Relationship is expressed in form of equation or model 
connecting the dependent variable (response) to one or 
more explanatory or predictor variables
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Regression Examples

• Straight prediction questions 

• How much will my house sell for? 

• How many runs will the Braves score in 2017? 

• What rating will I give this movie?
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Regression Examples (2)

• Explanation and understanding 

• What is the impact of an MBA on income? 

• Does Walmart discriminate against women with 
regards to salaries?
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Regression Formulation

• Given an input vector xT = (x1, x2, …, xp), we want to 
predict the quantitative response Y 

• Linear regression form:  
 
 

f(x) = �0 +
pX

i=1

xi�i
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Least Squares

• Minimize sum of square errors (RSS)  
 
 
 
 
 
 
 
 

Figure 3.1 (Hastie et al.)

RSS(�) =
NX

i=1

(yi � f(xi))
2

= (y �X�)>(y �X�)
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Least Squares Solution

• Differentiate with respect to     and set to zero 

• Show second derivative is positive 

• Unique solution: 

�

@RSS

@�
= �2X>(y �X�) = 0

@2RSS

@�@�> = 2X>X > 0

�̂ = (X>X)�1X>y
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Geometry of Least Squares

• Outcome vector is 
orthogonally projected onto 
hyperplane spanned by input 
features 

• Takeaway: Restriction by the 
choice of features

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 3

x1

x2

y

ŷ

FIGURE 3.2. The N-dimensional geometry of least
squares regression with two predictors. The outcome
vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection
ŷ represents the vector of the least squares predictions

Figure 3.2 (Hastie et al.)

ŷ = X�̂ = X(X>X)�1X>y
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Model Inference and Parameters

• How certain are we 
about our model and 
the parameters? 

• What if we have only 
the purple points on the 
graph (dashed line)? 
What if we have all the 
points (solid)? Which 
line is better? 

Need notion of “true line” and a probability distribution
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Regression Model Assumptions

• Conditional mean of y is linear in the predictor variables 

• Error terms 

• Normally distributed (Gaussian) 

• IID (constant variance) 

y = E[y|x1, · · · ,xp] + ", " ⇠ N(0,�2)

= �0 +
pX

j=1

xj�j + "
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Coefficient Interpretation

• jth regression coefficient: 

• Interpretation: Holding all other variables constant,      is 
the average change in y per unit change in xj

�j =
@E[y|x1, · · · ,xp]

@xj

�j
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Coefficient Distribution

• Sample distribution tells us how close we expect the 
estimator to be from true value 

• Estimator is unbiased 

• Standard deviation or standard error determines how 
close estimator is to true value

�̂ ⇠ N(�, (X>X)�1�2)

E[�̂] = �
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Model Variance

• Observations uncorrelated and have constant variance 

• Variance estimate (regression standard error) 

• Chi-squared distribution 

�2

var(�̂) = (X>X)�1�2

�̂2 =
1

N � p� 1

NX

i=1

(yi � ŷi)
2

(N � p� 1)�̂2 ⇠ �2�2
N�p�1
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Coefficient Z-score

• Impact of feature on our model (null hypothesis 
coefficient is zero) 

• Z-score is normalized coefficient that measures the 
predictive value of this feature 

• t-distribution with N - p - 1 degrees of freedom 

• Large values means we can reject null hypothesis
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Correlation vs Causation
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Understanding MLR

• Extremely hard to find “causal” relationships between 
features and outcome 

• Any correlation (association) could be caused by other 
variables in the background — correlation is NOT 
causation 

• Multivariate regression allows us to control for all 
important variables by including them in the regression
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http://imgs.xkcd.com/comics/correlation.png

http://imgs.xkcd.com/comics/correlation.png
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Example: Prostate Cancer

• lweight: log(prostate 
weight) 

• age: patient age 

• lbph: log(benign prostatic 
hyperplasia) 

• lcavol: log(cancer volume) 

• svi: seminal vesicle 
invasion 

• lcp: log(capsular 
penetration) 

• gleason: pathologic grade 

• pgg45: % gleason score 
4 or 5

Predict prostate-specific antigen (PSA) levels in blood test 
using the following clinical variables:
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Example: Prostate Cancer

Table 3.2 (Hastie et al.)
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Gauss-Markov Theorem

• One of most famous results in statistics 

• Unbiased estimator:  

• Least squares estimates of the parameters have smallest 
variance among all linear unbiased estimates 

• AKA best linear unbiased estimator (BLUE)

E[�̂] = �
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Linearly Dependent Features

• Solution assumes that columns of X are linearly 
independent and full rank 

• What happens when two features are correlated? 

• Least squares coefficients not uniquely defined 

• Features should be reduced by filtering or 
regularization

�̂ = (X>X)�1X>y



CS 534 [Spring 2017] - Ho

Regression Coefficients: Formula

• Let      be the residual from regression of       on all other 
predictors, the nth coefficient can be expressed as 

• jth coefficient is the univariate regression coefficient of y 
on the residuals after regressing xj on the others 

• If      is highly correlated with the rest, residual     is close 
to 0 which makes coefficient unstable

zj xj

�̂j =
< zj ,y >

||zj ||22

xj zj
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Variance Inflation

• Variance of jth multiple regression coefficient 

• Correlated predictors inflates the variance of the 
coefficients 

• Regression coefficient of highly correlated value will likely 
not be significant

Var(�̂j) =
Var(< zj ,y >)

||zj ||42
=

||zj ||22�2

||zj ||42
=

�2

||zj ||22
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Regression: Basis Functions

• Generalize features to basis functions 

• Special case: linear regression 

• Special case: polynomial regression

f(x) = �0 +
pX

i=1

�i(xi)�i

�i(x) = x

i
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Polynomial Curve Fitting
f(x) = �0 + �1x+ �2x

2 + · · ·+ �Mx

M =
MX

j=0

�jx
j
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LS Estimates: Shortcomings

• Prediction accuracy: Large variance for models 

• Shrink or remove variables to reduce variance 

• Interpretation: Large number of predictors makes it hard 
to understand 

• Sacrifice small details for “big picture”
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Feature Selection
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Selecting the Best Features

• Brute force method: try all combinations 

• Computationally infeasible for large number of features 

• Even with unlimited computational power, what is the 
optimal number of features? 

• How to weigh complexity of the model against the error 
(RSS)?



CS 534 [Spring 2017] - Ho

Best-Subset Selection

• Finds the subset of size k with the smallest residual sum 
of squares 

• Leaps and bounds procedure (Furnival and Wilson, 
1974) is an efficient algorithm for p < 40 

• Best-subset curve is necessarily decreasing — cannot be 
used to select subset size k 

• Tradeoff will be discussed in a few lectures
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Stepwise Selection

• Forward: Start with 0 features and sequentially add 
feature that best improves fit 

• Can be used whenever 

• Backward: Start with full model, remove feature that is 
least detrimental to fit 

• Can only be used when N > p
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Feature Selection Comparison
Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.6. Comparison of four subset-selection
techniques on a simulated linear regression problem
Y = XT β + ε. There are N = 300 observations
on p = 31 standard Gaussian variables, with pair-
wise correlations all equal to 0.85. For 10 of the vari-
ables, the coefficients are drawn at random from a
N(0, 0.4) distribution; the rest are zero. The noise
ε ∼ N(0, 6.25), resulting in a signal-to-noise ratio of
0.64. Results are averaged over 50 simulations. Shown
is the mean-squared error of the estimated coefficient
β̂(k) at each step from the true β.

Figure 3.6 (Hastie et al.)
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Regularization
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Model Regularization

• Basic idea: Add penalty term on model parameters to 
achieve a more simple model or reduce sensitivity to 
training data 

• Reasons: 

• Less prone to overfitting 

• Get the “right” model complexity  

min
�

L(X�,y) + �penalty(�)
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Popular Penalties

Name Penalty function
Ridge
Lasso

L0 regularization
Elastic net

||�||2
||�||1
||�||0

↵||�||1 + (1� ↵)||�||2
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Ridge Regularization
• Regularization coefficient controls effective model complexity 

• Discourage large values 

• Also known as shrinkage (statistics) or weight decay (neural 
nets) 

• Closed form solution 

min
�

L(X�,y) + �||�||2

�̂ = (�I+X>X)�1X>y
leads to 

numerical stability 
too!
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Ridge Regression: Tuning Parameter

• Tuning parameter (    ) controls the strength of the penalty 
term 

• When 0, linear regression estimate 

• When infinity, coefficients go to 0 

• For in between, balance the fit of the model with 
shrinking coefficients

�
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Coefficient Path: RidgeElements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.8. Profiles of ridge coefficients for the
prostate cancer example, as the tuning parameter λ is
varied. Coefficients are plotted versus df(λ), the ef-
fective degrees of freedom. A vertical line is drawn at
df = 5.0, the value chosen by cross-validation.

Figure 3.8 (Hastie et al.)
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Lasso Regularization

• Subtle difference from the ridge is the use of the 1-norm 

• Large values drive coefficients to zero (continuous subset 
selection) 

• Also known as basis pursuit in signal processing 

• No closed form solution but efficient algorithms exist with 
approximately same computational cost as ridge

min
�

L(X�,y) + �||�||1

Lasso: Least Absolute Selection and Shrinkage Operator 
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Coefficient Path: LassoElements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.10. Profiles of lasso coefficients, as the
tuning parameter t is varied. Coefficients are plot-
ted versus s = t/

Pp
1 |β̂j |. A vertical line is drawn at

s = 0.36, the value chosen by cross-validation. Com-
pare Figure 3.8 on page 9; the lasso profiles hit zero,
while those for ridge do not. The profiles are piece-wise
linear, and so are computed only at the points displayed;
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Figure 3.10 (Hastie et al.)
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Ridge & Lasso Regularization: Notes

• If intercept term is included in regression, this coefficient 
is left unpenalized 

• Usually center the columns of X to exclude intercept 

• Penalty term can be unfair if predictors are on different 
scales 

• Scale columns of X to have same sample variance
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Ridge and Lasso Comparison

Figure 3.11 (Hastie et al.)

Lasso Ridge
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Intuition: Ridge and Lasso
What happens for gradient descent?

Ridge

Push towards 0 gets weaker 
as x gets smaller

@

@x

�||x||2 = ±�x

Lasso

@

@x

�||x||1 = ±�

Always pushes elements 
towards 0
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What You Should Be Thinking

• How to choose an appropriate value of     ? 

• Hard question that will be discussed a bit later 

• What happens if none of the coefficients are small? 

• Regularization may still help as it greatly reduces the 
variance of our prediction while introducing some bias 

• This will be discussed further in a few lectures
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Effect of Selection on Coefficients

Table 3.3 (Hastie et al.)
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Elastic Net Regularization

• Compromise between ridge and lasso 

• Selects variables like lasso 

• Shrinks coefficients of correlated predictions like ridge 

• Computational advantages over general Lq penalties

min
�

L(X�,y) + �(↵||�||2 + (1� ↵)||�||1)
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Group Lasso for Sparse Learning
• SLEP package (http://www.yelab.net/software/SLEP/) 

• Variety of methods to shrink parameters 

• Group Lasso 

• Sparse Group Lasso 

• Overlapping Group Lasso 

• Tree Structured Group Lasso 
https://turbosnu.wordpress.com/2016/01/20/note-down-feature-selection-for-adc/

http://www.yelab.net/software/SLEP/
https://turbosnu.wordpress.com/2016/01/20/note-down-feature-selection-for-adc/
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Multilevel Models
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Multilevel Models (MLM)
• “Multilevel modeling is a generalization of generalized 

linear modeling” (Gelman, 2005) 

• Multilevel model also known as 

• Hierarchical model 

• Mixed effect model 

• … 

• “Level” in multilevel refers to hierarchy of parameters
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Why MLM?

• MLM is useful when: 

• Insufficient data for lowest level models while higher 
level models are too coarse 

• Desire to get similar results for individuals within a 
group 

• MLM models entities at the lowest level but “borrows 
strength” from higher levels



CS 534 [Spring 2017] - Ho

Classical Regression vs. MLM

• When there is very little group-level variation, multilevel 
modeling reduces to classical regression with no group 
indicators 

• When group-level coefficients vary greatly, multilevel 
modeling reduces to classical regression with group 
indicators (group dummy codes) 

• Advantage occurs between these two cases
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Example: Alcohol Abuse

• Study alcohol abuse among young people (Dominici, 
2005) 

• A person is a member of a family and a resident of a 
state 

• Level 1 (person): person’s ability to metabolize alcohol 

• Level 2 (family): alcohol abuse in the family 

• Level 3 (state): state laws
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Example: Alcohol Abuse Data
• 3 years of longitudinall data 

• 82 adolescents beginning at age 14 

• Covariates: 

• COA: indicator variable whether adolescent is a child of 
alcoholic parent 

• PEER: 8-point scale that shoes the proportion of their 
friends who drink alcohol 

• Time: 0, 1, 2
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Example: Proposed MLM

yit = �0i + �ppit + �ccit + �1it+ ✏it

�0i = �00 + b0i

�1i = �10 + b1i

Alcohol use 
in individual i 

at time t

PEER of individual 
i at time t

COA of individual i 
at time t

Noise effects
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MLM Computational
• Maximum Likelihood Estimation 

• Finds it with respect to all the parameters through EM 
iterations 

• Restricted Maximum Likelihood Estimation 

• Focuses only on D (random-effect covariance) through EM 
iterations (Harville, 1976)  

• Bayes Posterior Estimation 

• Gibbs sampling (Gelman and Hill, 2007)
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Example: Fitted Results

fixed.fit multi−level.fit
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Example: Fitted Results (2)
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