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Probability Theory

- Random variables

- Joint PDF, CDF

- Marginal & conditional distribution
- Expectation (mean and variance)
- Bayes rule

- Independence, covariance, correlation
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Linear Algebra
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Notation

Vector: x € R"

\

X:X:

Matrix: A € R™*"

A =

astie et al. book notation .. -
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Special Matrices

- |dentity Matrix:
|
| < Rnxn, where Iz'j — { ’Z_ ]
0,7 # 7
ATl =A =1A

- Diagonal Matrix:
d;, 1 =7

D:diag(dl,dg,--- ,dn) with Dij — {O # .
y L7 ]

CS 534 [Spring 2017] - Ho



Matrix Multiplication

If Ac R™"™ BecR"P,

C = AB € R"”*P, where C;; = Z Ak By
k=1

- Properties
- Associative
(AB)C = A(BC) Generally not
L commutative so
- Distributive AB =/= BA

A(B+C)=AB + AC
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Transpose

- "Flip” rows and columns of a matrix
(A")ij = Ajs
- Properties

. (AT)T — A
. (AB)" =BTA"

- (A+B)T=AT +BT
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Trace

- Sum of the diagonal elements in a square matrix

1=1

- Properties
Tr(A) = Tr(A")
A,BeR"" Tr(A+B)="Tr(A)+ Tr(B)
A ceR"™" teR, Tr(tA) =tTr(A)

AB € R™" Tr(AB) = Tr(BA)
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Norms

- Norm is any function f : R™ — Rthat satisfies 4 properties:

- Non-negativity
For all x € R", f(x) >0
- Definiteness
f(x) =0 if and only if x =0
- Homogeneity

For all x € R",t € R, f(tx) = |t|f(x)

- Triangle Inequality
For all x,y e R", f(x+y) < f(x) + f(y)
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Common Vector Norms

- Euclidean (/¢5) norm

- {1 norm =1
T
x|l =) |a
+ Lo NOM =1

+ £, norm n 1/p
1x[lp = (Z :vz-p)
1=1
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Common Matrix Norms

- Frobenius norm

1A]lp = \/Z A2 = [ Tr(AT A)

- 1-norm

ALl = max Y|4y
. 2-norm !

|A[l2 = \/maxcig(ATA)
+ p-norm

A|l, = ( max [|Ax||,)"/*

[1x]|p=1
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Linear Independence

- Set of vectors are linearly independent if no vector can be
represented as a linear combination of the remaining
VECTOors

Linearly dependent vector:

n—1
Xn — E ;X4
i=1
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Rank

- Column rank: size of largest subset of columns of A such
that constitute a linearly dependent set

Row rank: largest number of rows of A that constitute a
inearly independent set

-+ For any matrix in real space, column rank = row rank
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Rank Properties A € R™"

- Rank vs dimension
rank(A) < min(m,n)

- Full rank

rank(A) = min(m, n)
- Rank of transpose

rank(A) = rank(A ")
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Rank Properties (2)

- Multiplication of two matrices

rank(AB) < min(rank(A), rank(B))

- Addition of two same sized matrices

rank(A + B) < rank(A) + rank(B)
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Matrix Inverse

-+ Unigue matrix such that

A'A=1=AA"
- Ais invertible and non-singular if inverse exists
- Ais singular if not invertible

- A must be full rank to have an inverse
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Matrix Inverse Properties
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Pseudo Inverse (Moore-Penrose)

- (Generalization of inverse for non-square but full rank

- Criteria;
- AATA =A
. ATAAT = AT
. (AAN) " = AAT

. (ATA)" = ATA
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Orthogonal Matrices

- Orthogonal vectors X, y:

x y=20

Normalized vector:

[x[l2 =1

+ Orthogonal square matrix if all columns are orthogonal to
one another

- Orthonormal square matrix if orthogonal matrix and all
columns are normalized
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Orthogonal Properties

- Inverse of orthogonal matrix Is its transpose
U'u=1=U0U"

+Vector operation will not change its Euclidean norm
Ux(|2 = [|x|]2
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Range and Nullspace

+ Span of a set of vectors is all the vectors that can expressed
as linear combination of these vectors

span({xXy, -+ ,Xp}) = {V vV = Z%Xz}

+ Range (columnspace) is the span of the columns of the matrix
R(A)={veR":v=Ax,x € R"}

- Nullspace is the set of all vectors that equal O when multiple
by matrix

NA)={xeR": Ax =0}
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Fundamental Subspaces

C (A7)
C (A)

Row space

Column space
all ATy

all Ax

dim r .
Perpendicular Perpendicular dim 7
x'(A'y) =0 y'(Ax) =0
dimn —r :
- dimm —r
Nullspace ‘ T
Ax — 0 Nullspace of A
= Aly =0

Figure 1: Dimensions and orthogonality for any m by n matrix A of rank r.

http://web.mit.edu/18.06/www/Essays/newpaper ver3.pdf
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Eigenvalues and Eigenvectors

- Instrumental to systems
Ax = \x

- Analogy: Matrix is a gust of wind (invisible force with
visible result)

- Elgenvector is like a weathervane which tells you the
direction the wind is blowing in

+ Eigenvalue is just the scalar coefficient

https://deeplearning4j.org/eigenvector
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Eigenvalue Properties

- [Trace of a matrix is sum of its eigenvalues
n
Tr(A) =) A
i=1
- Determinant of matrix is equal to product of its eigenvalues
n
Al=]]\
i=1
- Rank of matrix is the numlber of non-zero eigenvalues

- |f eigenvectors of matrix are linearly independent, then the matrix is
Invertible

A = XAX!
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Symmetric Matrix & Eigenvectors

- Iwo remarkable properties from a symmetric matrix
- Elgenvalues of the matrix are real

- Elgenvectors of the matrix are orthonormal

A =UAU'
- Elgenvalues are positive —> positive definite

- Elgenvalues are non-negative —> positive semidefinite

CS 534 [Spring 2017] - Ho



Convex Optimization Review
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Optimization Problem

- Minimize a function subject to some constraints

min fo(z)

st. fo(z) <0,k=1,2,--- K
hj(a:):O,j:Z_,Q,--- ,J

- Example: Minimize the variance of your returns while
earning at least $100 in the stock market.
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Machine Learning and Optimization

. Linear regression  min || Xw — y||?
w

- Logistic regression min Zlog(1+exp(—yix;rw))

. SWM min |jw||* +C ) &
s.t. & > 1 — yzx:w
& >0

- And many more ...
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Non-Convex Problems are Everywhere

- Local (hon-global) minima

- All Kinds of constraints
No easy solution

for these problems

3 L o Noeae =
2~ . < i T
=
1(04,0,)
1 - et . — ‘V & oy
. . ' —~— —
- A A . ~ 0
y ,_'n;‘
3 ) e
' — -~ -
— e

S I Consider
N T convex problems
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Why Convex Optimization?

- Achieves global minimum, no local traps
- Highly efficient software available
-+ Can be solved by polynomial time complexity algorithms

- Dividing line between “easy” and “difficult” problems
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Convex Sets

Any line segment joining any two elements lies entirely in
set

rx1, 220 € C,.0<0<1 — 0:171—|—(1—0)$26C

CcOonNvex NON-CONveX NON-CONVEX
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Convex Function

f:R"™ — R is convex if dom f is a convex set and

flOx+(1—=0)y) <0f(x)+(1-0)f(y)

for all z,y € dom f,0< 60 <1

(y, f(y))
(x, f(x))

f lies below the line segment joining f(x), f(y)

CS 534 [Spring 2017] - Ho



Properties of Convex Functions

-+ Convexity over all lines
f(x) is convex = f(xo + th) is convex in t for all xq, h

- Positive multiple
f(xz) is convex = «.f(x) is convex for all a > 0

- Sum of convex functions
fi(x), fa(x) convex = fi(z) + fo(x) is convex

- Pointwise maximum
fi(x), fa(x) convex = max{ fi(x), f2(x)} is convex

- Affine transformation of domain
f(x) is convex — f(Ax + b) is convex
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Convex Optimization Problem

Definition:

An optimization problem is convex if its objective is a
convex function, the inequality constraints are convex, and
the equality constraints are affine

min fo(x) convex function

s.t. fx(x) <0,k=1,2,--- , K convex sets
hi(z)=0,7=1,2,---,J affine constraints
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Benefits of Convexity

+ Theorem: If X is a local minimizer of a convex optimization
problem, it is a global minimizer

- Theorem: If the gradient at c is zero, then c is the global
minimum of f(x)

Vflc)=0 < c=2a"
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Gradient Descent (Steepest Descent)

- Simplest and extremely popular

- Main |ldea: take a step proportional to the negative of the
gradient

- Easy to implement

- Each iteration is relatively cheap

- (Can be slow to converge
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Gradient Descent Algorithm

Algorithm 1: Gradient Descent

while Not Converged do
D) = (k) — n(R)7 £ ()

end

return z(F+1)
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Gradient Descent: Linear Regression

Gradient Search y intercept (b) X
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http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
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Gradient Descent: Example 2

1131—|—3$2—0.1 _|_6$1—35L‘2—0.1 _I_e—xl—O.l

L1, Lo) — €

—-—_.-__~~
-
-
-
—

- ———

backtracking line search exact line search

Boyd & Landenberghe’s Book on Convex Optimization
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Gradient Descent: Example 3

500
f(z)=clz - Z log(b; — al x)
i=1
10
10
A problem in R100 %
5 10° \‘xgxact .s.
10™2
backtrack|ng |.s.
104

0 50 100 150 200
k

Boyd & Landenberghe’s Book on Convex Optimization
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Limitations of Gradient Descent

- Step size search may be expensive
-+ Convergence is slow for ill-conditioned problems
- Convergence speed depends on initial starting position

Does not work for non differentiable or constrainead
oroblems
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Constrained Optimization
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Lagrange Duality

Bound or solve an optimization problem via a different
optimization problem

- Optimization problems (even non-convex) can be
transformed to their dual problems

Purpose of the dual problem is to determine the lower
bounds for the optimal value of the original problem

Under certain conditions, solutions of both problems are
equal and the dual problem often offers easier and
analytical way to the solution
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Reasons Why Dual is Easier

+ Dual problem is unconstrained or has simple constraints

- Dual objective is differentiable or has a simple non
differentiable term

- Exploit separable structure in the decomposition for
easlier algorithm

CS 534 [Spring 2017] - Ho



Construct the Dual

Original optimization problem or primal problem

min  fo(x)
s.t. fu(x) <0,k=1,2,--- | K
hi(z)=0,7=1,2,---,J
Lagrangian
L(z, A\ v) = fol@) + ) Aefu(@) + ) vihj(a)
k J

Lagrange multipliers or dual variables
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Constructing the Dual

Original optimization problem or primal problem

min fo(z)
s.t. fr(x) <0,k=1,2,--- | K infimum is the element
hi(x)=0,7=1,2,---,J that is smallest or

\/ equal to all elements
IN the set
Dual problem  max g(\,v) = inf L(x, A, v)

' . 3 >
dual function is always subject to A = 0

lower bouhq for optimal g\ v) < L(E, M) < fol#)
value of original function
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Lagrange Dual: Separable Example

min f1(z1)

SUbjeCt to Alil?l -+ AQQIZ’Q S b

f2(22) coupling constraint in
orimal problem

max — fi(=A;z) = f5(—Ayz) —b'2

subject to z > 0

dual problem can
by gradient
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Some Resources for Convex Optimization

- Boyd & Landenberghe’s Book on Convex Optimization
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

-+ Stephen Boyd’s Class at Stanford
http://stanford.edu/class/ee364a/

- Vandenberghe’s Class at UCLA
http://www.seas.ucla.edu/~vandenbe/ee?236b/ee?236b.htm|

- Ben-Tal & Nemirovski Lectures on Modern Convex
Optimization
http://epulbs.siam.org/doi/lbook/10.1137/1.9/80898718829
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