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Probability Review: Recap
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Probability Theory

• Random variables 

• Joint PDF, CDF 

• Marginal & conditional distribution 

• Expectation (mean and variance) 

• Bayes rule 

• Independence, covariance, correlation
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Linear Algebra
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Notation
• Vector:  
 
 
 

• Matrix: 
 
 
 
 

x = X =

2

6664

x1

x2
...
xn

3

7775

Hastie et al. book notation

A =

2

6664

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

3

7775
=

⇥
a1 a2 · · · an

⇤

A 2 Rm⇥n

x 2 Rn
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Special Matrices

• Identity Matrix: 
 
 
 

• Diagonal Matrix: 
 

I 2 Rn⇥n, where Iij =

(
1, i = j

0, i 6= j

AI = A = IA

D = diag(d1, d2, · · · , dn) with Dij =

(
di, i = j

0, i 6= j
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Matrix Multiplication

• Properties 

• Associative  

• Distributive 
 

If A 2 Rm⇥n,B 2 Rn⇥p,

C = AB 2 Rm⇥p, where Cij =
nX

k=1

AikBkj

(AB)C = A(BC)

A(B+C) = AB+AC

Generally not 
commutative so 

AB =/= BA
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Transpose

• “Flip” rows and columns of a matrix  

• Properties 

•   

•   

•  

(A>)ij = Aji

(A>)> = A

(AB)> = B>A>

(A+B)> = A> +B>
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Trace
• Sum of the diagonal elements in a square matrix 

• Properties 

•   

•   

•   

Tr(A) =
nX

i=1

Aii

Tr(A) = Tr(A>)

A,B 2 Rn⇥n, Tr(A+B) = Tr(A) + Tr(B)

A 2 Rn⇥n, t 2 R, Tr(tA) = tTr(A)

AB 2 Rn⇥n, Tr(AB) = Tr(BA)
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Norms
• Norm is any function                     that satisfies 4 properties: 

• Non-negativity  

• Definiteness 

• Homogeneity 

• Triangle Inequality 

f : Rn ! R

For all x 2 Rn, f(x) � 0

f(x) = 0 if and only if x = 0

For all x 2 Rn
, t 2 R, f(tx) = |t|f(x)

For all x,y 2 Rn, f(x+ y)  f(x) + f(y)
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Common Vector Norms
• Euclidean (    ) norm  

•    norm  

•      norm 

•    norm  
 

`2

`1

`p

||x||2 =

vuut
nX

i=1

x

2
i

||x||1 =
nX

i=1

|xi|
`1

||x||1 = max

xi

|x
i

|

||x||p =

 
nX

i=1

|xi|p
!1/p
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Common Matrix Norms

• Frobenius norm 

• 1-norm 

• 2-norm 

• p-norm 

||A||F =

sX

ij

|Aij |2 =
q

Tr(A>A)

||A||1 = max

j

X

i

|Aij |

||A||2 =

q
max eig(A>A)

||A||p = ( max

||x||p=1
||Ax||p)1/p
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Linear Independence

• Set of vectors are linearly independent if no vector can be 
represented as a linear combination of the remaining 
vectors 

• Linearly dependent vector: 
 

xn =
n�1X

i=1

↵ixi
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Rank

• Column rank: size of largest subset of columns of A such 
that constitute a linearly dependent set 

• Row rank: largest number of rows of A that constitute a 
linearly independent set 

• For any matrix in real space, column rank = row rank
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Rank Properties

• Rank vs dimension 

• Full rank  

• Rank of transpose 

rank(A)  min(m,n)

rank(A) = min(m,n)

A 2 Rm⇥n

rank(A) = rank(A>)
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Rank Properties (2)

• Multiplication of two matrices 

• Addition of two same sized matrices 

rank(AB)  min(rank(A), rank(B))

rank(A+B)  rank(A) + rank(B)
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Matrix Inverse

• Unique matrix such that 

• A is invertible and non-singular if inverse exists 

• A is singular if not invertible 

• A must be full rank to have an inverse

A�1A = I = AA�1
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Matrix Inverse Properties

•    

•    

•   

(A�1)�1 = A

(AB)�1 = B�1A�1

(A�1)> = (A>)�1
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Pseudo Inverse (Moore-Penrose)

• Generalization of inverse for non-square but full rank 

• Criteria: 

•   

•   

•   

•  

AA†A = A

A†AA† = A†

(AA†)> = AA†

(A†A)> = A†A
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Orthogonal Matrices

• Orthogonal vectors x, y: 

• Normalized vector: 

• Orthogonal square matrix if all columns are orthogonal to 
one another 

• Orthonormal square matrix if orthogonal matrix and all 
columns are normalized

x

>
y = 0

||x||2 = 1
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Orthogonal Properties

• Inverse of orthogonal matrix is its transpose 

• Vector operation will not change its Euclidean norm

U>U = I = UU>

||Ux||2 = ||x||2
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Range and Nullspace
• Span of a set of vectors is all the vectors that can expressed 

as linear combination of these vectors 

• Range (columnspace) is the span of the columns of the matrix 

• Nullspace is the set of all vectors that equal 0 when multiple 
by matrix 

span({x1, · · · ,xn}) =
(
v : v =

nX

i=1

↵ixi

)

R(A) = {v 2 Rm : v = Ax,x 2 Rn}

N (A) = {x 2 Rn : Ax = 0}
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Fundamental Subspaces

http://web.mit.edu/18.06/www/Essays/newpaper_ver3.pdf

http://web.mit.edu/18.06/www/Essays/newpaper_ver3.pdf
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Eigenvalues and Eigenvectors

• Instrumental to systems 

• Analogy: Matrix is a gust of wind (invisible force with 
visible result) 

• Eigenvector is like a weathervane which tells you the 
direction the wind is blowing in 

• Eigenvalue is just the scalar coefficient
https://deeplearning4j.org/eigenvector

Ax = �x

https://deeplearning4j.org/eigenvector
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Eigenvalue Properties
• Trace of a matrix is sum of its eigenvalues 

• Determinant of matrix is equal to product of its eigenvalues 

• Rank of matrix is the number of non-zero eigenvalues 

• If eigenvectors of matrix are linearly independent, then the matrix is 
invertible 

Tr(A) =
nX

i=1

�i

|A| =
nY

i=1

�i

A = X⇤X�1
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Symmetric Matrix & Eigenvectors

• Two remarkable properties from a symmetric matrix 

• Eigenvalues of the matrix are real 

• Eigenvectors of the matrix are orthonormal  

• Eigenvalues are positive —> positive definite 

• Eigenvalues are non-negative —> positive semidefinite

A = U⇤U>
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Convex Optimization Review
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Optimization Problem

• Minimize a function subject to some constraints 
 
 
 
 

• Example: Minimize the variance of your returns while 
earning at least $100 in the stock market.

min
x

f0(x)

s.t. f
k

(x)  0, k = 1, 2, · · · ,K
h

j

(x) = 0, j = 1, 2, · · · , J
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Machine Learning and Optimization

• Linear regression 

• Logistic regression 

• SVM 
 

• And many more ...

min
w

||Xw � y||2

min

w

X

i

log(1 + exp(�yix
>
i w))

min
w

||w||2 + C

X

i

⇠i

s.t. ⇠i � 1� yix
>
i w

⇠i � 0
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Non-Convex Problems are Everywhere

• Local (non-global) minima 

• All kinds of constraints 
 
 
 
 
 
 

No easy solution 
for these problems

Consider 
convex problems
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Why Convex Optimization?

• Achieves global minimum, no local traps 

• Highly efficient software available 

• Can be solved by polynomial time complexity algorithms 

• Dividing line between “easy” and “difficult” problems
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Convex Sets

Any line segment joining any two elements lies entirely in 
set 
 
 
 
 
 
 
 

x1, x2 2 C, 0  ✓  1 =) ✓x1 + (1� ✓)x2 2 C

convex non-convex non-convex
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Convex Function
f : Rn ! R is convex if dom f is a convex set and

f(✓x+ (1� ✓)y)  ✓f(x) + (1� ✓)f(y)

for all x, y 2 dom f, 0  ✓  1

f lies below the line segment joining f(x), f(y)
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Properties of Convex Functions
• Convexity over all lines 

• Positive multiple  

• Sum of convex functions 

• Pointwise maximum  

• Affine transformation of domain 

f(x) is convex =) f(x0 + th) is convex in t for all x0, h

f(x) is convex =) ↵f(x) is convex for all ↵ � 0

f1(x), f2(x) convex =) f1(x) + f2(x) is convex

f1(x), f2(x) convex =) max{f1(x), f2(x)} is convex

f(x) is convex =) f(Ax+ b) is convex
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Convex Optimization Problem

Definition: 
An optimization problem is convex if its objective is a 
convex function, the inequality constraints are convex, and 
the equality constraints are affine 
 
 
 
 
 
 

min
x

f0(x)

s.t. f
k

(x)  0, k = 1, 2, · · · ,K
h

j

(x) = 0, j = 1, 2, · · · , J

convex function

convex sets
affine constraints
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Benefits of Convexity

• Theorem: If x is a local minimizer of a convex optimization 
problem, it is a global minimizer  

• Theorem: If the gradient at c is zero, then c is the global 
minimum of f(x) 
 
  rf(c) = 0 () c = x

⇤
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Gradient Descent (Steepest Descent)

• Simplest and extremely popular 

• Main Idea: take a step proportional to the negative of the 
gradient 

• Easy to implement 

• Each iteration is relatively cheap 

• Can be slow to converge
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Gradient Descent Algorithm

Algorithm 1: Gradient Descent

while Not Converged do

x

(k+1) = x

(k) � ⌘

(k)rf(x)
end

return x

(k+1)
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Gradient Descent: Linear Regression

http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/

http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/
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Gradient Descent: Example 2

f(x1, x2) = e

x1+3x2�0.1 + e

x1�3x2�0.1 + e

�x1�0.1

Boyd & Landenberghe’s Book on Convex Optimization
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Gradient Descent: Example 3

A problem in R100

Boyd & Landenberghe’s Book on Convex Optimization
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Limitations of Gradient Descent

• Step size search may be expensive 

• Convergence is slow for ill-conditioned problems 

• Convergence speed depends on initial starting position 

• Does not work for non differentiable or constrained 
problems
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Constrained Optimization

min
x

f0(x)

s.t f
k

(x)  0, k = 1, · · · ,K
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Lagrange Duality
• Bound or solve an optimization problem via a different 

optimization problem 

• Optimization problems (even non-convex) can be 
transformed to their dual problems 

• Purpose of the dual problem is to determine the lower 
bounds for the optimal value of the original problem 

• Under certain conditions, solutions of both problems are 
equal and the dual problem often offers easier and 
analytical way to the solution
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Reasons Why Dual is Easier

• Dual problem is unconstrained or has simple constraints 

• Dual objective is differentiable or has a simple non 
differentiable term 

• Exploit separable structure in the decomposition for 
easier algorithm
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Construct the Dual
Original optimization problem or primal problem
min
x

f0(x)

s.t. f
k

(x)  0, k = 1, 2, · · · ,K
h

j

(x) = 0, j = 1, 2, · · · , J

L(x,�, v) = f0(x) +
X

k

�kfk(x) +
X

j

vjhj(x)

Lagrangian

Lagrange multipliers or dual variables



CS 534 [Spring 2017] - Ho

Constructing the Dual
Original optimization problem or primal problem
min
x

f0(x)

s.t. f
k

(x)  0, k = 1, 2, · · · ,K
h

j

(x) = 0, j = 1, 2, · · · , J

Dual problem

infimum is the element 
that is smallest or 

equal to all elements 
in the set

dual function is always 
lower bound for optimal 
value of original function

g(�, v)  L(x̃,�, v)  f0(x̃)

max g(�, v) = inf

x

L(x,�, v)

subject to � � 0
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Lagrange Dual: Separable Example

min f1(x1) + f2(x2)

subject to A1x1 +A2x2  b

coupling constraint in 
primal problem

max � f⇤
1 (�A>

1 z)� f⇤
2 (�A>

2 z)� b>z

subject to z � 0 dual problem can be easily solved 
by gradient projection
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Some Resources for Convex Optimization

• Boyd & Landenberghe’s Book on Convex Optimization  
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf 

• Stephen Boyd’s Class at Stanford  
http://stanford.edu/class/ee364a/ 

• Vandenberghe’s Class at UCLA  
http://www.seas.ucla.edu/~vandenbe/ee236b/ee236b.html 

• Ben-Tai & Nemirovski Lectures on Modern Convex 
Optimization 
http://epubs.siam.org/doi/book/10.1137/1.9780898718829

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://stanford.edu/class/ee364a/
http://www.seas.ucla.edu/~vandenbe/ee236b/ee236b.html
http://epubs.siam.org/doi/book/10.1137/1.9780898718829

