Introduction to Deep Learning

CS 534: Machine Learning



Deep Learning: “The New Cool”

® artificial intelligence ¢ Deep learning Machine learning ® Data mining
Field of study Field of study Field of study Topic
Worldwide ¥ 3/7/06-4/7/17 ¥ All categories ¥ Web Search ¥

Interest over time @

Average Apr 1,2006 Jan 1,2010 Oct 1, 2013
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Deep Learning: Overview

Form of representation learning

Aimed at learning feature
hierarchies

Features from higher levels of
the hierarchy are formed by
lower level features

Each hidden layer allows for
more complex features of input

http://www.deeplearningbook.org/contents/intro.html
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Deep Learning: The Promised Lanao

Automatic tfeature discovery
?

Hidden layers discover o ou e
semantically meaningful concepts 1 1 !
Features learned without need for —3 3 o h
seeing exponentially large
number of configuration of other T T T :
features
Expressiveness of deep Networks w2 B

learning

http://www.deeplearningbook.org/contents/intro.html
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Deep vs Shallow Architectures
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http://www.slideshare.net/roelofp/041114-dl-nlpwordembeddings

CS 534 [Spring 2017] - Ho


http://www.slideshare.net/roelofp/041114-dl-nlpwordembeddings

Review: Motivation by Human Brain

- Contains 10" neurons, each
with up to 10° connections

- Each neuron is fairly slow
with switching time of 1 ms

- Computers at least 10°
times faster in raw switching
speed

- Brain Is fast, reliable, and
fault-tolerant
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Review: Neuron —> Perceptron

impulses carried
toward cell body

branches
dendrites of axon
& - axon
nucleus >terminals
impulses carried il
away from cell body =.OS napse
cell body axon from a neuron > P
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output axon

activation
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Birth of neural networks in 1958,
out linearly separability limitation ey
led to the first Al winter
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Review: MLP

Composition of neurons with
an activation function

Typically, each unit of layer t is
connected to every unit of the
previous layer t - 1 only

input layer ¢

NoO cross-connections
netween units In the same
ayer

http://neuralnetworksanddeeplearning.com/chap1.html
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Review: Backpropogation

Training
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| . XN v labels
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Smaller,
¥4 varied N

Backpropogation introduced in the early 1970s but
Rumelhart, Hinton, and Willlams formulated for MLPs — rise
of neural networks again!

https://devblogs.nvidia.com/parallelforall/inference-next-step-gpu-accelerated-deep-learning/

aYa
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Deep Neural Networks

"Non-deep" feedforward Deep neural network
neural network

hidden laver . hidden layer 1 hidden layer 2 hidden layer 3
¢ input laver

input layer

- output layer _
— - output layer

Ly 4 Il"x'&

http://www.coldvision.io/2016/07/29/image-classification-deep-learning-cnn-caffe-opencv-3-x-cuda/
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Review: Obstacles to Deep MLPs

Requires lots of labeled training

10° Speed of learning: 4 hidden layers
data | ' — Hidden layer 1
\ ; i ; Hidden layer 2
10" ’ """"""""""" P | — Hidden layer 3 1
\ . . . | y 4

Computationally extremely R s
expengve Y | NN S S S

104 E

Vanishing & unstable gradients |

10°

0 100 200 300 400 500
Number of epochs of training

Difficult to tune

http://neuralnetworksanddeeplearning.com/chap5.html
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Review: CNN

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

CNN was only successful deep network up to 2006, as
anything past 3 layers was impossible to train

https://en.wikipedia.org/wiki/Convolutional neural network
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Neural Nets Go Unsupervised

- CNN and MLPs used to automate rote tasks
- Example: Reading checks

- What about smaller representation (i.e., compression) of
the data”?

- Can we think about only using the training data to
efficiently translate / encode data to a compact format”?
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Autoencoder

MLP only works with labeled
training examples

Autoencoder learns
compressed, distributed
representation (encoding) of
the dataset

AiIm to “recreate” the input

Introduced In 1986

encode decode

9

\\ 2

° \ «v},’\ﬁ,‘\: ‘,/é @_>
@«z;‘H‘"' -
A ‘\ :
%9“6

Q Layer L, Layer L,

Layer L,

w,b(x)

http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsit
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Autoencoder: MNIST Results

500 hidden units with 20 epochs and mini batch size of 20

https://triangleinequality.wordpress.com/2014/08/12/theano-autoencoders-and-mnis
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Restricted Boltzmann Machines (RBM)

- (Generative stochastic neural
network that can learn a probability

distribution over its set of inputs TG Spie
e
Restrict connectivity to make x e
learning easier X
input +b + _/ =a

- One layer of hidden units

No connections between hidden
units
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RBM: Reconstruction via Backpropogation

Reconstruction
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http://deeplearning4j.org/restrictedboltzmannmachine.html

Review: Sequential Data

nc.
\APL - Dec 20, 7:59 PM EST

What about sequential ~ 3us #0.29 (0.25%)

116.96 40.03%

d ata? 5 day 1 month 3 month 1 year 5 year

Time-series: Stock M
market, weather, speech,
video ‘//\"‘

Ordered: Text, genes

7.50 P/E ratlo 14.13
5.68 Div yield 1.95%
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The Need for Sequences

one to one one to many many to one many to many many to many
! Pt ! Pt Pt
! ! bt Pt Pt

l

| Synced sequence /O
“Vanilla” NN: Sequence input (e.g., video classification

fixed-sized Input to (e.g., sentiment analysis) on frame level)

ﬁxed-Size OUtpUt CS 534 [Spring 2017] - Ho http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Time-Delay Neural Networks (TDNN)

| put lay
Each neuron processes subset of
iInput - =
| | | .. : :. . hidden layer
Different weights for different NG
delays of input data S
- Similar to CNNs since it looks at -

. . . . H = - N

subset of input at a time EEEEN-

https://en.wikipedia.org/wiki/Time delay neural network
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Recurrent Neural Networks (RNN)

Family of neural networks
for processing sequential
d a'ta INPUT LAYER

- Qutput of the layer can
connect back to the
neuron itself or a layer
before it

-+ Share same weights
across several time steps
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RNN: Recurrence

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

he|=|fw|(he—1h T4)
new state / old state input vector at T
some time step
some function X

with parameters W
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RNN: Unfolding for Backpropogation
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L ong-lerm Dependency Problems

- Appeal of RNN Is to connect previous information to
present task

- Gap between relevant information and point of needing it
can be large (e.g., word prediction for a sentence like |
grew up in France ... | speak fluent __ )

- Long-range dependencies are difficult to learn because

of vanishing gradient or exploding gradient problem
(depending on the activation function)
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Long Short-Term Memory Units (LSTM)

Introduction of a new
structure called memory cell (g

111111111

- 4 components: input gate,
a neuron with a self-
recurrent connection, a
forget gate, and an output
gate

- Abillity to remove or add %
iINformation to the cell state f \

t h rO U g h t h e g ates http://www.deeplearningbook.org/contents/rnn.html
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Simple RNN vs LSTM
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM: Cell State

- Key idea: cell state runs through the entire chain
+ Easy for information to just flow along unchanged

- Add/remove information via gates
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L STM: Forget Gate Layer

fe=0Wps-lhi—1,2¢] + by)

- Looks at the current value x: and the previous state (ht-1)
and outputs a number between O and 1 for each number
In cell state

-1 = completely keep, O = completely forget
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LSTM: Input Layer

it = J(W,,;'[ht_l,xt] + bz)
ol C, = tanh(We¢-|hi—1,2¢] + bo)

tanh

Input gate layer (sigmoid layer) decides which values to
update

-+ Tanh layer creates a new vector of candidates to be
added to the state
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L STM: Update Layer

ftT Ztr-%§ Cy = fi*Cyo1 + iy x Cy

+ Drop the information from forget gate layer and add
iInformation from input layer
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L STM: Output Layer

Ot — J(Wo [ht—17$t] - bo)
hy = o4 * tanh (C})

- Qutput based on cell state (filtered version)

-+ Sigmoid layer determines which parts of cell states to
output

-+ Tanh pushes values between -1 and 1
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Experiment: Shakespearean Writing

- Download all works of
Shakespeare into single
file

- Train 3-layer RNN with
512 hidden nodes on
each layer

- Create samples for both
speaker’s names and the
contents

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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New Winter Dawns

—

[ N g pe
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e .

Failure of backpropogation and ascent of SVMSs,
random forests led to a slump in the early 2000s
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Deep Learning: The Dark Ages

-+ Hinton & Bengio hatched plan to “rebrand” neural
networks with deep learning

-+ Resurgence with “A fast learning algorithm for deep belief
nets” [Hinton et al., 2000]

- Clever way to initialize neural networks rather than
randomly

- Followed by “Greedy layer-wise training of deep
networks” [Bengio et al., 2007]
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Deep Learning Rises Again

Citation indices All Since 2010 Citation indices All Since 2010
Citations 117128 47516 Citations 29582 17815
h-index 113 86 h-index 77 59
i10-index 273 200 i10-index 179 141

mmENR lll - om m N lll

2007 2008 2009 2010 2011 2012 2013 2014 2015 2007 2008 2009 2010 2011 2012 2013 2014 2015
Geoffrey Hinton Yann LeCun

Citation indices All Since 2010 Citation indices All Since 2010
Citations 32736 25285 Citations 15412 10292
h-index 73 65 h-index b4 48
i10-index 245 200 i10-index 242 178

,_---lll !--lllll

2007 2008 2009 2010 2011 2012 2013 2014 2015 2007 2008 2009 2010 2011 2012 2013 2014 2015

Yoshua Bengio Juergen Schmidhuber
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Deep Learning Rises Again

- Labeled datasets were thousands of times too small

- Unsupervised pre-training could help mitigate bad
initialization

- Computers were millions of times too slow
- Welights were initialized in a stupid way

- Used wrong type of non-linearity

://www.andr nkov.com/writing/a-
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Deep Learning Rises Again

The Deep Learning “Computer Vision Recipe”
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Big Data: ImageNet Deep Convolutional Neural Network Backprop on GPU Learned Weights

Deep learning = lots of training data + parallel
computation + scalable, smart algorithms
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Stacked Autoencoders

Network of multiple stacked auto encoders

- Can capture “hierarchical grouping” or “part-whole
decomposition” of input

+ Greedy training algorithm

- Train first autoencoder using backpropogation (to learn
raw iNputs)

- Train second layer autoencoder using output of first
layer to learn these secondary features
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Stacked Autoencoders: Classification

—> P(y=0|x)

p— Py =1 | x)

— Ply =2 | x)
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Deep Belief Network (DBN)

Probabilistic generative models

Deep architecture — multiple
layers Q000000 s

RBM

COOOO0OO) h @OOAOOOO) h2

Fach layer contains high- w |

: ©O00000 m ©OOLOC0) # (ooojé'oo@ hy
order correlations between 1 - -

the activities of hidden 0005000 + EUOCO00 « COOCO00 -
features in the layer below

Stack RBM to get layers

http://www.pyimagesearch.com/wp-content/uploads/2014/09/deep_belief network example.png
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DBN: MNIST Dataset Results

Examples of correctly recognized handwritten digits that the
network hadn’t seen before

oclw i N\ (/481072
de2adQ 2L A5>7
3¢ 79494746 >59
e & 772\ 71T48%79
D8 T8 494977
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DBN: MNIST Dataset Results

Model Test Error

Generative model via RBM 1.25%

SVM [Decoste et al.] 1.4%
Backpropogation with 1000 hidden units [Platt] 1.6%
Backpropogation with 500 —> 300 hidden units 1.6%
K-nearest neighbor ~3.3%

https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf
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Deep Learning Resources

- Website with variety of resources and pointers at
deeplearning.net

-+ Deep Learning Tutorial by Stanford (http://
ufldl.stanford.edu/tutorial/)

 Neural Networks and Deep Learning online book (http://
neuralnetworksanddeeplearning.comy/)

- Deep Learning book by Goodfellow, Bengio, and
Courville (http://www.deeplearninglbook.org/)
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Deep Learning Resources

- NIPS 2015 Tutorial by Hinton, Bengio & LeCun (http://
WwWWw.Iro.umontreal.ca/~bengioy/talks/DL - Tutorial-
NIPS2015.pdf)

-+ Deep Learning for Java (http://deeplearning4j.org/)

- Andrej Karpathy’s Blog on Neural Networks (http://
karpathy.github.io/)

-+ Colah’s Blog on Neural Networks (https://
colah.qgithub.io/)
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Deep Learning Toolkits

- TensorFlow (by Google)

-+ Theano (developed by academics)

orch (written by Lua)

- Caffe

For a reasonable comparison of the frameworks, see
https://github.com/zerOn/deepframeworks/blolb/master/
README.md
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