Hidden Markov Models

CS 534: Machine Learning

Slides adapted from David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi

Review: Applied ML Process

Review: ML Models

	Unsupervised	Supervised	
Continuous Data	 Clustering k-Means Agglomerative clustering Gaussian mixture models Dimensionality reduction PCA / SVD NMF 	 Multivariate regression Decision trees SVR Boosting, bagging, ensembles 	
Categorical Data		 k-NN Decision trees Logistic regression SVM Neural networks Boosting, bagging, ensembles 	

Review: ML Models

Construct feature matrix X

Sequential Data

- What about sequential data?
 - Time-series: Stock market, weather, speech, video
 - Ordered: Text, genes

Sequential Data: Tracking

Observe noisy measurements of missile location

Where is the missile now? Where will it be in 1 minute?

CS 534 [Spring 2017] - Ho

Sequential Data: Weather

- Predict the weather tomorrow using previous information
- If it rained yesterday, and the previous day and historically it has rained 7 times in the past 10 years on this date does this affect my prediction?

Atlanta, GA 10 Day Weather

DAY	DESCRIPTION	HIGH / LOW	PRECIP	WIND	HUMIDITY
TODAY APR 5	Strong Storms	75°/52°	/100%	SSW 17 mph	74%
THU APR 6	Cloudy/Wind	59°⁄42°	/10%	W 25 mph	52%
FRI APR 7	Sunny/Wind	63°⁄41°	0%	WNW 23 mph	41%
SAT 🔆	Sunny	69°⁄43°	/ 0%	NW 12 mph	38%
SUN 🔆	Sunny	76°⁄50°	0%	SSE 6 mph	42%
MON APR 10	Sunny	79°⁄54°	/ 10%	SSE 9 mph	45%
TUE 🔆	Mostly Sunny	80°⁄58°	/10%	SSE 8 mph	51%
WED APR 12	Partly Cloudy	77°/53°	20%	W 9 mph	55%
THU 🔆	Sunny	74°⁄52°	20%	NW 9 mph	50%
FRI 🔆	Sunny	72°/50°	/10%	NW 14 mph	49%
SAT APR 15	Sunny	76°/52°	20%	WNW 8 mph	52%
SUN 🔆	Mostly Sunny	81°⁄57°	/10%	WNW 9 mph	50%
MON 🔆	Mostly Sunny	82°⁄57°	/ 20%	W 8 mph	52%
TUE 🌟	Isolated Thunderstorms	82°⁄57°	/ 30%	WSW 8 mph	52%
WED APR 19	Partly Cloudy	82°⁄58°	/ 20%	SSW 9 mph	53%

Sequential Data: Weather

• Use product rule for joint distribution of a sequence

$$P(X_1, X_2, \cdots, X_T) = \prod_{t=1}^T P(X_t | X_{t-1}, \cdots, X_1)$$

- How do I solve this?
 - Model how weather changes over time
 - Model how observations are produced
 - Reason about the model

Markov Chain

• Markov chain: Sequence of random variables $X_1, X_2, \cdots, X_T \in S$ such that

$$p(x_{t+1}|x_1,\cdots,x_t) = p(x_{t+1}|x_t)$$

- Set S is called the state space
- Transition probability (probability of transitioning from state i to state j at time t)

$$p(X_{t+1} = j | X_t = i)$$

Markov Chain

- Time homogenous Markov chain: transition probability between two states does not depend on time
- Transition matrix A ($|S| \times |S|$)
 - A is a stochastic matrix (all rows sum to one)

•
$$A_{ij} = p(X_{t+1} = j | X_t = i)$$

Example: Weather Prediction

- Markov chain to predict weather of tomorrow using previous information of the past days
- 3 states: Sunny, cloudy, rainy
- Establish transition probabilities by collecting data

Example: Weather Prediction

Compute probability of tomorrow's weather using Markov property

$$p(X_1, \cdots, X_n) = \prod_{i=1}^n p(X_i | X_{i-1})$$

- Given today is sunny, what's the probability that tomorrow is sunny and the next day is rainy?
- Given yesterday's weather was rainy, and today is cloudy, what is the probability tomorrow will be sunny?

Hidden Markov Model (HMM)

- Stochastic model where the states of the model are hidden
- Each state can emit an output which is observed

HMM: Parameters

State transition matrix A

$$A_{jk} = p(S_t = s_k | S_{t-1} = s_j)$$

 Emission / observation conditional output probabilities B

$$B_{ik} = p(O_t = v_k | S_t = s_i)$$

Initial (prior) state probabilities

 $\pi_i = p(S_i)$

S₂

S_{T-1}

ST

HMM: Properties

- Useful for modeling sequential data with few parameters using discrete hidden states that satisfy Markov assumption
- State space representation: initial probability, transition probability, emission probability
- Can be learned fairly efficiently

Example: Dishonest Casino

- A casino has two dices that it switches between with 5% probability
 - Fair dice

$$P(1) = P(2) = P(3) = 1/6$$

 $P(4) = P(5) = P(6) = 1/6$

Loaded dice

$$P(1) = P(2) = P(3) = 1/10$$

 $P(4) = P(5) = 1/10$
 $P(6) = 1/2$

Example: Dishonest Casino

- Initial probabilities $P(S_1 = L) = P(S_1 = F) = 0.5$
- State transition matrix $\mathbf{A} = \begin{bmatrix} 0.95 & 0.05\\ 0.05 & 0.95 \end{bmatrix}$

Emission probabilities

$$\mathbf{B} = \begin{bmatrix} 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/10 & 1/10 & 1/10 & 1/10 & 1/10 & 1/2 \end{bmatrix}$$

Example: Dishonest Casino

- How likely is this sequence given our model of how the casino works?
- What sequence portion was generated with the fair die?
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded and back?

HMM: Problems

- Evaluation: Given parameters and observation sequence, find probability of observed sequence
- Decoding: Given HMM parameters and observation sequence, find the most probable sequence of hidden states
- Learning: Given HMM with unknown parameters and observation sequence, find the parameters that maximizes likelihood of data

HMM: Evaluation Problem

Given

 $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t), \{O_t\}_{t=1}^T$

Probability of observed sequence

$$p(\{O_t\}_{t=1}^T) = \sum_{S_1, \cdots, S_T} p(\{O_t\}_{t=1}^T, \{S_t\}_{t=1}^T)$$

$$T \qquad T$$

$$= \sum_{S_1, \cdots, S_T} p(S_1) \prod_{t=2} p(S_t | S_{t-1}) \prod_{t=1} p(O_t | S_t)$$

Summing over all possible hidden state values at all times — K^T exponential # terms

CS 534 [Spring 2017] - Ho

HMM: Forward Algorithm

- Instead pose as recursive problem $p(\{O_t\}_{t=1}^T) = \sum_k \underbrace{p(\{O_t\}_{t=1}^T, S_T = k)}_{\alpha_T^k}$
- Use dynamic programming to compute forward probability

$$\alpha_{k}^{t} = p(O_{1}, \cdots, O_{t}, S_{t} = k)$$

= $p(O_{t}|S_{t} = k) \sum_{i} \alpha_{t-1}^{i} p(S_{t} = k|S_{t} - 1 = i)$

02

HMM: Decoding Problem 1

Given

 $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t), \{O_t\}_{t=1}^T$

Probability that hidden state at time t was k

$$p(S_{t} = k, \{O_{t}\}_{t=1}^{T}) = p(O_{1}, \cdots, O_{t}, S_{t} = k, O_{t+1}, \cdots, O_{T})$$

= $\underbrace{p(O_{1}, \cdots, O_{t}, S_{t} = k)}_{\alpha_{t}^{k}} \underbrace{p(O_{t+1}, \cdots, O_{T} | S_{t} = k)}_{\beta_{t}^{k}}$
= $\alpha_{t}^{k} \beta_{t}^{k}$

We know how to compute the first part using forward algorithm

CS 534 [Spring 2017] - Ho

HMM: Backward Probability

Similar to forward probability, we can express as a recursion problem

$$\beta_k^t = p(O_{t+1}, \cdots, O_T | S_t = k)$$

= $\sum_i p(S_{t+1} = i | S_t = k) p(O_{t+1} | S_{t+1} = i) \beta_{t+1}^i$

- Dynamic program
 - Initialize $\beta_T^k = 1$
 - Iterate using recursion

HMM: Decoding Problem 1

Probability that hidden state at time t was k

$$P(S_t = k | \{O_t\}_{t=1}^T) = \frac{p(S_t = k, \{O_t\}_{t=1}^T)}{p(\{O_t\}_{t=1}^T)}$$
$$= \frac{\alpha_t^k \beta_t^k}{\sum_i \alpha_t^i \beta_t^i} \quad \begin{array}{l} \text{Forward-backward} \\ \text{algorithm} \end{array}$$

Most likely state assignment

$$\operatorname{argmax}_{k} p(S_{t} = k | \{O_{t}\}_{t=1}^{T}) = \operatorname{argmax}_{k} \alpha_{t}^{k} \beta_{t}^{k}$$

HMM: Decoding Problem 2

• Given $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t), \{O_t\}_{t=1}^T$

• What is most likely state sequence? $\operatorname{argmax}_{k} p(\{S_{t}\}_{t=1}^{T} | \{O_{t}\}_{t=1}^{T})$ $= \operatorname{argmax}_{k} p(\{S_{t}\}_{t=1}^{T}, \{O_{t}\}_{t=1}^{T})$ $= \operatorname{argmax}_{k} \max_{\{S_{t}\}_{t=1}^{T-1}} p(S_{T} = k, \{S_{t}\}_{t=1}^{T-1}, \{O_{t}\}_{t=1}^{T})$

probability of most likely sequence of v_T^k states ending at state $S_T=k$

CS 534 [Spring 2017] - Ho

HMM: Viterbi Algorithm

Compute probability recursively over t

$$v_t^k = \max_{\{S_t\}_{t=1}^t} p(S_t = k, \{S_t\}_{t=1}^{t-1}, \{O_t\}_{t=1}^t)$$

= $p(O_t | S_t = k) \max_i p(S_t = k | S_{t-1} = i) v_{t-1}^i$

• Use dynamic programming again!

HMM: Viterbi Algorithm

Initialize

$$v_1^k = p(O_1|S_1 = k)p(S_1 = k)$$

• Iterate

$$v_t^k = p(O_t | S_t = k) \max_i p(S_t = k | S_{t-1} = i) v_{t-1}^i$$

• Terminate

$$\max_{\{S_t\}_{t=1}^{T-1}} p(\{S_t\}_{t=1}^{T}, \{O_t\}_{t=1}^{T}) = \max_k v_T^k$$

$$S_T^* = \operatorname{argmax}_k v_T^k \qquad \text{Traceback}$$

$$S_{t-1}^* = \operatorname{argmax}_i p(S_t^* | S_{t-1} = i) v_{t-1}^i$$

CS 534 [Spring 2017] - Ho

HMM: Computational Complexity

• What is the running time for the forward algorithm, backward algorithm, and Viterbi?

$$\begin{aligned} \alpha_k^t &= p(O_t | S_t = k) \sum_i \alpha_{t-1}^i p(S_t = k | S_t - 1 = i) \\ \beta_k^t &= \sum_i p(S_{t+1} = i | S_t = k) p(O_{t+1} | S_{t+1} = i) \beta_{t+1}^i \\ v_t^k &= p(O_t | S_t = k) \max_i p(S_t = k | S_{t-1} = i) v_{t-1}^i \\ & \mathsf{O}(\mathsf{K}^2\mathsf{T}) \operatorname{vs} \mathsf{O}(\mathsf{K}^\mathsf{T})! \end{aligned}$$

HMM: Learning Problem

Given only observations

• Find parameters that maximize likelihood

$$\operatorname{argmax}_{\theta} p(\{O_t\}_{t=1}^T | \theta)$$

 $\{O_t\}_{t=1}^T$

- Need to learn hidden state sequences as well
- Much harder problem than the others use our friend, the EM algorithm

HMM: Baum-Welch (EM) Algorithm

- Randomly initialize parameters
- E-step: Fix parameters, find expected state assignment

$$\gamma_{i}(t) = p(S_{t} = i | \{O_{t}\}_{t=1}^{T}, \theta) = \frac{\alpha_{t}^{k} \beta_{t}^{k}}{\sum_{i} \alpha_{t}^{i} \beta_{t}^{i}}$$
Forward-backward
algorithm
$$\epsilon_{ij}(t) = p(S_{t-1} = i, S_{t} = j | \{O_{t}\}_{t=1}^{T}, \theta)$$
$$= \frac{p(S_{t-1} = i | \{O_{t}\}_{t=1}^{T}, \theta) p(S_{t} = j, O_{t}, \cdots, O_{T} | S_{t-1} = i, \theta)}{p(O_{t}, \cdots, O_{T} | S_{t-1} = i, \theta)}$$
$$= \frac{\gamma_{i}(t-1)p(S_{t} = j | S_{t-1} = i)P(O_{t} | S_{t} = j)\beta_{t}^{j}}{\beta_{t-1}^{i}}$$

HMM: Baum-Welch (EM) Algorithm

• Expected number of times we will be in state i

$$\sum_{t=1}^{T} \gamma_i(t)$$

• Expected number of transitions from state i

$$\sum_{t=1}^{T-1} \gamma_i(t)$$

• Expected number of transitions from state i to j

$$\sum_{t=1}^{T-1} \epsilon_{ij}(t)$$

CS 534 [Spring 2017] - Ho

HMM: Baum-Welch (EM) Algorithm

 M-step: Fix expected state assignments, update parameters

$$\pi_{i} = \gamma_{i}(1)$$

$$A_{ij} = \frac{\sum_{t=1}^{T-1} \epsilon_{ij}(t)}{\sum_{t=1}^{T-1} \gamma_{i}(t)}$$

$$B_{ik} = \frac{\sum_{t=1}^{T} \gamma_{i}(t) \delta_{O_{t}} = k}{\sum_{t=1}^{T} \gamma_{i}(t)}$$

HMM: Applications

- Classification
 - DNA sequences
 - Gesture sequences
 - Video sequences
 - Phoneme sequences

- Decoding
 - Continuous speech recognition
 - Handwriting recognition
 - Sequence of events

• Etc.

HMM vs Linear Dynamical Systems

- HMM
 - States are discrete
 - Observations are discrete or continuous
- Linear dynamical systems
 - Observations and states are multivariate Gaussians
 - Can use Kalman Filters to solve