
Clustering & Mixture Models
CS 534: Machine Learning
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Unsupervised Learning: Motivation

• What if we don’t have a response variable?  

• Cases where it is easier to obtain unlabeled data than 
labeled data  

• What if we have high-dimensional data? 

• Is there an informative way to visualize this data? 

• Can we discover subgroups amongst these variables?
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Clustering: Overview

• Divide data into groups (clusters) — points in any one 
group are more ‘similar’ to each other than points outside 
the group 

• Why? 

• Summarize: Reduced representation of the full set 

• Discovery: Looking for new insights into the structure 
the data
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Dimensionality Reduction vs Clustering

• Dimensionality reduction (e.g., PCA) looks for a low-
dimensional representation of the observations 

• Clustering looks for homogenous subgroups amongst 
observations
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Clustering Algorithms

• Partition algorithms 

• K-means 

• Gaussian mixture models 

• Hierarchical algorithms 

• Agglomerative 

• Divisive
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Dissimilarity & Within-Cluster Scatter

• Dissimilarity can be thought of as the distance between 
two points 

• Example: Euclidean distance 

• Within-cluster scatter: How far away points are assigned 
to the same cluster 

d(xi,xj) = ||xi � xj ||22

W =
1

2

KX

k=1

1

nk

X

i,j2Sk

d(xi,xj)



CS 534 [Spring 2017] - Ho

K-means Clustering
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K-means

• Pick an initial set of k means (usually at random) 

• Repeat until no points’ assignment changes 

• Partition data points, assigning each data point to the 
closest cluster mean 

• Update the k cluster means so that the ith mean is the 
average of all data points assigned to cluster i 



Example: K-means

• Pick K random points as 
cluster centers 

• This example uses K = 2

Figure 9.1 (Bishop)



Example: K-means

• Iterative step 1 

• Assign each point to its 
closest means



Example: K-means

• Iterative step 1 

• Update cluster means 
based on the new points
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Example: K-means
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Example: K-means



CS 534 [Spring 2017] - Ho

Example: K-means

Converged so stop!
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Example: K-means for Segmentation

Figure 9.3 (Bishop)
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K-Means: Optimization 

• Minimize the distance of each point to the mean of the 
cluster/partition that contains it 

• Exactly minimizing this problem is NP-hard even for k = 2 

• Solve via block coordinate descent / alternating 
minimization 

• Not convex function — can get stuck in local minima

min
S1,··· ,Sk
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K-Means: Optimization 

• Objective 

• Step 1: fix means, optimize assignments 

• Step 2: fix assignment, optimize means 

min
S1,··· ,Sk
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k-Means: Local Optima



K-means: Intialization

• K-means algorithm is a heuristic 

• Requires initial means 

• What could go wrong? 

Various schemes to prevent this: 
initialization heuristics, variance-

based split/merge
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k-Means: Initialization
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K-means: Choice of K

• How to pick “best” k? 

• Want to find k to pick out interesting clusters, but not to 
overfit data points 

• Large k doesn’t necessarily mean we will get 
interesting clusters 

• Small k can result in large clusters than can be broken 
down futher
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K-means: Properties

• Guaranteed to converge in a finite number of iterations 

• Not to global optimum 

• Running time (per iteration): 

• Assign data points to closest cluster center: O(kN) 

• Change cluster center to average of assigned points: 
O(N)
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Hierarchical Clustering
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Hierarchical Clustering

• K-means clustering requires K to be specified — what if 
we want it to be flexible? 

• K-means results depends heavily on initialization of 
cluster centers — what if we want consistent results? 

• Hierarchical clustering produces consistent results 
without needing initial starting positions using just 
pairwise dissimilarities between points
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Hierarchical Clustering: Algorithms
• Agglomerative: bottom up 

• Start with all points in their own group 

• Merge two groups that have the smallest dissimilarity until 
there is one cluster 

• Divisive: top-down 

• Start with all points in one cluster 

• Split group into two resulting in biggest dissimilarity until 
each point in own group
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Dendrogram
• Convenient graphic to display the hierarchical sequence 

of clustering assignments 

• A tree where 

• Each node represents a group 

• Each leaf node contains a single point 

• Root node contains whole data set 

• Each internal node has two children
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Example: Dendrogram
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Linkage

• Linkage: Function d(G, H) takes two groups G and H and 
returns a dissimilarity score between them 

• Choice of linkage determines how we measure 
dissimilarity between group of points 

• Given a particular linkage — merge groups such that 
d(G,H) is smallest 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Linkage: Types

min
i2G,j2H

dij

max

i2G,j2H
dij

1

|G||H|
X

i2G,j2H

dij

Linkage Description Equation

Single
Minimal inter-cluster dissimilarity 

(smallest dissimilarity between two 
points in G and H)

Complete
Maximal inter-cluster dissimilarity 
(largest dissimilarity between two 

points in G and H)

Average
Mean inter-cluster dissimilarity 

(average dissimilarity between two 
points in G and H)

Ward Minimize total within-cluster 
variance

Lance-Williams 
algorithm
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Example: Linkage

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 14

Average Linkage Complete Linkage Single Linkage

FIGURE 14.13. Dendrograms from agglomerative hi-
erarchical clustering of human tumor microarray data.

Figure 14.13 (Hastie et al.)
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Linkage: Practical Considerations

• Single linkage suffers from chaining: Clusters can be too 
spread out and not compact enough 

• Complete linkage suffers from crowding: Clusters are 
compact but not far enough apart
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Linkage: Practical Considerations

• Average linkage balances both: Clusters tend to be 
relatively compact and far apart 

• Less interpretability when tree is cut at length h 

•  Results can change with monotone increasing 
transformation of dissimilarites
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Revisiting K-Means

• Assumes that each instance is given a “hard” assignment 
to exactly one cluster 

• Does not allow in cluster membership or for any instance 
to belong to more than one cluster 

• What if a data point lies roughly midway between two 
cluster centers? 

• Soft clustering: Gives probabilities that an instance 
belongs to a set of clusters



Probabilistic Clustering

• Use probabilistic model: Allows overlaps, 
clusters of different sizes, etc 

• Generative model: Can tell generative 
story from the data 

• How to estimate parameters without 
labels? 

P (Y )P (X|Y )
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Mixture Models
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Finite Mixture Models

• Mixture model: 

• Mixture components: 

• Binary indicator variables: 

• Mixture weights:

pk(x|zk, ✓k)

✓ = {�1, · · · ,�K , ✓1, · · · , ✓K}

p(x|✓) =
KX

k=1

�kpk(x|zk, ✓k)

z = (z1, · · · , zK)

Note: Each point is 
assumed to be 

generated from 1 
mixture component

�k = p(zk),
KX

k=1

�k = 1
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Finite Mixture Model: Membership

• Membership weight vector w expresses uncertainty 
about which of the K components generated the point 

wik = p(zik|xi,✓) =
�kpk(xi|zk, ✓k)PK

m=1 �mpm(xi|zm, ✓m)



Gaussian Mixture Models (GMMs)

• Cluster by fitting a mixture of 
k Gaussians to the data 

• Each components is a 
multivariate Gaussian with 
parameters 

✓k = µk,⌃k
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Example: Simulated Data

Figure 9.5 (Bishop)

True clusters Observed data Estimated clusters
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Example: Old Faithful
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GMM: Learning

• How can we learn the parameters? 

• Supervised case: Straightforward — group data based 
on labels and compute the mean and the covariance 
from the training data 

• Unsupervised case: Differentiating the MLE objective 
based on the joint probability distribution is difficult to 
solve 

argmax✓

NY

i=1

p(xi|✓) = argmax✓

NY

i=1

KX

k=1

pk(xi|zk, ✓k)p(zk)
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Expectation Maximization (EM)
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EM Algorithm: Idea

• Start with random parameters 

• E-step: Find a class for each example based on 
expectation 

• Each example will be given a vector of probabilities 

• M-step: Estimate the parameters of the model using the 
maximum likelihood method (supervised learning setting) 

• Iterate until convergence
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EM: E-Step

• Compute wik for all data points indexed by i and all 
mixture components indexed by k 

wik = p(zik|xi,✓) =
�kpk(xi|zk, ✓k)PK

m=1 �mpm(xi|zm, ✓m)
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EM: M-Step

• Re-estimate the parameters using the “weighted” 
estimates 

Nk =
NX

i=1

wik, �k =
Nk

N

µk =
1

Nk

NX

i=1

wikxi

⌃k =
1

Nk

NX

i=1

wik(xi � µk)(xi � µk)
>
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EM: Pictorially
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Example: GMM

Start Iteration 1
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Example: GMM

Iteration 2 Iteration 3
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Example: GMM

Iteration 4 Iteration 5
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Example: GMM

Iteration 6 Iteration 20
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EM: Properties

• Converges to local minima 

• Each iteration improves the log-likelihood 

• Proof is the same as K-means 

• Hard assignments —> equivalent to K-means


