Clustering & Mixture Models

CS 534: Machine Learning

Slides adapted from David Sontag, Luke Zettlemoyer, Carlos Guestrin, Andrew Moore, Dan
Klein, Ryan Tibshirani, Trevor Hastie, Rob Tibshirani, Nicholas Ruozzi, and Vibhav Gogate



Unsupervised Learning: Motivation

- What if we don’t have a response variable”?

- (Cases where it is easier to obtain unlabeled data than
labeled data

- What if we have high-dimensional data”?
- |s there an informative way to visualize this data”?

-+ Can we discover subgroups amongst these variables?
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Clustering: Overview

- Divide data into groups (clusters) — points in any one
group are more ‘similar’ to each other than points outside
the group

- Why?
- Summarize: Reduced representation of the full set

+ Discovery: Looking for new insights into the structure
the data
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Dimensionality Reduction vs Clustering

- Dimensionality reduction (e.g., PCA) looks for a low-
dimensional representation of the observations

» Clustering looks for homogenous subgroups amongst
observations
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Clustering Algorithms

Partition algorithms
K-means

(Gaussian mixture models

ierarchical algorithms

Agglomerative

Divisive
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Dissimilarity & Within-Cluster Scatter

- Dissimilarity can be thought of as the distance between
two points

- Example: Euclidean distance
d(xi,x;) = [|xi — x5

- Within-cluster scatter: How far away points are assigned
to the same Cluster

W = — Z Z d(x;,X;)

Z]GSk
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K-means Clustering

CS 534 [Spring 2017] - Ho



K-means

Pick an initial set of k means (usually at random)
Repeat until no points’ assignment changes

Partition data points, assigning each data point to the
closest cluster mean

- Update the k cluster means so that the i mean is the
average of all data points assigned to cluster |
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Example: K-means

- Pick K random points as
cluster centers O

+ This example uses K =2

Figure 9.1 (Bishop)



Example: K-means

- |terative step 1

+ Assign each point to Its
closest means




Example: K-means

- |terative step 1

- Update cluster means
based on the new points

=2t




Example: K-means
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Example: K-means
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Example: K-means

Converged so stop!
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Example: K-means for Segmentation

K =2 K =3

Original image
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K-Means: Optimization

Minimize the distance of each point to the mean of the
cluster/partition that contains it

win, 33 e —
Sla"'ask J MZ 2

i=1j€S9;
Exactly minimizing this problem is NP-hard even for k = 2

- Solve via block coordinate descent / alternating
Minimization

Not convex function — can get stuck in local minima
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K-Means: Optimization

- Objective

k
. o . 2
gming > ) [P — 3

1=1 j€S5;

- Step 1: fix means, optimize assignments

C; = argmin;||x; — ;|5 = f(x,S, 1) decreases

- Step 2: fix assignment, optimize means

k
1
min 0 3% - il = =g > x

i=1j€S,; JESi
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kK-Means: Local Optima
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K-means: Intialization

- K-means algorithm is a heuristic
- Requires initial means

- What could go wrong”?

Various schemes to prevent this:

INitialization heuristics, variance-
based split/merge



kK-Means: Initialization
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K-means:; Choice of K

- How to pick “best” k?

- Want to find k to pick out interesting clusters, but not to
overfit data points

Large k doesn’'t necessarily mean we will get
INnteresting clusters

- Small k can result in large clusters than can be broken
down futher
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K-means: Properties

-+ Quaranteed to converge in a finite number of iterations
- Not to global optimum

- Running time (per iteration):
+ Assign data points to closest cluster center: O(kN)

-+ Change cluster center to average of assigned points:
O(N)
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Hierarchical Clustering
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Hierarchical Clustering

K-means clustering requires K to be specified — what if

we want It to

be flexible?

K-means results depends heavily on initialization of
cluster centers — what if we want consistent results?

Hierarchical ¢
without needi

ustering produces co
Ng Initial starting posit

pairwise dissi

nsistent results
jlons using just

milarities between pol
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Hierarchical Clustering: Algorithms

- Agglomerative: bottom up
- Start with all points in their own group

- Merge two groups that have the smallest dissimilarity until
there is one cluster

- Divisive: top-down
- Start with all points in one cluster

- Split group into two resulting in biggest dissimilarity until
each point in own group
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Dendrogram

-+ Convenient graphic to display the hierarchical sequence
of clustering assignments

-+ Atree where
Each node represents a group
Each leaf node contains a single point
Root node contains whole data set

Each internal node has two children
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Example: Dendrogram
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Linkage

Linkage: Function d(G, H) takes two groups G and H and
returns a dissimilarity score between them

- Choice of linkage determines how we measure
dissimilarity between group of points

-+ @Given a particular linkage — merge groups such that
d(G,H) is smallest

0 GO

Closest / farthest pair Average of all pairs
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Linkage: Types

Linkage Description

Equation

Minimal inter-cluster dissimilarity
Single (smallest dissimilarity between two
points in G and H)

Maximal inter-cluster dissimilarity
Complete (largest dissimilarity between two
points in G and H)

Mean inter-cluster dissimilarity
Average (average dissimilarity between two
points in G and H)

Minimize total within-cluster

Ward .
variance
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1eG,geH

max d; i
1e€G,geH

|G|\ 2

’LEG,jEH

Lance-Williams
algorithm



Example: Linkage

Average Linkage Complete Linkage Single Linkage

Figure 14.13 (Hastie et al.)
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Linkage: Practical Considerations

- Single linkage suffers from chaining: Clusters can be too
spread out and not compact enough

- Complete linkage suffers from crowding: Clusters are
compact but not far enough apart
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Linkage: Practical Considerations

+Average linkage balances both: Clusters tend to be
relatively compact and far apart

- Less interpretability when tree is cut at length h

Results can change with monotone increasing
transformation of dissimilarites
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Revisiting K-Means

- Assumes that each instance is given a “hard” assignment
to exactly one cluster

Does not allow In cluster memlbership or for any instance
to belong to more than one cluster

- What if a data point lies roughly midway between two
cluster centers?

- Soft clustering: Gives probabillities that an instance
belongs to a set of clusters
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Probabillistic Clustering

-+ Use probabilistic model: Allows overlaps,
clusters of different sizes, etc

- Generative model: Can tell generative
story from the data

P(Y)P(X|Y)

- How to estimate parameters without
labels”



Mixture Models
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Finite Mixture Models

- Mixture model:
0:{)\17”° )\K7917°”76)K}

p(x|0) = Z)\kpk (x|25,0;) Note: Each point is
k=1 assumed to be
generated from 1

mixture component

)

- Mixture components: px(x|zx, 01)

- Binary indicator variables: z = (21, - , 2Kk
K
+ Mixture weights: A, = p(zx), » Ae =1
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Finite Mixture Model: Membership

- Membership weight vector w expresses uncertainty
about which of the K components generated the point

A 2k, 0
wir = pzn/xi, 0) = —- kPR (X4 |2k, Ok
y:m—l Ampm (Xz"zma Hm)
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Gaussian Mixture Models (GMMSs)

- Cluster by fitting a mixture of
k Gaussians to the data MZ

+ Each components is a ‘
multivariate Gaussian with /
parameters

Or = Wi, 2k



Example: Simulated Data

rue clusters Observed data Estimated clusters

0.57 1 057

Figure 9.5 (Bishop)
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Example: Old Faithful

100 ; ; : ; 100
80 | 80 |
60 | 60 |
| 2 3 4 5 6 1 2 3 4 5
Single Gaussian Mixture of two Gaussians
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GMM: Learning

- How can we learn the parameters”?

+ Supervised case: Straightforward — group data based
on labels and compute the mean and the covariance
from the training data

+ Unsupervised case: Differentiating the MLE objective
based on the joint probability distribution is difficult to

solve
K

*\

Pk XZ‘Zka‘gk) ( )
1

N
argmaxeg H p(x;|0) = argmaxg [
1=1 1=1 k=
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Expectation Maximization (EM)

CS 534 [Spring 2017] - Ho



EM Algorithm: Idea

- Start with random parameters

- E-step: Find a class for each example based on
expectation

-+ Each example will be given a vector of probabilities

- M-step: Estimate the parameters of the model using the
maximum likelihood method (supervised learning setting)

lterate until convergence
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EM: E-Step

- Compute wik for all data points indexed by i and alll
Mmixture components indexed by K

A 2k, 0
Wiy — p(Zik\Xz',H) = — kpk(X |Zk k)
xm—l Ampm (Xi‘zma Hm)
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EM: M-Step

Re-estimate the parameters using the “weighted”
estimates

N
Ny = ;wzka A\ = Wk
| N
Uik — —— szkxz
N i—1
| N
2k = N, Zwik(xi — ) (Xi — pae)
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EM: Pictorially

L(6)
1(0]6,,)

A

L(9n+1)

l(9n+1|9n)

L(On) — l(9n|9n)

Likelihood Lower bound
objective at iter n
L(6) [(6]6,)
Hn Q'n,—{—l
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Example: GMM

Start lteration 1
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Example: GMM

lteration 2 lteration 3
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Example: GMM

lteration 4 lteration 5
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Example: GMM

lteration 6 lteration 20

CS 534 [Spring 2017] - Ho



EM: Properties

- Converges to local minima
Each iteration improves the log-likelihood
Proof is the same as K-means

Hard assignments —> equivalent to K-means
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