Dimensionality Reduction

CS 534: Machine Learning

Slides adapted from David Sontag, Fei Sha, Yan Liu, Trevor Hastie, and Rob Tibshirani

Unsupervised Learning: Motivation

- What if we don't have a response variable?
 - Cases where it is easier to obtain unlabeled data than labeled data
- What if we have high-dimensional data?
- Is there an informative way to visualize this data?
- Can we discover subgroups amongst these variables?

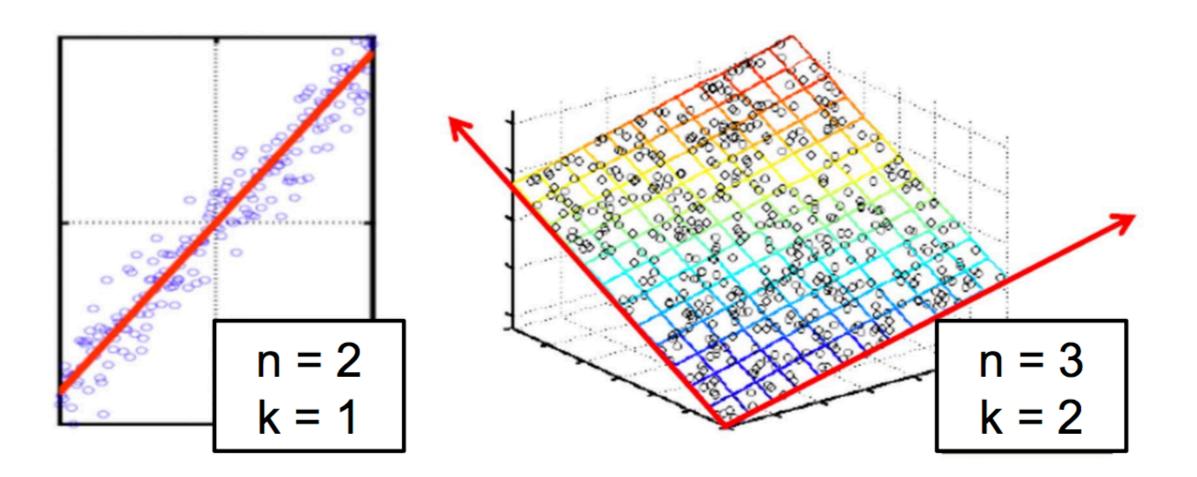
Unsupervised Learning: Challenge

- How to evaluate the model?
 - No simple goal for analysis (e.g., prediction of response)
 - Even if there was something you want to assess, may not be easy to quantify (e.g., overall sentiment of a movie review)
 - What metric should be used?

Dimensionality Reduction

- Represent data with fewer dimensions
- Discover "intrinsic dimensionality" of data
- Why?
 - Noise reduction
 - Easier learning less parameters
 - Easier visualization show high dimensional data in 2D or 3D

Example: Dimensionality Reduction



Slide by Yi Zhang

Lower Dimensional Projections

- Transform dataset to have less features
- New feature space

• Existing feature
$$z_k = \beta_0^{(k)} + \sum_i \beta_i^{(k)} \Phi(x_i)$$

- Linear / non-linear combination of original features
- Typically done in an unsupervised setting

Review: Projection onto Unit Vectors

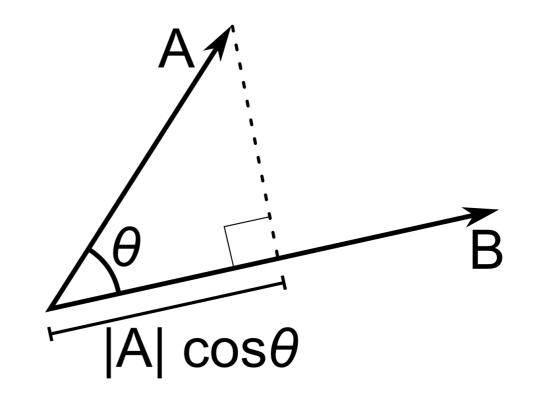
• Definition of dot product:

 $\mathbf{A} \cdot \mathbf{B} = ||\mathbf{A}||_2 ||\mathbf{B}||_2 \cos \theta$

 If B is a unit vector, dot product is length of the projection

 $\mathbf{A} \cdot \mathbf{B} = ||\mathbf{A}||_2 \cos \theta$

• Projection of A onto B:



https://en.wikipedia.org/wiki/Dot_product

Review: Projection onto Unit Vectors

 Consider a matrix, X, where we want to project each row onto vector v with unit norm

$$\mathbf{X} \in \mathbb{R}^{n \times p} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$

• Projection:

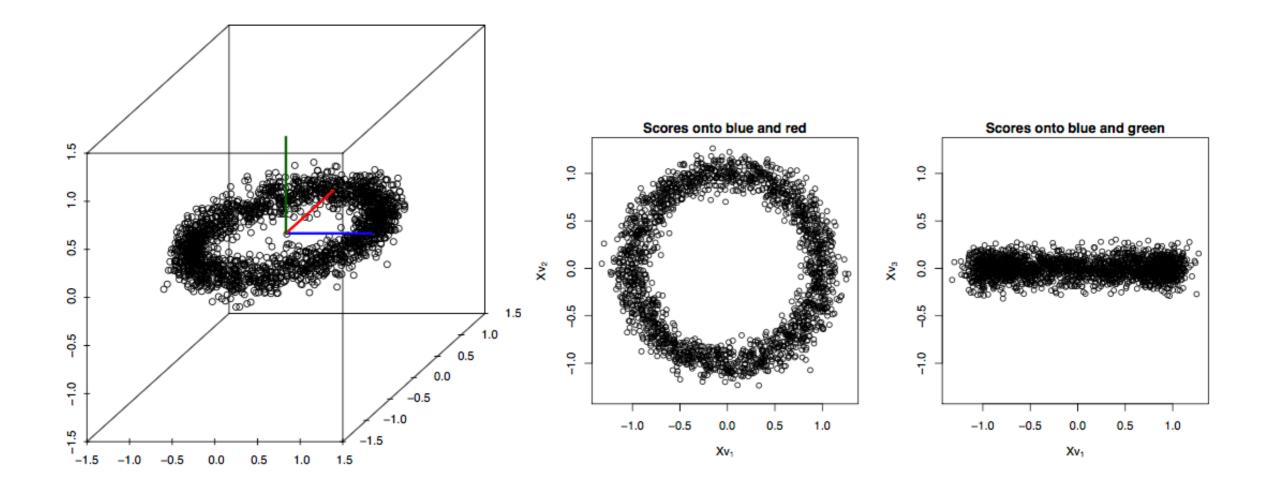
$$\mathbf{X}\mathbf{v} = \begin{bmatrix} \mathbf{x}_1^\top \mathbf{v} \mathbf{v}^\top \\ \vdots \\ \mathbf{x}_n^\top \mathbf{v} \mathbf{v}^\top \end{bmatrix}$$

scores of projection

CS 534 [Spring 2017] - Ho

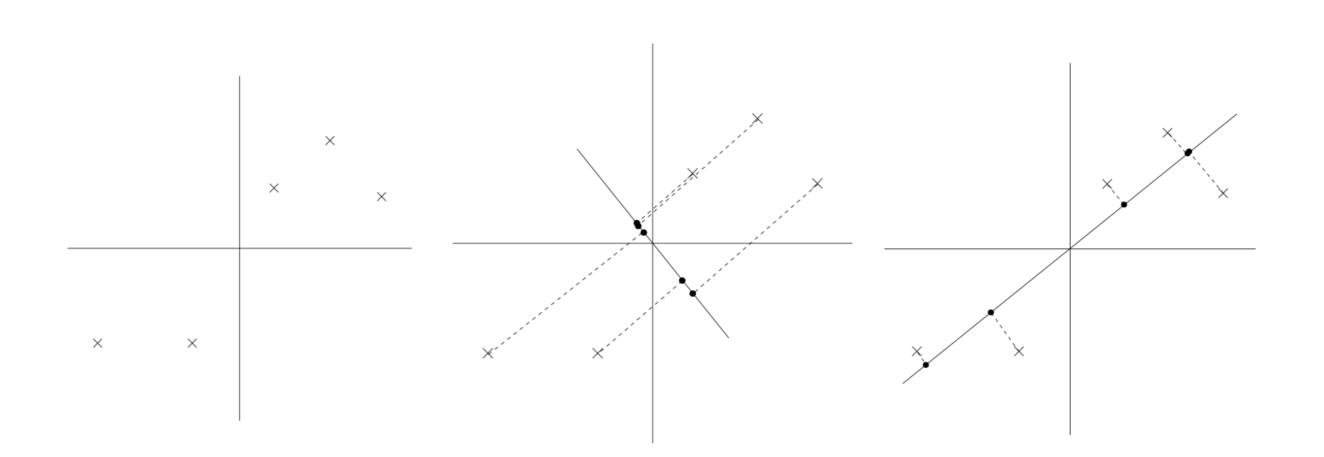
Review: Projection onto Orthonormal Vectors

Example: $X \in \mathbb{R}^{2000 \times 3}$, and $v_1, v_2, v_3 \in \mathbb{R}^3$ are the unit vectors parallel to the coordinate axes



CS 534 [Spring 2017] - Ho

Which is Best Projection?



Notes from Andrew Ng

Principal Component Analysis

CS 534 [Spring 2017] - Ho

Principal Component Analysis (PCA)

- Developed by Pearson in 1901
- Popular and widely studied
- Finds sequence of linear combinations of the features (also known as principal components) that have maximal variance and are uncorrelated

PCA: 1st PC

 1st PC of X is unit vector that maximizes the sample variance compared to all other unit vectors

$$\mathbf{v}_1 = \operatorname{argmax}_{||\mathbf{v}||_2=1} (\mathbf{X}\mathbf{v})^{\top} (\mathbf{X}\mathbf{v})$$

- 1st PC score: $\mathbf{X}\mathbf{v}_1$
- Variance explained by first PC: $(\mathbf{X}\mathbf{v}_1)^{\top}(\mathbf{X}\mathbf{v}_1)/n$

PCA: Next PC

- Idea: Successively find orthogonal directions of highest variance
- Why orthogonal?
 - Want to minimize redundancy
 - Want to look at variance in different direction
 - Computation is easier

PCA: 2nd PC

 2nd PC of X is unit vector that is orthogonal to the 1st PC such that it maximizes the sample variance compared to all other unit vectors that are orthogonal to the 1st PC

$$\mathbf{v}_2 = \operatorname{argmax}_{||\mathbf{v}||_2=1, \mathbf{v}^{\top}\mathbf{v}_1=0}(\mathbf{X}\mathbf{v})^{\top}(\mathbf{X}\mathbf{v})$$

- 2nd PC score: $\mathbf{X}\mathbf{v}_2$
- Variance explained by 2nd PC: $(\mathbf{X}\mathbf{v}_2)^{\top}(\mathbf{X}\mathbf{v}_2)/n$

Example: 2012 Cadillac Championship

- 72 golfers with 12 features taken as average measurements from 4-day golf tournament
 - Eagles, birdies, pars, bogeys

- Driving accuracy, driving distance
- Strokes gained from putting, putts per round

Example: 2012 Cadillac Championship

	PC1	PC2
eagles	-0.139	0.208
birdies	-0.463	0.185
pars	0.168	-0.582
bogeys	0.303	0.420
double.bogeys	0.062	0.181
driving.accuracy	-0.128	-0.241
driving.distance	-0.036	0.430
<pre>strokes.gained.putting</pre>	-0.438	-0.091
putts.per.round	0.325	0.026
putts.per.gir	0.491	-0.158
greens.in.reg	-0.171	-0.099
sand.saves	-0.238	-0.296

Example: 2012 Cadillac Championship

Watson 2 4 Garcia T60 Larrazabal T66 McIlroy 3 Takavaria Colsaerts T35 Noren 69 Singh T66 Simpson T35 2 Watney T17 Quiros T57 Kaymer Transon T35 T45 Kruger T57 **Oosthuizen T60** Xv₂ Senden T6 Cabrera Bello 65 asev T51 Bae 7 0 Jacobson 68 Hiratsuka 70 Rose 1 VanJebhaantzelau Dyson 72 leker T45 Fowler T45 Molinari T13 Kuchar N Kim T51 Stricker T8 Donald T6 BjornWill80n T45 Wagner T13 4 -4 -2 0 2 4

First two principal component scores

CS 534 [Spring 2017] - Ho

Xv₁

PCA: Problem Formulation

 Given a feature matrix X with n data points, find W such that ||W||₂ = 1 and the Var(XW) is maximized and W consists of orthonormal vectors

$$\operatorname{Var}(\mathbf{X}\mathbf{W}) = \frac{1}{N} (\mathbf{W}^{\top} (\mathbf{X} - \mu_{\mathbf{X}})^{\top} (\mathbf{X} - \mu_{\mathbf{X}}) \mathbf{W})$$
$$= \mathbf{W}^{\top} \Sigma_{\mathbf{X}} \mathbf{W}$$

Sample covariance matrix

• What does this look like?

Review: Symmetric Matrices

- Two remarkable properties
 - Eigenvalues of the matrix are real
 - Eigenvectors of the matrix are orthonormal

 $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$

CS 534 [Spring 2017] - Ho

Review: Symmetric Matrices

- Two remarkable properties
 - Eigenvalues of the matrix are real
 - Eigenvectors of the matrix are orthonormal

 $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$

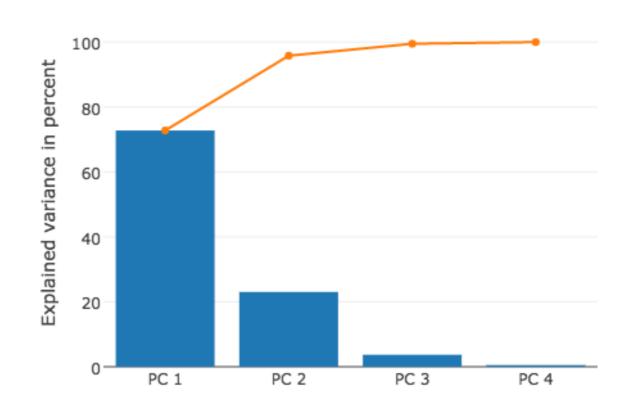
CS 534 [Spring 2017] - Ho

Basic PCA Algorithm

- Start with a zero-centered m x n data matrix X
- Compute covariance matrix
- Find eigenvectors of covariance matrix
- PCs: k eigenvectors with highest eigenvalues

PCA: Interpretation

- If variances of PCs drop off quickly, then X is highly collinear
- Reduce dimensionality of data by keeping only the PCs with highest variance
- Scree plot shows variance with the kth PC



https://plot.ly/ipython-notebooks/principal-component-analysis/

PCA: Minimum Projection Cost

- Find projection onto principal subspace that minimizes the squared reconstruction error
 - Projection onto subspace

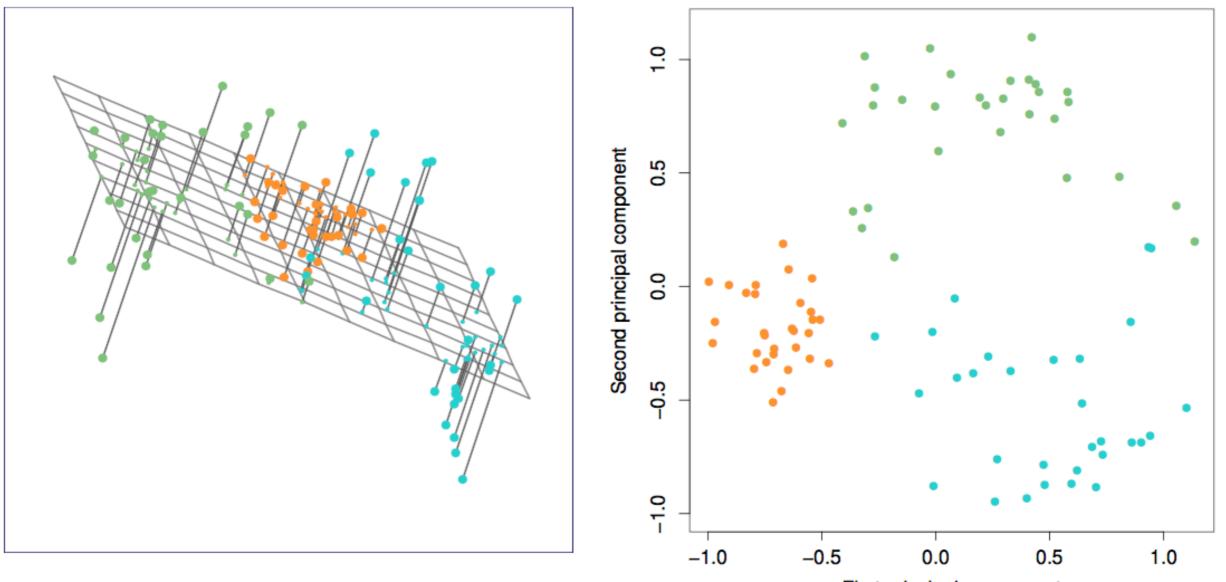
$$f(z) = \mu + \mathbf{w}_r \mathbf{z}$$

• "Best fitting hyperplane":

$$\min_{\mathbf{w}_r, \mathbf{z}_i} \sum_{i=1}^n ||\mathbf{x}_i - \mu - \mathbf{w}_r \mathbf{z}_i||_2^2$$

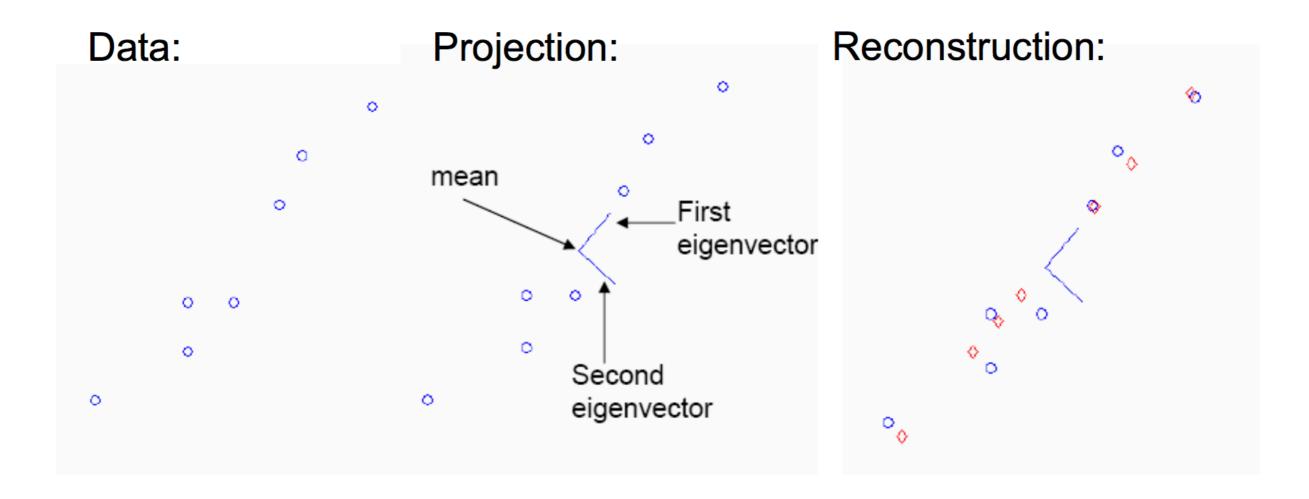
CS 534 [Spring 2017] - Ho

PCA: Minimum Projection Cost



First principal component

PCA: Pictorially



Basic PCA Algorithm Revisited

- Start with a zero-centered m x n data matrix X
- Compute covariance matrix

what happens if n >> p?

- Find eigenvectors of covariance matrix
- PCs: k eigenvectors with highest eigenvalues

PCA: In Practice

- Forming the covariance matrix can require a lot of memory (number of samples >> number of features)
 - Need a faster way to compute this without forming the matrix explicitly
 - Typical approach: use singular value decomposition (SVD)

Singular Value Decomposition

Each matrix can be decomposed using singular value decomposition (SVD):

$$\mathbf{X}_{n \times p} = \begin{bmatrix} \mathbf{U} & \mathbf{D} & \mathbf{V} \\ \mathbf{D} & \mathbf{D} & \mathbf{V} \\ n \times p & p \times p & p \times p \end{bmatrix}^{\mathsf{T}}$$

orthonormal columns which are principal components

orthonormal columns which are normalized PC scores diagonal matrix which if each diagonal element is squared and divided by n gives variance explained

SVD & PCA

• Why does it work?

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$$
$$\Downarrow$$
$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{V}\mathbf{D}^{\top}\mathbf{U}^{\top}\mathbf{U}\mathbf{D}\mathbf{V}^{\top}$$
$$= \mathbf{V}\mathbf{D}\mathbf{D}^{\top}\mathbf{V}^{\top}$$

 Computing SVD of X gives us eigenvectors of covariance matrix and the eigenvalues!

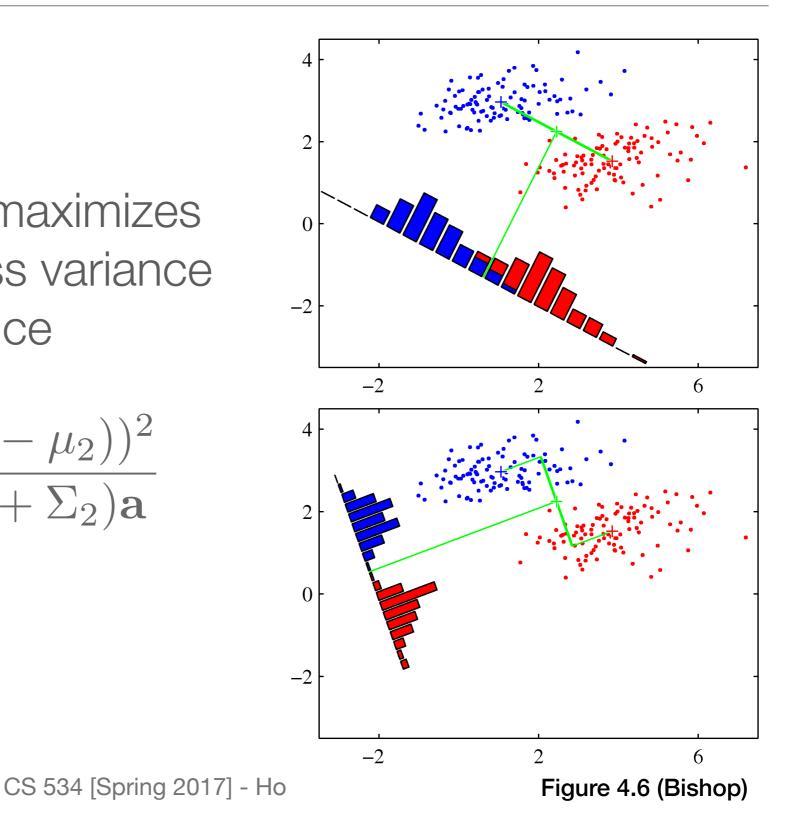
SVD: A "Master" Algorithm

- Solve a linear system or any least squares problem
- Compute other factorizations: LU, QR, eigenvectors, etc.
- Standard algorithms are very stable, have only O(n³) asymptotic complexity and provide double precision accuracy

Review: Fisher's Linear Discriminant

 Find projection that maximizes ratio of between class variance to within class variance

$$\frac{\sigma_{\text{between}}^2}{\sigma_{\text{within}}^2} = \frac{(\mathbf{a}^\top (\mu_1 - \mu_2))^2}{\mathbf{a}^\top (\Sigma_1 + \Sigma_2) \mathbf{a}}$$



PCA vs LDA

PCA LDA PCA: Iris projection onto the first 2 principal components LDA: Iris projection onto the first 2 linear discriminants 1.5 Setosa A A Setosa . . . 1.0 Versicolor Versicolor 1.0 Virginica ••• Virginica ... 0.5 0.5 0.0 2 LD2 0.0 -0.5 -0.5-1.0۸ • . • -1.0-1.5-2.0 -4 -1.5 -2 5 $^{-1}$ 0 2 3 -31 -2 $^{-1}$ 2 3 0 PC1 LD1

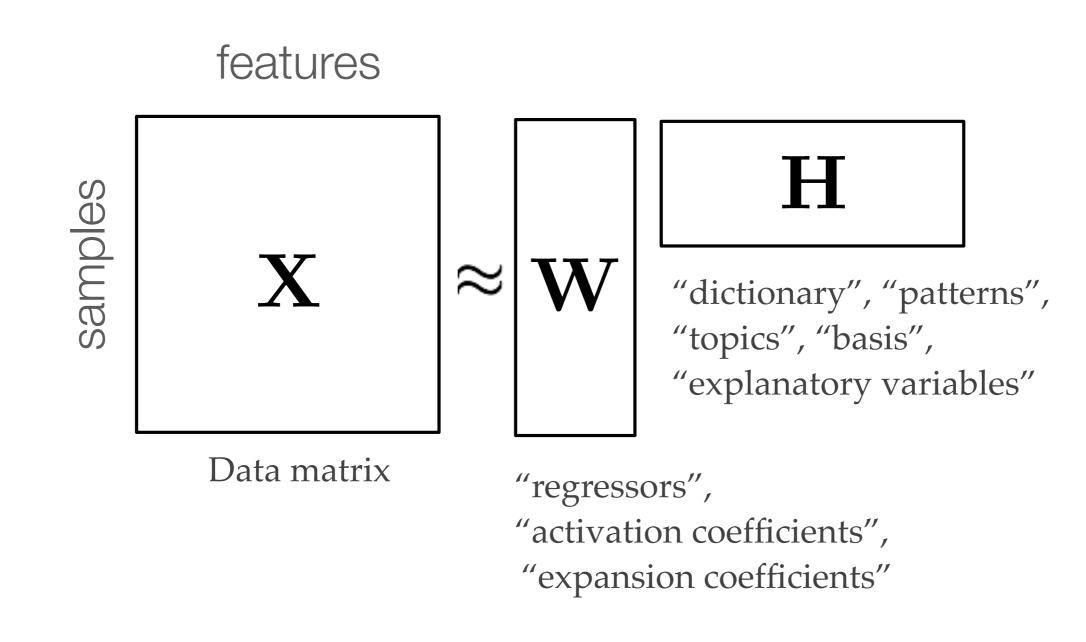
http://sebastianraschka.com/Articles/2014_intro_supervised_learning.html

Matrix Factorization

- Low rank approximation to original matrix
- Generalization of many methods (e.g., SVD, QR, CUR, Truncated SVD, etc.)
- Basic Idea: Find two (or more) matrices whose product best approximate the original matrix

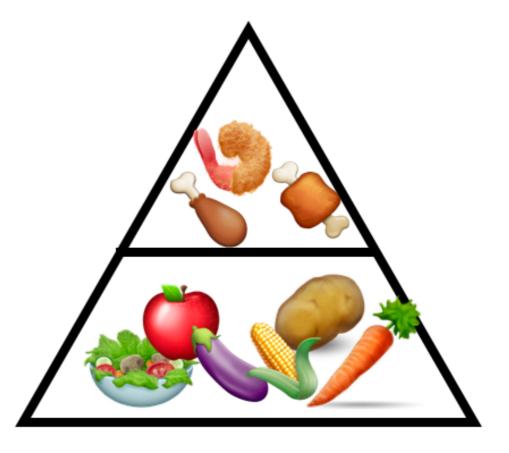
$$X \approx \underbrace{W}_{M \times R} \underbrace{H^{\top}}_{N \times R}, \ R << N$$

Matrix Factorization (Pictorially)



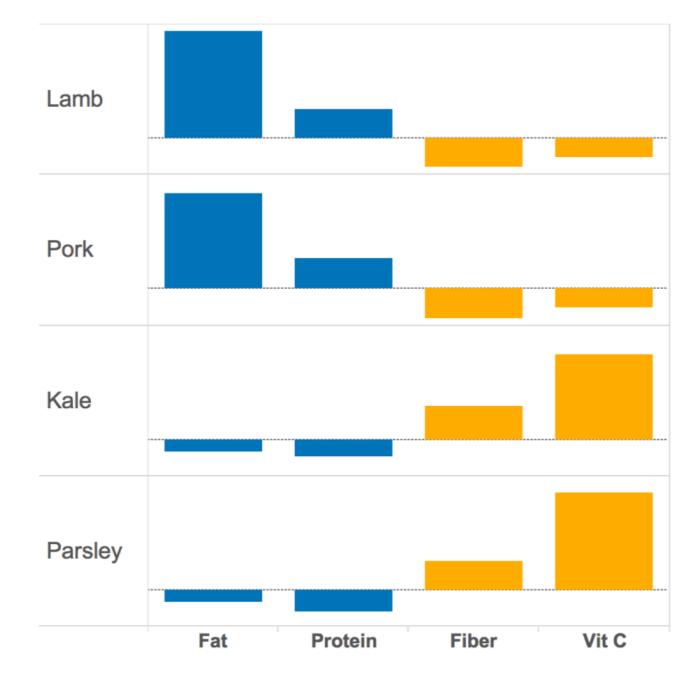
Example: Food Nutrition

- What is the best way to differentiate food items?
 - Vitamin content
 - Protein levels
 - Fat
 - Fiber



https://algob/eapring/2016/06/015/principal-component-analysis-tutorial/

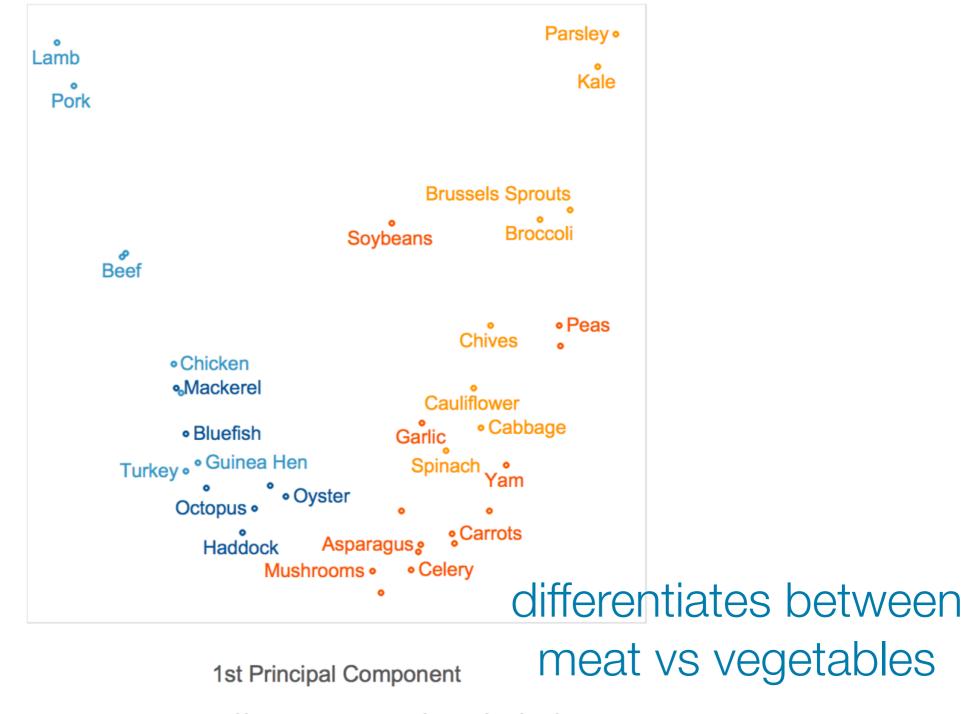
Example: Food Nutrition Data



https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

Example: PCA

differentiates between fat (meat) and vitamin c (vegetables)



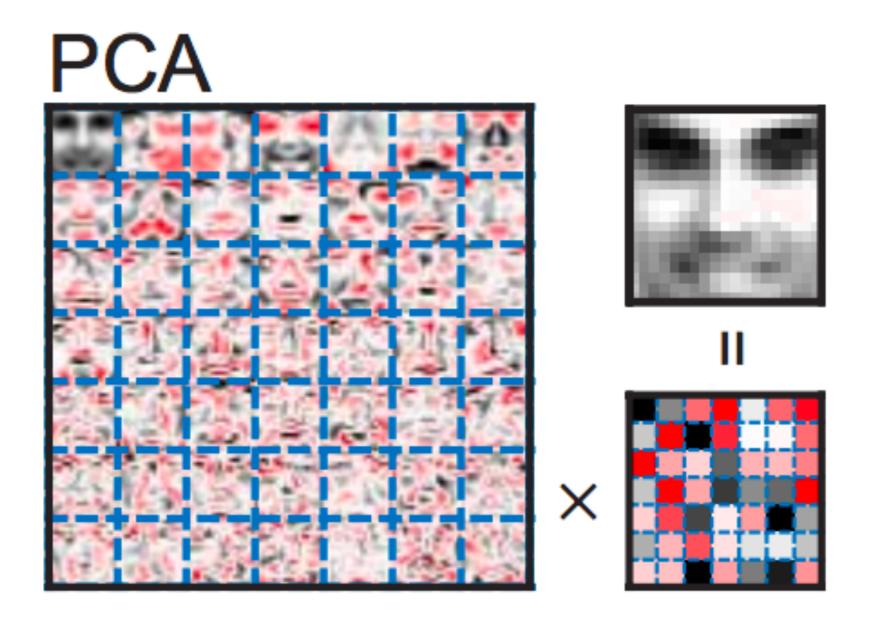
https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

Example: PCA Loadings

	PC1	PC2	PC3	PC4
Fat	-0.45	0.66	0.58	0.18
Protein	-0.55	0.21	-0.46	-0.67
Fiber	0.55	0.19	0.43	-0.69
Vitamin C	0.44	0.70	-0.52	0.22

What happens if negative combinations doesn't make sense?

Example: Face Representation



What does a negative pixel mean?

http://lsa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf CS 534 [Spring 2017] - Ho

Non-negative Matrix Factorization

Nonnegative Matrix Factorization (NMF)

- Popularized by Lee and Seung (1999) for "learning the parts of objects"
- Both W and H are nonnegative
- Empirically induces sparsity
- Improved interpretability (sum of parts representation)

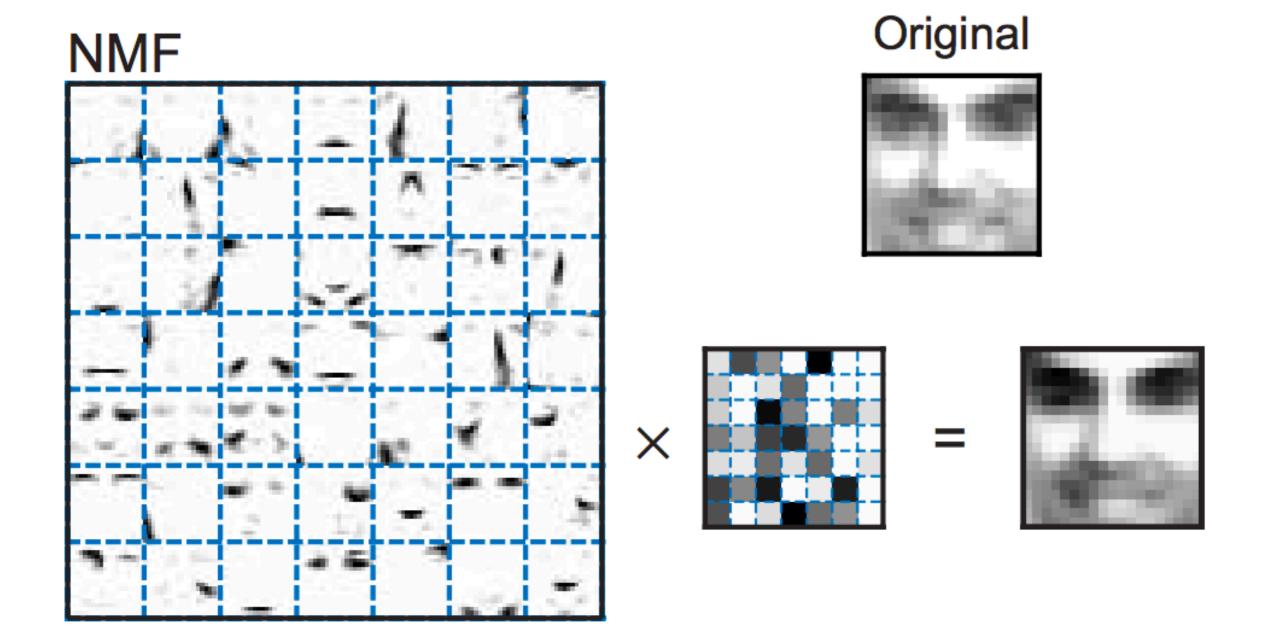
NMF: Algorithm

Optimization problem

 $\min ||\mathbf{X} - \mathbf{W}\mathbf{H}||_F$
s.t. $\mathbf{W} \ge 0, \mathbf{H} \ge 0$

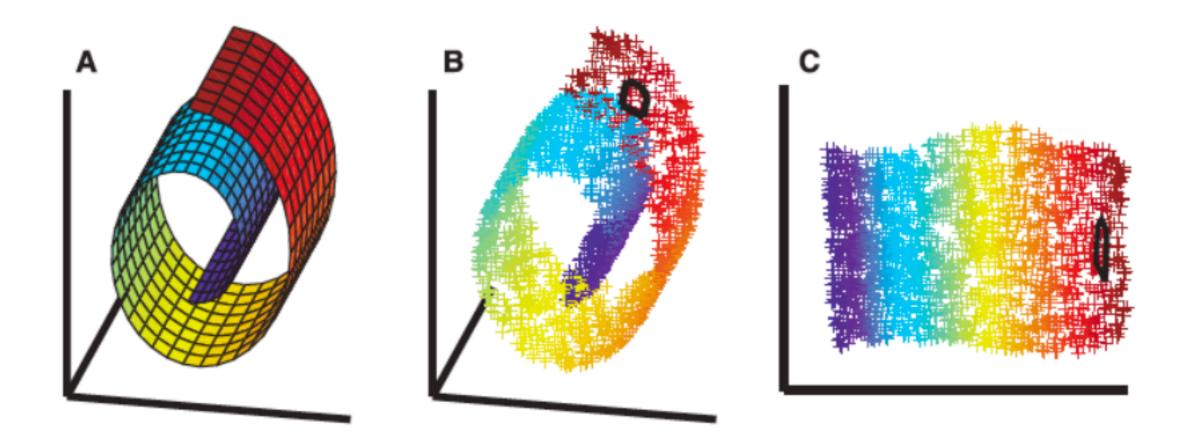
- Algorithm: Alternating minimization given W find best H, given H find best W
 - Does not guarantee convergence to global optimum

Example: Face Representation



http://lsa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf

What About Non-Linear Data?



Roweis et al. (2000), "Nonlinear dimensionality reduction by locally linear embedding"

What if we only have distances between pairs of training points? Can we still learn lowdimensional representations?

Multidimensional Scaling (MDS)

- Given distance matrix Δ :
 - Recover the inner-product matrix $\mathbf{B} = \mathbf{X}\mathbf{X}^{\mathsf{T}}$

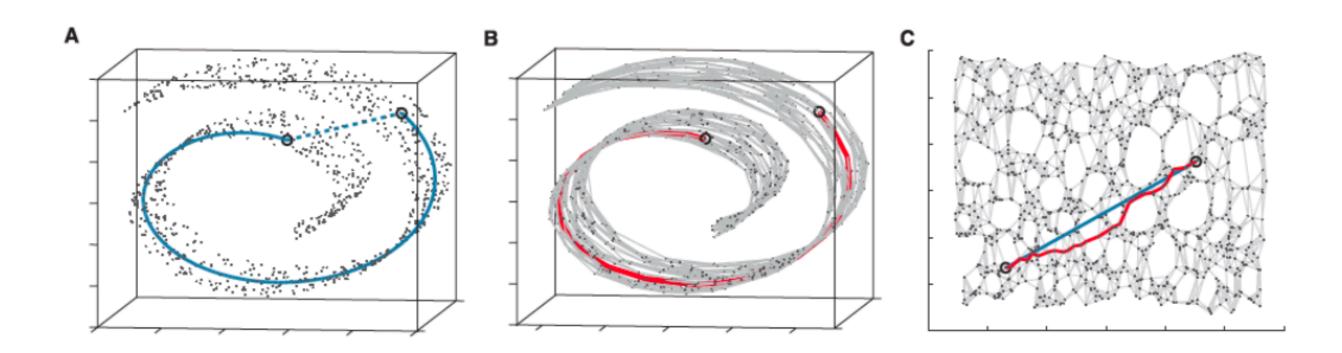
$$\mathbf{A}_{ij} = -\frac{1}{2} \mathbf{\Delta}_{ij}^2$$
$$\mathbf{B} = (\mathbf{I} - \mathbf{M}) \mathbf{A} (\mathbf{I} - \mathbf{M}), \ \mathbf{M} = \frac{1}{n} \mathbb{1} \mathbb{1}^\top$$

• Factorize B to get the first k principal components

Isometric Feature Mapping (Isomap)

- Construct a graph based on the structure between points
 - Connect pair i, j with an edge if either i is one of j's mnearest neighbors or j is one of i's m-nearest neighbors
 - Weight of edge is proportional to the distance between i and j
 - Define graph distance matrix based on shortest path between i and j
- Use MDS for low-dimensional representation

Example: Isomap

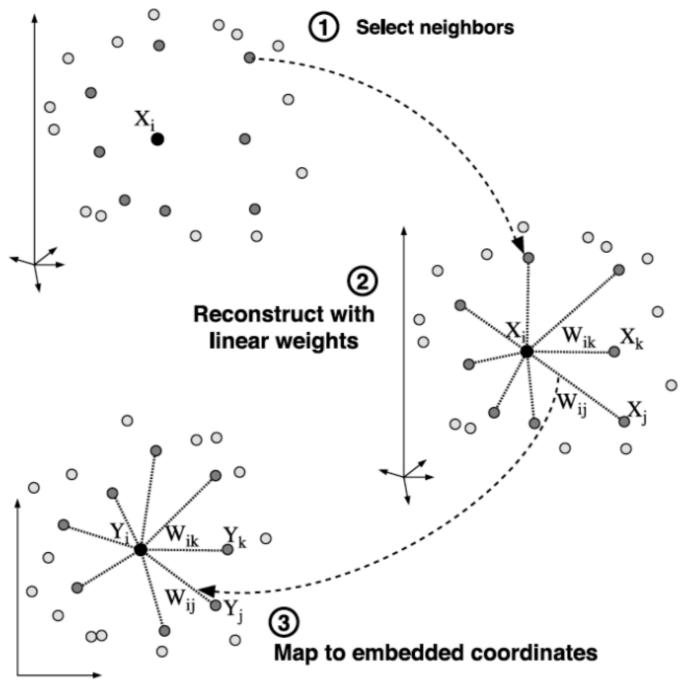


Tenenbaum et al. (2000), "A global geometric framework for nonlinear dimensionality reduction"

Local Linear Embedding (LLE)

- Idea:
 - Learn a bunch of local approximations (i.e., linear function to nearby points) to structure between the points
 - Learn a low-dimensional representation that best matches these local approximations

LLE: Illustration



Roweis et al. (2000), "Nonlinear dimensionality reduction by locally linear embedding" CS 534 [Spring 2017] - Ho

Example: LLE

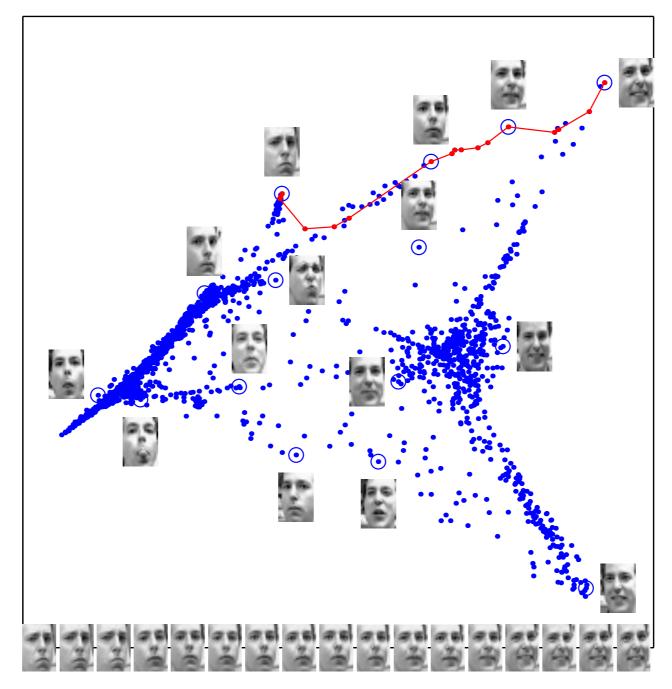


Figure 14.45 (Hastie et al.)