Dimensionality Reduction

CS 534: Machine Learning

Slides adapted from David Sontag, Fei Sha, Yan Liu, Trevor Hastie, and Rob Tibshirani



Unsupervised Learning: Motivation

- What if we don’t have a response variable”?

- (Cases where it is easier to obtain unlabeled data than
labeled data

- What if we have high-dimensional data”?
- |s there an informative way to visualize this data”?

-+ Can we discover subgroups amongst these variables?
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Unsupervised Learning: Challenge

- How to evaluate the model?

- No simple goal for analysis (e.g., prediction of
response)

—ven If there was something you want to assess, may
not be easy to quantify (e.g., overall sentiment of a
Movie review)

- What metric should be used?
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Dimensionality Reduction

- Represent data with fewer dimensions
- Discover “intrinsic dimensionality” of data
- Why?

- Noise reduction

- Easler learning — less parameters

+ Easier visualization — show high dimensional data in
2D or 3D
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Example: Dimensionality Reduction

Slide by Yi Zhang
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Lower Dimensional Projections

- Transform dataset to have less features

- New feature space
_ k) (k) |

- Existing feature k= 10 +Zﬂ i ®(i)

- Linear / non-linear combination of original features

- Typically done in an unsupervised setting
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Review: Projection onto Unit Vectors

- Definition of dot product:
A -B = [|A][2]|B]|2 cos?

- |[f B is a unit vector, dot product
IS length of the projection

A-B = ||Al]|3cosf

- Projection of A onto B:

(A-B)B

Coefficient / score

https://en.wikipedia.org/wiki/Dot_product
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Review: Projection onto Unit Vectors

-+ Consider a matrix, X, where we want to project each row
onto vector v with unit norm o

X € R"*P =

- Projection:

scores of projection
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Review: Projection onto Orthonormal Vectors

Example: X € R?%00%3 and vy, v9, v3 € R3 are the unit vectors
parallel to the coordinate axes
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Which is Best Projection”

Notes from Andrew Ng
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Principal Component Analysis
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Principal Component Analysis (PCA)

+ Developed by Pearson in 1901
- Popular and widely studied

- FInds sequence of linear combinations of the features
(also known as principal components) that have maximal
variance and are uncorrelated
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PCA: 1st PC

1st PC of X is unit vector that maximizes the sample
variance compared to all other unit vectors

Vi — argmax| v||2=1 (XV)T (XV)

1st PC score: Xvq

- Variance explained by first PC: (Xv;) " (Xv1)/n
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PCA: Next PC

ldea: Successively find orthogonal directions of highest
variance

- Why orthogonal?
- Want to minimize redundancy
- Want to look at variance Iin different direction

- Computation is easier
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PCA: 2nd PC

- 2nd PC of X is unit vector that is orthogonal to the 1st PC
such that it maximizes the sample variance compared to
all other unit vectors that are orthogonal to the 1st PC

Vo = argmax||y||,=1.vT v; =0 (XV)T(XV)

+ 2nd PG score: Xvo

. Variance explained by 2nd PC: (Xv2) ' (Xv2)/n
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Example: 2012 Cadillac Championship

- (2 golters with 12 features taken as average
measurements from 4-day golf tournament

- Eagles, birdies, pars, bogeys
- Driving accuracy, driving distance

- Strokes gained from putting, putts per round

CS 534 [Spring 2017] - Ho



Example: 2012 Cadillac Championship

eagles
birdies
pars
bogeys

double.bogeys
driving.accuracy
driving.distance
strokes.gained.putting
putts.per.round
putts.per.gir
greens.in.reg

sand.saves
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PC1

.139
.463
.168
.303
.062
.128
.036
.438
. 325
.491
171
.238

0.
.185
.582
.420
.181
241
.430
.091
.026
.158
.099
.296

PC2
208



Example: 2012 Cadillac Championship

First two principal component scores
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PCA: Problem Formulation

- Given a feature matrix X with n data points, find W such
that ||W||2 = 1 and the Var(XW) is maximized and W

consists of orthonormal vectors

Var(XW) = ﬁ(WT(X — px) " (X — px)W)

:W

Sample covariance matrix

- What does this look like?
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Review: Symmetric Matrices

- Iwo remarkable properties
- Eilgenvalues of the matrix are real
- Eilgenvectors of the matrix are orthonormal

A =UAU'
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Review: Symmetric Matrices

- Iwo remarkable properties
- Eilgenvalues of the matrix are real
- Eilgenvectors of the matrix are orthonormal

A =UAU'

CS 534 [Spring 2017] - Ho



Basic PCA Algorithm

- Start with a zero-centered m x n data matrix X
- Compute covariance matrix
Find eigenvectors of covariance matrix

- PCs: k eigenvectors with highest eigenvalues
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PCA: Interpretation

f variances of PCs drop off
quickly, then X is highly
collinear

100 -

- Reduce dimensionality of
data by keeping only the
PCs with highest variance

Explained variance in percent

PC1 PC 2 PC3 PC 4

- Scree plot shows variance
with the kth PC

https://plot.ly/ipython-notebooks/principal-component-analysis/
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PCA: Minimum Projection Cost

* FInd projection onto principal subspace that minimizes
the squared reconstruction error

- Projection onto subspace
f(2) = p+ w,z
- “Best fitting hyperplane”:
V{fnigl_ En: |xi — o — W,,aZng

1=1
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PCA: Pictorially

Data: Projection: Reconstruction:
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Basic PCA Algorithm Revisited

- Start with a zero-centered m x n data matrix X

. @ompute covariance matrixJ what happens if n >> p?

+ FIind eigenvectors of covariance matrix

- PCs: k eigenvectors with highest eigenvalues
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PCA: In Practice

-+ Forming the covariance matrix can require a lot of
memory (number of samples >> number of features)

- Need a faster way to compute this without forming the
matrix explicitly

- Typical approach: use singular value decomposition
(SVD)
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Singular Value Decomposition

-+ Each matrix can be decomposed using singular value

decomposition (SVD):

~ [~
X
nxp JLXP pXPJkp P

orthonormal columns diagonal matrix which if eac

< [ U]:\D/VV\T orthonormal columns

componen

—~— which are principal

(S

i

which are normalized diagonal element is squared

PC scores and divided by n gives
variance explained
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SVD & PCA

- Why does it work"?

X =UDV'
Y
X'X=vD'u'uDpVv'
—VDD'V'

- Computing SVD of X gives us eigenvectors of covariance
matrix and the eigenvalues!
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SVD: A "Master” Algorithm

- Solve a linear system or any least squares problem
- Compute other factorizations: LU, QR, eigenvectors, etc.

- Standard algorithms are very stable, have only O(n%)
asymptotic complexity and provide double precision
accuracy
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Review: Fisher’s Linear Discriminant

FInd projection that maximizes
ratio of between class variance
to within class variance

U%etween _ (aT (:ul o IUQ))Q
O-gvithin a' (X1 +X2)a
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PCA vs LDA
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http://sebastianraschka.com/Articles/2014 intro _supervised learning.html
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Matrix Factorization

- Low rank approximation to original matrix

- Generalization of many methods (e.g., SVD, QR, CUR,
runcated SVD, etc.)

- Basic Idea: Find two (or more) matrices whose product

best approximate the original matrix
X~ W H' R<<N
R

MxR NXR
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Matrix Factorization (Pictorially)

features

H

V ‘/ “dictionary”, “patterns”,
“topics”, “basis”,
“explanatory variables”

U

X

samples

D matrix
ata mat “regressors”,

“activation coefficients”,
“expansion coefficients”
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Example: Food Nutrition

- What is the best way to differentiate food items??
- Vitamin content
Protein levels

Fat

Fiber

https: &tgebednpraan?B07 6/A6015/principal-component-analysis-tutorial/



https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

Example: Food Nutrition Data

Lamb

Kale
""" . T
Parsley
“““ .
Fat Protein Fiber Vit C

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

CS 534 [Spring 2017] - Ho


https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

Example: PCA

° Parsley o
Lamb .
o Kale
Pork
"qc'; Brussels Sprouts
' ' c ° c
differentiates g , Soybeans  Broceol
5 Beef
between fat ©
8 o ° o Peas
L Chives o
(meat) aﬂd Cg) o Chicken
. . o o,Mackerel R
o auliflower
Vltamln C S o Bluefish Gaorlic o Cabbage
o Gui H N R o
(VegetableS) Turkey o . umeao en Suma(,hYam
Octopus ¢ ° Oyster ° °

° o Carrots
Haddock Asparagusg °

Mushroomse o Celery

° differentiates between
1st Principal Component meat VS Vegetables

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/
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Example: PCA Loadings

Fat
Protein
Fiber
Vitamin C

What happens if negative combinations doesn’t
make sense?
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Example: Face Representation

What does a negative pixel mean”

http://Isa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf
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Non-negative Matrix Factorization
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Nonnegative Matrix Factorization (NMF)

Popularized by Lee and Seung (1999) for “learning the
oarts of objects”

- Both W and H are nonnegative
- Empirically induces sparsity

- Improved interpretability (sum of parts representation)
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NMF: Algorithm

- Optimization problem
min|| X — WH]||g
st.W >0,H >0

- Algorithm: Alternating minimization - given W find best H,
given H find best W

-+ Does not guarantee convergence to global optimum
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Example: Face Representation

Original

, I_IIIJ.III o III_l II-III
= I L -l ;

IIIHIILIII._.JII._.III_I IIT.II_

JLA_'“ | o

NMF

http://Isa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf
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What About Non-Linear Data”?

Roweis et al. (2000), “Nonlinear dimensionality reduction by locally linear embedding”
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What it we only have distances between pairs
of training points? Can we still learn low-
dimensional representations?

CS 534 [Spring 2017] - Ho



Multidimensional Scaling (MDS)

- Given distance matrix A :

- Recover the inner-product matrix B = XXT

1 2

1
B=I-MAI-M) M=-11"
T

- Factorize B to get the first k principal components
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lIsometric Feature Mapping (Isomap)

-+ Construct a graph based on the structure between points

+ Connect pair i, ] with an edge if either i is one of j's m-
nearest neighbors or | Is one of I's m-nearest neighbors

- Weight of edge is proportional to the distance between
and |

- Define graph distance matrix based on shortest path
between | and |

- Use MDS for low-dimensional representation
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Example: Isomap

Tenenbaum et al. (2000), “A global geometric framework for nonlinear dimensionality reduction”
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| ocal Linear Embedding (LLE)

|dea:

_earn a bunch of local approximations (i.e., linear
function to nearby points) to structure between the

NOINtS

Learn a low-dimensional representation that best
matches these local approximations
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LLE: [lustration
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Roweis et al. (2000), “Nonlinear dimensionality reduction by locally linear embedding”
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Example: LLE

MR
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Figure 14.45 (Hastie et al.)



