
Dimensionality Reduction
CS 534: Machine Learning
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Unsupervised Learning: Motivation

• What if we don’t have a response variable?  

• Cases where it is easier to obtain unlabeled data than 
labeled data  

• What if we have high-dimensional data? 

• Is there an informative way to visualize this data? 

• Can we discover subgroups amongst these variables?
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Unsupervised Learning: Challenge

• How to evaluate the model? 

• No simple goal for analysis (e.g., prediction of 
response)  

• Even if there was something you want to assess, may 
not be easy to quantify (e.g., overall sentiment of a 
movie review) 

• What metric should be used? 
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Dimensionality Reduction
• Represent data with fewer dimensions 

• Discover “intrinsic dimensionality” of data 

• Why? 

• Noise reduction 

• Easier learning — less parameters 

• Easier visualization — show high dimensional data in 
2D or 3D
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Example: Dimensionality Reduction

Slide by Yi Zhang
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Lower Dimensional Projections

• Transform dataset to have less features 

• New feature space 

• Existing feature 

• Linear / non-linear combination of original features 

• Typically done in an unsupervised setting
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Review: Projection onto Unit Vectors

• Definition of dot product:  

• If B is a unit vector, dot product 
is length of the projection  

• Projection of A onto B: 

https://en.wikipedia.org/wiki/Dot_product

A ·B = ||A||2||B||2 cos ✓

A ·B = ||A||2 cos ✓

(A ·B)B

Coefficient / score

https://en.wikipedia.org/wiki/Dot_product
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Review: Projection onto Unit Vectors

• Consider a matrix, X, where we want to project each row 
onto vector v with unit norm 

• Projection: 
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Review: Projection onto Orthonormal Vectors
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Which is Best Projection?

Notes from Andrew Ng
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Principal Component Analysis
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Principal Component Analysis (PCA)

• Developed by Pearson in 1901 

• Popular and widely studied 

• Finds sequence of linear combinations of the features 
(also known as principal components) that have maximal 
variance and are uncorrelated
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PCA: 1st PC

• 1st PC of X is unit vector that maximizes the sample 
variance compared to all other unit vectors 

• 1st PC score: 

• Variance explained by first PC:

v1 = argmax||v||2=1(Xv)>(Xv)

Xv1

(Xv1)
>(Xv1)/n
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PCA: Next PC

• Idea: Successively find orthogonal directions of highest 
variance 

• Why orthogonal? 

• Want to minimize redundancy 

• Want to look at variance in different direction 

• Computation is easier
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PCA: 2nd PC

• 2nd PC of X is unit vector that is orthogonal to the 1st PC 
such that it maximizes the sample variance compared to 
all other unit vectors that are orthogonal to the 1st PC 

• 2nd PC score: 

• Variance explained by 2nd PC:

v2 = argmax||v||2=1,v>v1=0(Xv)>(Xv)

Xv2

(Xv2)
>(Xv2)/n
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Example: 2012 Cadillac Championship

• 72 golfers with 12 features taken as average 
measurements from 4-day golf tournament 

• Eagles, birdies, pars, bogeys 

• Driving accuracy, driving distance 

• Strokes gained from putting, putts per round 

• …
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Example: 2012 Cadillac Championship
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Example: 2012 Cadillac Championship
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PCA: Problem Formulation

• Given a feature matrix X with n data points, find W such 
that ||W||2 = 1 and the Var(XW) is maximized and W 
consists of orthonormal vectors 

• What does this look like?

Var(XW) =
1

N
(W>(X� µX)>(X� µX)W)

= W>⌃XW

Sample covariance matrix
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Review: Symmetric Matrices

• Two remarkable properties 

• Eigenvalues of the matrix are real 

• Eigenvectors of the matrix are orthonormal 

A = U⇤U>
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Basic PCA Algorithm

• Start with a zero-centered m x n data matrix X 

• Compute covariance matrix 

• Find eigenvectors of covariance matrix 

• PCs: k eigenvectors with highest eigenvalues
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PCA: Interpretation

• If variances of PCs drop off 
quickly, then X is highly 
collinear 

• Reduce dimensionality of 
data by keeping only the 
PCs with highest variance 

• Scree plot shows variance 
with the kth PC

https://plot.ly/ipython-notebooks/principal-component-analysis/

https://plot.ly/ipython-notebooks/principal-component-analysis/
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PCA: Minimum Projection Cost

• Find projection onto principal subspace that minimizes 
the squared reconstruction error 

• Projection onto subspace 

• “Best fitting hyperplane”: 

f(z) = µ+wrz

min
wr,zi

nX

i=1

||xi � µ�wrzi||22
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PCA: Minimum Projection Cost
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PCA: Pictorially
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Basic PCA Algorithm Revisited

• Start with a zero-centered m x n data matrix X 

• Compute covariance matrix 

• Find eigenvectors of covariance matrix 

• PCs: k eigenvectors with highest eigenvalues

what happens if n >> p?
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PCA: In Practice

• Forming the covariance matrix can require a lot of 
memory (number of samples >> number of features) 

• Need a faster way to compute this without forming the 
matrix explicitly 

• Typical approach: use singular value decomposition 
(SVD)
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Singular Value Decomposition

• Each matrix can be decomposed using singular value 
decomposition (SVD): 

X|{z}
n⇥p

= U|{z}
n⇥p

D|{z}
p⇥p

V|{z}
p⇥p

>

orthonormal columns 
which are normalized 

PC scores

diagonal matrix which if each 
diagonal element is squared 

and divided by n gives 
variance explained 

orthonormal columns 
which are principal 

components
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SVD & PCA

• Why does it work? 

• Computing SVD of X gives us eigenvectors of covariance 
matrix and the eigenvalues!

X = UDV>

+
X>X = VD>U>UDV>

= VDD>V>
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SVD: A “Master” Algorithm

• Solve a linear system or any least squares problem 

• Compute other factorizations: LU, QR, eigenvectors, etc. 

• Standard algorithms are very stable, have only O(n3) 
asymptotic complexity and provide double precision 
accuracy
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Review: Fisher’s Linear Discriminant

• Find projection that maximizes 
ratio of between class variance 
to within class variance 

Figure 4.6 (Bishop)

�2
between

�2
within

=
(a>(µ1 � µ2))2

a>(⌃1 + ⌃2)a
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PCA vs LDA

http://sebastianraschka.com/Articles/2014_intro_supervised_learning.html

http://sebastianraschka.com/Articles/2014_intro_supervised_learning.html
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Matrix Factorization

• Low rank approximation to original matrix 

• Generalization of many methods (e.g., SVD, QR, CUR, 
Truncated SVD, etc.) 

• Basic Idea: Find two (or more) matrices whose product 
best approximate the original matrix 

X ⇡ W|{z}
M⇥R

H>
|{z}
N⇥R

, R << N
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Matrix Factorization (Pictorially)

X W

H

Data matrix

sa
m

pl
es

features

“regressors”,  
“activation coefficients”,
“expansion coefficients”

“dictionary”, “patterns”,
“topics”, “basis”,
“explanatory variables”
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Example: Food Nutrition

• What is the best way to differentiate food items? 

• Vitamin content 

• Protein levels 

• Fat 

• Fiber

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/
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Example: Food Nutrition Data

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/
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Example: PCA

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

differentiates between 
meat vs vegetables

differentiates 
between fat 
(meat) and 
vitamin c 

(vegetables)

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/
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Example: PCA Loadings

What happens if negative combinations doesn’t 
make sense? 
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Example: Face Representation

What does a negative pixel mean?
http://lsa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf

http://lsa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf
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Non-negative Matrix Factorization
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Nonnegative Matrix Factorization (NMF)

• Popularized by Lee and Seung (1999) for “learning the 
parts of objects” 

• Both W and H are nonnegative 

• Empirically induces sparsity 

• Improved interpretability (sum of parts representation)
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NMF: Algorithm

• Optimization problem 

• Algorithm: Alternating minimization - given W find best H, 
given H find best W 

• Does not guarantee convergence to global optimum

min||X�WH||F
s.t.W � 0,H � 0
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Example: Face Representation

http://lsa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf

http://lsa.colorado.edu/LexicalSemantics/seung-nonneg-matrix.pdf
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What About Non-Linear Data?

Roweis et al. (2000), “Nonlinear dimensionality reduction by locally linear embedding” 
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What if we only have distances between pairs 
of training points? Can we still learn low-

dimensional representations?
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Multidimensional Scaling (MDS)

• Given distance matrix     : 

• Recover the inner-product matrix B = XXT 

• Factorize B to get the first k principal components

�

Aij = �1

2
�2

ij

B = (I�M)A(I�M), M =
1

n
>
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Isometric Feature Mapping (Isomap)
• Construct a graph based on the structure between points 

• Connect pair i, j with an edge if either i is one of j’s m-
nearest neighbors or j is one of i’s m-nearest neighbors 

• Weight of edge is proportional to the distance between 
i and j 

• Define graph distance matrix based on shortest path 
between i and j 

• Use MDS for low-dimensional representation
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Example: Isomap

Tenenbaum et al. (2000), “A global geometric framework for nonlinear dimensionality reduction” 
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Local Linear Embedding (LLE)

• Idea: 

• Learn a bunch of local approximations (i.e., linear 
function to nearby points) to structure between the 
points 

• Learn a low-dimensional representation that best 
matches these local approximations 
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LLE: Illustration

Roweis et al. (2000), “Nonlinear dimensionality reduction by locally linear embedding” 
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Example: LLE

Figure 14.45 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 14

FIGURE 14.45. Images of faces mapped into the em-
bedding space described by the first two coordinates of
LLE. Next to the circled points, representative faces
are shown in different parts of the space. The images
at the bottom of the plot correspond to points along the
top right path (linked by solid line), and illustrate one
particular mode of variability in pose and expression.


