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Recap: Last Class
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Course Logistics

• Course website with lectures, assignments, and example 
code: 
http://joyceho.github.io/cs534-s17/index.html 

• Sign up for Piazza:  
http://piazza.com/emory/spring2017/cs534 

• TA: Rongmei Lin 

• iPython notebook setup

http://joyceho.github.io/cs534-s17/index.html
http://piazza.com/emory/spring2017/cs534
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Project

• Work in groups of 2-3 

• Emphasis on public data sets 
(e.g., Kaggle competitions, MovieLens, KDD Cup, etc.) 

• Project proposal due by spring break for feedback 

• Goal is to either develop a new algorithm or try multiple 
algorithms to achieve good performance 

Guidelines will be posted on Piazza
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Probability Theory



CS 534 [Spring 2017] - Ho

Machine Learning & Probability

• Probability: a mathematical framework for uncertainty 

• Machine learning problems fit well into this framework 

• How uncertain is our prediction? 

• Modeling structure with uncertainty 

• Noise
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Set Theory

• Consider an experiment with an uncertain outcome: 

• A single outcome of this experiment is called an event 

• Collection of all possible outcomes is called a space 

• Probability broadly describes the likelihood of events 

• Set theory is used to reason about events and spaces, 
and to develop the fundamentals of probability theory
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Set Theory: Example

• Experiment: flip a 2-sided coin in the air 2 times and 
record which side is facing up (heads (H) or tails (T)) 

• 4 possible events: heads two times (HH), tails two times 
(TT), heads then tails (HT), tails then heads (TH) 

• Space is the set { HH, HT, TH, TT }
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Set Theory: Visualization

• Convenient to visualize a set as a plane, and reason 
about the overlap or exclusivity of regions  
 
 
 
 
 
 
 

A
B



CS 534 [Spring 2017] - Ho

Set Theory: Operations and Subsets

• Union, Intersection, Complement	

• Subsets and proper subsets 

• Empty/null set 
 
 
 
 
 

A
B
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Elements of Probability

• Sample space     : set of all outcomes of a random experiment 

• Event space (set of events)     : A set whose elements            
are subsets of sample space 

• Probability measure: A function                     that satisfies the 
following properties 

•    

•     

•   

⌦

F

P : F ! R

A 2 F

P (A) � 0, for all A 2 F

P (⌦) = 1

If Ai \Aj = ; when i 6= j, then P ([iAi) =
X

i

P (Ai)

Kolmogorov’s Axioms 
(Axioms of Probability)
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Random Variables

• A random variable (RV) is a function that maps the space 
of events to numeric values 

• Simply put, assign a number to every outcome in  

• Example: weight of a newborn child 

• Represent quantities with some built-in uncertainty  

• Textbook uses italicized capital letters to denote random 
variables

X : ⌦ ! R

⌦



CS 534 [Spring 2017] - Ho

Random Variable Types

• Discrete random variable: X can take only a finite number 
of values 

• Example: Number of heads in a sequence of tosses 

• Continuous random variable: X takes infinite number of 
possible values 

• Example: Amount of time for a radioactive particle to 
decay
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Cumulative Distribution Function (CDF)
• CDF: function                              that specifies a probability measure 

• Used to calculate the probability of an event in  

• Properties: 

•    

•   

•   

•   

FX : R ! [0, 1]

F
FX(x) , P (X  x)

0  FX(x)  1

lim
x!�1

F

X

(x) = 0

lim
x!1

F

X

(x) = 1

x  y =) FX(x)  FX(y)
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Probability Mass Function (PMF)
• Probability measure for discrete random variable 

• PMF: function                          such that  

• Properties: 

•   

•   

•  

pX(x) : ⌦ ! R

pX(x) , P (X = x)

0  pX(x)  1
X

x2Val(X)

P

X

(x) = 1

X

x2A

P

X

(x) = P (X 2 A) https://en.wikipedia.org/wiki/Probability_mass_function

https://en.wikipedia.org/wiki/Probability_mass_function
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Probability Density Function (PDF)
• Probability measure for continuous random variable 

• PDF is derivative of CDF 

• Properties: 

•   

•   

•  

fX(x) , dFX(x)

dx

may not always exist if 
CDF is not differentiable

Z

x2A

f

X

(x)dx = P (X 2 A)

Z 1

�1
fX(x)dx = 1

fX(x) � 0

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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Example: Normal Distribution

https://en.wikipedia.org/wiki/Normal_distribution

f(x|µ,�2) =
1p
2�2

⇡

e

� (x�µ)2

2�2

mean

variance

https://en.wikipedia.org/wiki/Normal_distribution
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PDFs vs. PMFs

PDF PMF

Values Continuous valued RVs Discrete-valued RVs

Representation Function f(x) Table

Probability Calculated via integration Calculated via summation

P(x = k) 0 Non-zero
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Expectation: Mean and Variance
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Expectation

• What is the expected value of a random variable? 

• Expectation of g(X):  

• “Weighted average” of values that g(x) with weights given 
by pdf or pmf

E[g(X)] ,
X

x2Val(X)

g(x)p
X

(X)

E[g(X)] ,
Z 1

�1
g(x)f

X

(X)
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Expectation: Properties

• Constant 

• Scalar 

• Linearity 
 

E[a] = a, a 2 R

E[af(X)] = aE[f(X)], a 2 R

E[f(X) + g(X)] = E[f(X)] + E[g(X)]
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Expectation: Common Forms

• Mean: expectation of random variable 

• Variance: measure of how concentrated the distribution 
of the random variable is around its mean 

E[X], where g(x) = x

Var[X] , E[(X � E[X])2]
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Common Distributions
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Discrete RV Distributions

• Bernoulli(p): coin flip with probability p of getting a heads 
(p = 1) 

• Binomial(n,p): number of heads in n independent flips of 
a coin with probability p of a heads 

• Geometric(p): number of flips of a coin until the first 
heads 

• Poisson(   ): frequency of events or counts�
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Continuous RV Distributions

• Uniform(a, b): equal probability density between every 
value a and b on the real line 

• Exponential(   ): decaying probability density over the 
nonnegative real numbers 

• Normal(   ,     ): Gaussian distribution 

• Will be dealing with this 99% of the time 

• Interesting properties

�

µ �2
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Continuous RVs: PDF & CDF

http://cs229.stanford.edu/section/cs229-prob.pdf

http://cs229.stanford.edu/section/cs229-prob.pdf
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Common RV Summary

http://cs229.stanford.edu/section/cs229-prob.pdf

http://cs229.stanford.edu/section/cs229-prob.pdf
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Multiple Random Variables
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Multiple RVs & Machine Learning

• Most machine learning problems contain multiple random 
variables 

• Values are not always independent 

• Example: Height (x) and weight (y) of newborn 

• E[XY] = E[X] E[Y]?
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Multiple RVs: Joint PDF

• The joint pdf of a collection of 
random variables completely 
captures their individual and 
collective properties 
(dependencies): 

  
Pr(X1, · · · , XN 2 D) =

Z

D
fX1,··· ,XN (x1, · · · , xn)dx1 · · · dxN

http://www.math.hope.edu/tanis/maa99/triang.html

http://www.math.hope.edu/tanis/maa99/triang.html
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Marginal Distributions

• Given a joint distribution, what is the distribution over 
each variable separately? 

• “Integrate” out the other RVs that are not of interest 

• Marginal PDF 
 
fXi(xi) =

Z
· · ·

Z
fX1,··· ,Xn(x1, · · · , xn)dx1 · · · dxi�1dxi+1 · · · dxn
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Conditional Distributions

• What if the value of a variable in a joint density is known? 

• E.g. if weight known, how does distribution of height 
change? 

• Conditional PDF: 
fY |X(y|x) = fXY (x, y)

fX(x)
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Bayes Rule

• Bayes Rule: 
 
 

• Why is this helpful? Estimation! 

• Say you observe Y and want to guess X  

fX(x|Y = y) =
fY (y|X = x)fX(x)

fY (y)

Y = aX + e
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Independence

• When are two values unrelated whatsoever? 

• Independence if and only if: 

• Corallary: If you can factor a PDF of N RVs as a 
product of N one-variable terms, then these RVs are 
independent

fX1,··· ,XN (x1, · · · , xN ) = fX1(x1) · · · fXN (xN )
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Covariance

• Covariance: relationship between two random variables 

• Covariance matrix describes pairwise covariance 
between RVs  

Cov[X,Y ] , E[(X � E[X])(Y � E[Y ])]

⌃ij = Cov[Xi, Xj ]
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Covariance Properties

• Positive semidefinite 

• Symmetric 

• Diagonalize 

⌃ � 0

⌃ = ⌃>

⌃ = V ⇤V �1 = V ⇤V >

Eigenvalues and 
eigenvectors — 

“natural” system for 
data
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Example: 2D Normal Distributions

• Normal (Gaussian) distribution 

• PDF 
 
 

X ⇠ N(µ,⌃)

fX(x1, ·, xk) =
1p

(2⇡)

k|⌃|
exp

✓
�1

2

(x� µ)

>
⌃

�1
(x� µ)

◆

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Example: 2D Normal Distribution

• Independent + equal 
variances  
 
 
 
 

⌃ =


1 0
0 1

�
= V ⇤V >
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Example: 2D Normal Distribution

• Independent + unequal 
variances  
 
 
 
 

⌃ =


0.5 0
0 1

�
= V ⇤V >
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Example: 2D Normal Distribution

• Positive covariance 
 
 
 
 

⌃ =


1 0.5
0.5 1

�
= V ⇤V >
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⌃ =


1 �0.5

�0.5 1

�
= V ⇤V >

Example: 2D Normal Distribution

• Negative covariance 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Correlation

• Correlation: another measure of dependence 

• Normalized covariance, bounded [-1, 1] 

• Cov[X,Y] = 0 means X, Y are uncorrelated 

• Independence implies uncorrelated 

• Uncorrelated does not imply independent

⇢X,Y =

Cov[X,Y ]

�X�Y
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Correlation Exercise

• The following are dependent, are they correlated? 
 
 
 
 

X ⇠ U(�1, 1)

Y = X2
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Expectation with Multiple RVs

• Conditional expectation 

• Nested expectations 

• Independence 
 

E[X|Y = y] =

Z
xfX(x|Y = y)dx

E[X] = E[E[X|Y ]]

E[XY ] = E[X]E[Y ]
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Sum of Two RVs

• Sums of two normal RVs are also normally distributed 

• Independent case 

• Dependent case 

X ⇠ N(µX ,�2
X)

Y ⇠ N(µY ,�
2
Y )

Z = X + Y

Z ⇠ N(µX + µY ,�
2
X + �2

Y )

Z ⇠ N(µX + µY ,�
2
X + �2

Y + 2⇢�X�Y )
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Central Limit Theorem

• Arithmetic mean of large numbers of independent 
and identically distributed RVs are approximately 
normally distributed 
 
 
 
 

Sn =
nX

i=1

Xi ! Sn ⇠ N(µ,
�2

n
)
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Common Multivariate Distribution
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Multivariate Gaussian

• Extremely useful distribution 

• Common for modeling “noise” in statistical algorithms 

• Central Limit Theorem of large number of small 
independent random perturbations 

• Convenience for analytical manipulations because of 
simple closed form solutions
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Multivariate Gaussian

fX(x1, ·, xk;µ,⌃) =
1p

(2⇡)

k|⌃|
exp

✓
�1

2

(x� µ)

>
⌃

�1
(x� µ)

◆

X ⇠ N(µ,⌃)
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Gaussian Marginals / Conditionals

• Multivariate normal distribution 
 

• Marginal distributions 

• Conditional distributions: 
 

z =


x

y

�
⇠ N

✓
µ
x

µ
y

�
,


⌃

x

⌃
xy

⌃>
xy

⌃
y

�◆

x ⇠ N(µ
x

,⌃
x

)

y ⇠ N(µ
y

,⌃
y

)

x|y ⇠ N(µ
x

+ ⌃
xy

⌃�1
y

(y � µ

y

),⌃
x

� ⌃
xy

⌃�1
y

⌃>
xy

)

y|x ⇠ N(µ
y

+ ⌃>
xy

⌃�1
x

(x� µ

x

),⌃
y

� ⌃>
xy

⌃�1
y

⌃
xy

)


