Random Variables & Probabillity
Review

CS 534: Machine Learning

Slides adapted from Lee Cooper and Joydeep Ghosh



Recap: Last Class
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Course Logistics

- Course website with lectures, assignments, and example
code:
http://joyceho.qgithub.io/csb534-s17/index.html

- Sign up for Piazza:
http://piazza.com/emory/spring2017//csb534

- TA: Rongmel Lin

- IPython notebook setup
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Project

- Work in groups of 2-3

- Emphasis on public data sets
(e.g., Kaggle competitions, MovielLens, KDD Cup, etc.)

- Project proposal due by spring break for feedback

-+ Goal is to either develop a new algorithm or try multiple
algorithms to achieve good performance

Guidelines will be posted on Piazza
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Probability Theory
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Machine Learning & Probability

- Probability: a mathematical framework for uncertainty
- Machine learning problems fit well into this framework
- How uncertain is our prediction?
- Modeling structure with uncertainty

- Noise
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Set Theory

- Consider an experiment with an uncertain outcome:
- A single outcome of this experiment is called an event
- Collection of all possible outcomes is called a space

- Probability broadly describes the likelihood of events

-+ Set theory is used to reason about events and spaces,
and to develop the fundamentals of probability theory
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Set Theory: Example

-+ Experiment: flip a 2-sided coin in the air 2 times and
record which side is facing up (heads (H) or tails (T))

- 4 possible events: heads two times (HH), tails two times
(TT), heads then tails (HT), tails then heads (TH)

- Space is the set { HH, HT, TH, TT }
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Set Theory: Visualization

- Convenient to visualize a set as a plane, and reason
about the overlap or exclusivity of regions
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Set Theory: Operations and Sulbsets

- Union, Intersection, Complement

- Subsets and proper subsets

- Empty/null set

CS 534 [Spring 2017] - Ho



Elements of Probability

Sample space {2 : set of all outcomes of a random experiment

Event space (set of events) F : A set whose elements A € F
are subsets of sample space

Probability measure: A function P : F — R that satisfies the
following properties

- P(A) > 0,for all A € F
Kolmogorov’'s AXioms

- P(Q2) =1 (Axioms of Probability)
. If A;NA; =0 when i # j,then P(U;A;) ZP
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Random Variables

A random variable (RV) is a function that maps the space
of events to numeric values X : 2 -+ R

Simply put, assign a number to every outcome in 2
Example: weight of a newborn child

Represent quantities with some built-in uncertainty

extbook uses italicized capital letters to denote random
variables
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Random Variable Types

- Discrete random variable: X can take only a finite number
of values

- Example: Number of heads in a sequence of tosses

- Continuous random variable: X takes infinite number of
possible values

- Example: Amount of time for a radioactive particle to
decay
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Cumulative Distribution Function (CDF)

- CDF: function F'x : R — [0, 1] that specifies a probability measure
Fx(z) & P(X < x)

- Used to calculate the probability of an event in F

- Properties:

r—r— 0O

. lim FX(QE) =1

L —r OO

<y = Fx(z) < Fx(y)
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Probability Mass Function (PMF)

- Probability measure for discrete random variable

- PMF: function px(x) : 2 — R such that
px(z) = P(X = )

- Properties:

0.5
0 <px(z) <1 0.3
0.2
Z P X (ZE) =1 ] [
rxeVal(X) 1 3 7 >
: Z Px (.CI?) = P (X c A) https://en.wikipedia.org/wiki/Probability mass function
rEA
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Probability Density Function (PDF)

- Probability measure for continuous random variable

- PDF is derivative of CDF

» dFx () may not always exist If

fx(x) = y CDF is not differentiable
£z
+ Properties:
f(x)
fx(z) =0 E
00 b-a '
fx(x)de =1

|
fx(x)de = P(X € A) 0 a b X
rcEA https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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Example: Normal Distribution
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https://en.wikipedia.org/wiki/Normal distribution
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PDFs vs. PMFs

PDF

Values
Representation
Probabillity

P(x = k)

Continuous valued RVs
Function f(x)

Calculated via integration

PMF

Discrete-valued RVs

Table

Calculated via summation

Non-zero
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Expectation: Mean and Variance
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EXpectation

- What is the expected value of a random variable”

+ Expectation of g(X):

Elg(X)& » g(@)px(X)

rxeVal(X)

Blo(x)] = [ " g(@) fx(X)

— OO

- “Weighted average” of values that g(x) with weights given
by pdf or pmf
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EXxpectation: Properties

- Constant
Flal =a, a € R
- Scalar
Elaf(X)] = aE[f(X)], a €R
- Linearity
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Expectation: Common Forms

- Mean: expectation of random variable
E|X]|, where g(z) =z

- Variance: measure of how concentrated the distribution
of the random variable I1s around Iits mean

Var[X] = E[(X — E[X])?]
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Common Distributions
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Discrete RV Distributions

- Bernoulli(p): coin flip with probability p of getting a heads
(P =1)

- Binomial(n,p): number of heads in n independent flips of
a coin with probabillity p of a heads

- Geometric(p): number of flips of a coin until the first
heads

- Poisson( A): frequency of events or counts
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Continuous RV Distributions

- Uniform(a, b): equal probability density between every
value a and b on the real line

- Exponential( A): decaying probability density over the
nonnegative real numbers

- Normal( i, o?): Gaussian distribution
- Will be dealing with this 99% of the time

- Interesting properties
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Continuous RVs: PDF & CDF

Shape of the Gaussian pdf Shape of the Exponential pdf Shape of the Uniform pdf
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http://cs229.stanford.edu/section/cs229-prob.pdf
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Common RV Summary

Distribution PDF or PMF Mean | Variance
. D, ifx=1
Bernoulli(p) 1 —p. ifz=0. D p(1 —p)

Binomial(n, p) (Z) p*(1—p)"Ffor0<k<n | np npq

Geometric(p) p(l —p)s=1 fork=1,2,... 11—) 1p_2p

Poisson(\) e *\%/x! fork=1,2,... A A

Uniform(a,b) L Vz € (a,b) ath (bzg)
(z—p)?

Gaussian(u, o?) #%e_ 202 L o2

Exponential(\) | e ™% x>0, >0 5 T

http://cs229.stanford.edu/section/cs229-prob.pdf
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Multiple Random Variables
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Multiple RVs & Machine Learning

- Most machine learning problems contain multiple random
variables

- Values are not always independent

- Example: Height (x) and weight (y) of newborn

. E[XY] = E[X] E[Y]?
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Multiple RVs: Joint PDF

Joint p.d.f. of Sum of 2 +2 Triangular-shaped Random Yariables

-+ The joint pdf of a collection of »
random variaples completely 025+

0.21
captures their individual and pt

0.053

collective properties 0
(dependencies):

Pr(Xy,--- , Xy € D) :/ fxi . xy@1, y2n)dey - -dxy
D

http://www.math.hope.edu/tanis/maa99/triang.htmi
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Marginal Distributions

- Given a joint distribution, what is the distribution over
each variable separately”

- “Integrate” out the other RVs that are not of interest

. Marginal PDF

fx,(x;) = /---/le,...,Xn(xl,--- Tp)dxy - dr;_1dxiq - - day,
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Conditional Distributions

- What if the value of a variable in a joint density is known"?

- E.g. If weight known, how does distribution of height
change”

- Conditional PDF:

fyix(yl|z) = fxy(@:y)

fx ()
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Bayes Rule

- Bayes Rule:
fy (Y| X =x)fx ()

fx(lr =) = fy ()

- Why is this helpful? Estimation!

- Say you observe Y and want to guess X
Y =aX +e€

CS 534 [Spring 2017] - Ho



Independence

- When are two values unrelated whatsoever?

- Independence if and only If:

fxi xn@,on) = fx (@1) - fxn(@n)

- Corallary: If you can factor a PDF of N RVs as a

poroduct of N one-variable terms, then these RVs are
iIndependent
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Covariance

-+ Covariance: relationship between two random variables
Cov[X,Y] = E[(X — E[X])(Y — E[Y])]

- Covariance matrix describes pairwise covariance
between RVs

Ez’j — COV[Xi, Xj]
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Covariance Properties

- Positive semidefinite
>0

* Symmetric

»=x'
. Diagonalize Eigenvalues and

» . eigenvectors —
Y =VAV  =VAV “natural” system for

data
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Example: 2D Normal Distributions

Normal (Gaussian) distribution

XNN(:Lva)

PDF
1

\/(27’(’

T (—%(X —p) BT (x - u))

fX(mly °7$k) —

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Example: 2D Normal Distribution

2 - diagonal, equal variances

- Independent + equal A
variances

> 1 0 V ‘7_|_ N o T iy WA R
_ _ x . R T IR e TR f e T
O ]_ ' R A A SR
| _ _1 .o . .: . .:".0...: ¢ .\. i‘"
=y ? t
o} .
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Example: 2D Normal Distribution

2 - diagonal, unequal variances

- Independent + unequal L
variances

s o] - R
=1 1) =V | e
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ION

2D Normal Distributi

Example

2 — positive covariance

Itive covariance

oS

-3
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Example: 2D Normal Distribution

2 — negative covariance

- Negative covariance

1 —o05] T .
> = 05 1 = VAV

1F

- -1
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Correlation

- Correlation: another measure of dependence
Cov|X,Y]

OX0Yy

PXY =
- Normalized covariance, bounded [-1, 1]
- Cov[X,Y] =0 means X, Y are uncorrelated
Independence implies uncorrelated

- Uncorrelated does not imply independent
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Correlation Exercise

- The following are dependent, are they correlated”?

X ~U(-1,1)
Y = X?
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Expectation with Multiple RVs

- Conditional expectation
BIXIY =yl = [ afx(alY = y)dz
- Nested expectations
E|\X] = EEX]Y]]

- Independence
FXY|=FX|E|Y]
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Sum of Two RVs

- Sums of two normal RVs are also normally distributed

X ~ N(ux, o)
Y ~ N(uy,oy)
Z=X+4+Y
Independent case
Z ~ N(pux + py,o0% + oy)
Dependent case

Z ~ N(px + py, 0% + 0y +2poxoy)
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Central Limit Theorem

- Arit

and identical

Nor

mally dist

nmetic mean of

y dist

rlbuted

1=1
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Common Multivariate Distribution
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Multivariate Gaussian

Extremely useful distribution
- Common for modeling “noise” in statistical algorithms

+ Central Limit Theorem of large number of small
iIndependent random perturbations

- Convenience for analytical manipulations because of
simple closed form solutions
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Multivariate Gaussian

1 1 Tol(y
fx (@1, xp; p, ) = )|Z|6Xp( 2(X ) ST M))

\/ (2m)k
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Gaussian Marginals / Conditionals

- Multivariate normal distribution

_X_ _ILI‘ZE_ - Zx Z:I:y_ >
7 — ~ N :
Yy ( My _ZT 2y _

- Marginal distributions
X ~ N(pa, 2g)
y ~ N(Nya Ey)
- Conditional distributions:
x|y ~ N(tte + Z2y S, (Y — 1y), Bz — Say B, 54,)
y|x ~ N(py + Yoy Sy (T — pa), 2y = s 2y Bay)

Ty T Ty 'y
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