
Bayesian Methods
CS 534: Machine Learning

Material adapted from 
Radford Neal’s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), 

Zoubin Ghahramni (http://hunch.net/~coms-4771/Zoubin_Ghahramani_Bayesian_Learning.pdf), 
Taha Bahadori (http://www-scf.usc.edu/~mohammab/sampling.pdf)  

http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf
http://hunch.net/~coms-4771/Zoubin_Ghahramani_Bayesian_Learning.pdf
http://www-scf.usc.edu/~mohammab/sampling.pdf
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Frequentist vs Bayesian
Frequentist 

• Data are a repeatable 
random sample 
(there is a frequency) 

• Underlying parameters 
remain constant during 
repeatable process 

• Parameters are fixed 

• Prediction via the estimated 
parameter value 

Bayesian 

• Data are observed from the 
realized sample 

• Parameters are unknown 
and described 
probabilistically (random 
variables) 

• Data are fixed 

• Prediction is expectation 
over unknown parameters 
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The War in Comics

http://www.xkcd.com/1132/

http://conversionxl.com/bayesian-frequentist-ab-testing/

http://www.xkcd.com/1132/
http://conversionxl.com/bayesian-frequentist-ab-testing/
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Classic Example: Binomial Experiment

• Given a sequence of coin tosses x1, x2, …, xM, we want 
to estimate the (unknown) probability of heads  

• The instances are independent and identically distributed 
samples 

• Note that x can take on many possible values potentially 
if we decide to use a multinomial distribution instead

P (H) = ✓
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Likelihood Function
• How good is a particular parameter? 

Ans: Depends on how likely it is to generate the data 

• Example: Likelihood for the sequence H, T, T, H, H 

L(✓;D) = P (D|✓) =
Y

m

P (xm|✓)

0 0.2 0.4 0.6 0.8 1 θ 

L(
θ 

:D
) L(✓;D) = ✓(1� ✓)(1� ✓)✓✓

= ✓3(1� ✓)2
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Maximum Likelihood Estimate (MLE)

• Choose parameters that maximize the likelihood function 

• Commonly used estimator in statistics 

• Intuitively appealing 

• In the binomial experiment, MLE for probability of heads 

• Optimization problem approach

✓̂ =
NH

NH +NT
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Is MLE the only option?

• Suppose that after 10 observations, MLE estimates the 
probability of a heads is 0.7, would you bet on heads for 
the next toss? 

• How certain are you that the true parameter value is 0.7? 

• Were there enough samples for you to be certain?
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Bayesian Approach
• Formulate knowledge about situation probabilistically 

• Define a model that expresses qualitative aspects of our knowledge (e.g., 
forms of distributions, independence assumptions) 

• Specify a prior probability distribution for unknown parameters in the 
model that expresses our beliefs about which values are more or less likely 

• Compute the posterior probability distribution for the parameters, given 
observed data 

• Posterior distribution can be used for: 

• Reaching conclusions while accounting for uncertainty 

• Make predictions by averaging over posterior distribution



CS 534 [Spring 2017] - Ho

Posterior Distribution
• Posterior distribution for model parameters given the observed 

data combines the prior distribution with the likelihood function 
using Bayes' rule 

• Denominator is just a normalizing constant so you can write it 
proportionally as 

• Predictions can be made by integrating with respect to posterior 
 

P (✓|D) =
P (✓)P (D|✓)

P (D)

Posterior / Prior⇥ Likelihood

P (new data|D) =

Z

✓
P (new data|✓)P (✓|D)
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Revisiting Binomial Experiment
• Prior distribution: uniform for    in [0, 1] 

• Posterior distribution:  

• Example: 5 coin tosses with 4 heads, 1 tail 

• MLE estimate:  

• Bayesian prediction: 
 

✓

P (✓|x1, x2, · · · , xM ) / P (x1, x2, · · · , xM |✓)⇥ 1

P (✓) =
4

5
= 0.8, P (xM+1 = H|D) = 0.8

P (xM+1 = H|D) =

Z
✓P (✓|D)d✓ =

5

7

0 0.2 0.4 0.6 0.8 1 
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Bayesian Inference and MLE

• MLE and Bayesian prediction differ 

• However… 

• IF prior is well-behaved (i.e., does not assign 0 density 
to any “feasible” parameter value) 

• THEN both MLE and Bayesian prediction converge to 
the same value as the number of training data 
increases
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Features of the Bayesian Approach

• Probability is used to describe “physical” randomness 
and uncertainty regarding the true values of the 
parameters 

• Prior and posterior probabilities represent degrees of 
belief, before and after seeing the data 

• Model and prior are chosen based on the knowledge of 
the problem and not, in theory, by the amount of data 
collected or the question we are interested in answering
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Priors
• Objective priors: noninformative priors that attempt to capture 

ignorance and have good frequentist properties 

• Subjective priors: priors should capture our beliefs as well as 
possible. They are subjective but not arbitrary. 

• Hierarchical priors: multiple levels of priors 

• Empirical priors: learn some of the parameters of the prior from the 
data (“Empirical Bayes”) 

• Robust, able to overcome limitations of mis-specification of prior 

• Double counting of evidence / overfitting
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Computing the Posterior Distribution
• Analytical integration: works when “conjugate” prior distributions can be 

used, which combine nicely with the likelihood —usually not the case 

• Gaussian approximation: works well when there is sufficient data 
compared to model complexity — posterior distribution is close to 
Gaussian (Central Limit Theorem) and can be handled by finding its 
mode 

• Markov Chain Monte Carlo: simulate a Markov chain that eventually 
converges to the posterior distribution —currently the dominant 
approach 

• Variational approximation: cleverer way to approximate the posterior 
and maybe faster than MCMC but not as general and exact
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Parametric vs. Nonparametric
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Parametric vs Nonparametric Models
• Parametric models: finite fixed number of parameters, 

regardless of the size of the dataset (e.g., mixture of k 
Gaussians) 

• Non-parametric models: number of parameters are allowed to 
grow with the data set size, or the predictions depend on the 
data size 

• Doesn’t limit the complexity of our model a priori 

• More flexible and realistic model 

• Better predictive performance
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Example: Number of Clusters?

https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/nonparametric/slides.pdf

https://www.cs.berkeley.edu/~jordan/courses/294-fall09/lectures/nonparametric/slides.pdf
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Example: A Frequentist Approach
• Gaussian mixture model with K 

mixtures 

• Distribution over the K 
classes 

• Each cluster has a mean 
and covariance 

• Use Expectation Maximization 
(EM) to maximize the likelihood 
with respect to distribution and 
cluster points
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Example: Bayesian Parametric Approach

• Bayesian Gaussian mixture models with K mixtures 

• Distribution over classes that is drawn from a Dirichlet 

• Each cluster has a mean and covariance that is a 
Normal-Inverse-Wishart distribution 

• Use sampling or variational inference to learn posterior
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Example: Bayesian Parametric Approach
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Example: Nonparametric Bayesian Approach

• Likelihood term looks identical to the parametric case 

• Prior distribution uses the Dirichlet Process 

• Flexible, non-parametric prior over infinite number of 
clusters and their parameters 

• Distribution over distributions 

• Use Gibbs sampling to find the right distributions
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Example: Nonparametric Bayesian Approach
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Limitations and Criticisms of Bayesian Methods

• It is hard to come up with a prior (subjective) and the 
assumptions may be wrong 

• Closed world assumption: need to consider all possible 
hypotheses for the data before observing the data 

• Computationally demanding (compared to frequentist 
approach) 

• Use of approximations weakens coherence argument


