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Review: Model Comparison
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Motivation: Similar Sets

- Many problems can be expressed as finding “similar”
Sets

- Data compression
Information retrieval

- Pattern recognition
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Applications: Image Completion

https://graphics.stanford.edu/courses/cs468-06-fall/Slide/aneesh-michael.pdf
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Applications: Patient Prognosis
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http://engr.uconn.edu/~fwang/tutorials/CIKM14 Tutorial.pdf
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Nearest Neighbor (NN)

- Problem Statement: Given a set of points or samples {p1,
..., PN}, and a new point g, find the data point nearest to

e

- (AKA) Closest-point problem or post office problem

- Training samples are prototypes — no explicit model
needed

- Example: http://www.theparticle.com/applets/ml/
nearest _neighbor
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-NN Algorithm

—xamine the k-"closest”
training data points to new

ooiNt X
O =1
O
Closest depends on o © : o o o
distance metric used ° A/
O O O
@) O
Assign the object the most . . © o o
frequently occurring class o ©
(mayjority vote) or the ° o ©

average value (regression)

http://cs.nyu.edu/~dsontag/courses/ml13/slides/lecture11.pdf
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-NN Algorithm

- Non-parametric model — number and nature of
parameters are flexible and not fixed in advance

- Lazy learner — no training needed, just store all the
training examples

- Flexible decision boundaries

-+ One of the most popular algorithms
(ranked 8th by KD Nuggets)
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1-NN: Decision Boundaries

- Does not explicitly compute
decision boundaries

- Decision boundaries form
subset of Voronoi diagram for
training data (Euclidean
distance)

- Line segment equidistant to
neighboring points

- More data —> more complex
decision boundaries

https://en.wikipedia.org/wiki/Voronoi_diagram
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1-NN: Comparison to Bayes

- Famous result of Cover and Hart, 1967
R(f") < R(f™) <2R(f")(1 — R(f)) < 2R([f7)

+ Expected risk of NN is at worst twice that of the Bayes
optimal classifier

» Nearest neighbor classifier seems to be doing the right
thing
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K-NN: Bias & Variance Intuition

- Low values of k: local model —> complex boundaries

- Blas = low, variance = high

igh values of k: global model —> smooth boundaries

- Bias = high, variance = low
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K-NN: Blas & Variance

- Analyze using regression fit to understand

- Higher k: variance decreases but bias increases

- Lower K: blas decreases but variance increases
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K-NN: Practical Challenges

- How to pick k7

- Small k —> noisy estimates

- Large k —> smoothing may hurt accuracy
- What is the right measure of closeness”

- Euclidean distance? ||x - y||o
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K-NN: Choice of k

- Use cross-validation to find k
-k should be odd for classification tasks

- General rule of thumb: k < sgrt(N)
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K-NN: Normalization of Features

- What if some attributes have larger ranges?

- Scale: Divide each feature by feature’s standard
deviation

- Normalize: Linear scale each dimension to have zero
mean and variance of

- |f we have relative importance of each variable, we can
weigh them

d,, (]) Zw _xgly)) )1/2
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K-NN: Notable Distance Metrics

Weighting function (gaussian) mll=I mlZ=m2l=0.3 m22=0.5 |
2
1 4
| | %
-1 J
_2 LS T \ L)
-2 -1 0 1 2

Scaled Euclidean Mahalanobis
(diagonal covariance) (full covariance)

D(x,y) = \/(X —y)' ST (x—y)
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K-NN: Notable Distance Metrics

<

Manhattan or taxicab
L1+ norm

Maximum norm

p

D(x,y) = ) |z —yil D(x,y) = max |z; — y;

1=1
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K-NN: Notable Distance Metrics

- Integer-valued space

Ndifferen X,y
+ Hamming distance: D(x,y) = Ny 2(1 |

- Canberra: D(x,y) = Z |

- Boolean-valued space

. Jaccard: D(x,y) =

- Matching: D(x,y) =
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Example: k-NN Results

7-Nearest Neighbors
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Figure 13.4 (Hastie et al.)
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Example: STATLOG Project

- LANDSAT image for
classification

-+ Each pixel has class label
from 7-element set

- Classify land usage at pixel -
based on ﬂfOrma'UOﬂ frOm FIGURE 13.6. The first four panels are LANDSAT

images for an agricultural area in four spectral bands,

depicted by heatmap shading. The remaining two pan-
fO U r S peCt ral ban d S els give the actual land usage (color coded) and the pre-
dicted land usage using a five-nearest-neighbor rule de-
scribed in the text.

Figure 13.6 (Hastie et al.)
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Example: STATLOG Project

STATLOG results
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Figure 13.6 (Hastie et al.)
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K-NN: Irrelevant Features

- lrrelevant / noisy features add random perturbations to
the distance measure

- Hurts performance

- Example: 1-D data, what happens if we add noisy
attribute”?

+ ++ 00 ++o+ O awtoamm  +

~N
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K-NN: Irrelevant Features
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K-NN: Curse of Dimensionality

- Consider N data points uniformly distributed in unit cube

Unit cube of s L 1)
nit cube o SIZG_ 2’2

+ Let R be radius of 1-NN centered at origin

1/p
11/N 2 D p/2
median(R) = v, /7 (1 T2 ) plr) = p;<;/2>
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Example: Curse of Dimensionality

Median Radius

Dimension

Figure 13.12 (Hastie et al.)
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K-NN: Curse of Dimensionality ||

- Suppose we have 1000 points uniformly distributed on
unit hypercube with a query point at the origin

- Apply 5-nearest neighbor

. 1-D: (5/1000) = 0.005 Distances concentrate
within a small range and all

. 2-D:/5/1000 ~ 0.0707  points look “equidistant”!

. 30-D: (5/1000)'/3° ~ 0.8381
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K-NN: Efficient Indexing

- Linear algorithm (no pre-processing)
- Query: Q(Np)
»Voronoi diagram
- Query: O(log N)
- Memory: O (pwm)
- Tree-based data structures (pre-processing)
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kd-Trees
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kd-Trees [Bentley '75]

- Binary tree (data structure) for storing finite set of points
from a k-dimensional space

- |dea: Each level of the tree compares against 1
dimension

- Not the most efficient solution in theory but used In
practice

- Name originally meant 3d-trees, 4d-trees, ..., where k
was the number of dimensions
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kd-Trees

- Applications
-+ Nearest neighbor search
- Range queries
- Fast look-up

- QGuaranteed logz n depth where n is the numlber of points
N the set
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kd-Tree:; Construction

- Binary tree with:
- Size: O(n)
- Depth: O(log n)

- Construction: O(n log n)

CS 534 [Spring 2017] - Ho



kd-Tree: Construction

- |f just one point, form a leaf with that point

- Otherwise, choose an axis and divide the points in half
via the median of the axis

-+ Recursively construct kd-trees for the two sets of points
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Example: kd-Tree Construction

i@
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https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf
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Example: kd-Tree Construction
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Example: kd-Tree Construction
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Example: kd-Tree Construction
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Example: kd-Tree Construction
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kd-Tree: NN Search

- Search recursively to find the point in the same cell as the
query

- On return search each subtree where a closer point other
than the one you know about might be found

- Has been shown to run in O(log n) average time per
search in a reasonable model (assuming p is constant)
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Example: kd-Tree Query

B query point
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https://courses.cs.washington.edu/courses/cse373/02au/lectures/lecture22l.pdf
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Example: kd-Tree Query

B query point

s1
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Example: kd-Tree Query

B query point
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Example: kd-Tree Query

B query point
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Example: kd-Tree Query

B query point
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kd-Tree Summary

- Tons of variants

- Construction of trees (e.qg., heuristics for splitting,
stopping, representing branches)

- Other representational data structures for fast NN
search (e.qg., ball trees, ...)

- High-dimensional spaces are hard
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Python: Scikit-learn

Brute force: O(pn?) If you use the software,
please consider citing
kd-tree: O(p log n) for p < 20 scikit-learn.

1.6. Nearest Neighbors
1.6.1. Unsupervised Nearest

Ball tree: O(p log n) but tree
construction is more costly

Neighbor
than kd-tree gnibors
= 1.6.1.1. Finding the Nearest

Benchmarking using NN: Neighbors

https://jakevdp.github.io/blog/ = 1-6-1-2- KDTree and BallTree

2013/04/29/benchmarking- Classes |
nearest-neighbor-searches-in- 1.6.2. Nearest Neighbors
python/ Classification
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Weighted k-NN

- Generalization of k-NN: weigh the i" training point by
how far x; Is from X

y(x) = sign (Z Y D (X, X))

- Possible weight functions
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K-NN: Similarity to kernel SVM

- Recall Gaussian kernel SVM

— Slgﬂ (Z Oézyz Xu ) ;

K(u,v) = exp(—y[lu — v|[3)

- Discriminant functions are nearly identical — SVM just
learns the parameters
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K-NN: Advantages

+ Instance-based (lazy) learning
+Training model is cheap & fast
- No optimization required

-+ Easy to understand and implement

- Can be quite accurate — models complex decision
boundaries quite well
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K-NN: Disadvantages

- Slow at query time: O(Np)
- Memory intensive — must store all training examples
- Easily fooled by irrelevant features

- Suffers from curse of dimensionality
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K-NN: When to Consider

- Instance map to points in real space
-+ Less than 20 attributes per instance

- Lots of training data
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Model Comparison

Characteristic Neural SVM Trees MARS k-NN,
Nets Kernels

Natural handling of data \ 4 \ 4 A A \ 4

of “mixed” type

Handling of missing values \ 4 \ 4 A A A

Robustness to outliers in v v A v A

input space

Insensitive to monotone \ 4 v A v v

transformations of inputs

Computational scalability \ 4 v A A v

(large N)

Ability to deal with irrel- \ 4 \ 4 A A \ 4

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v A

Table 10.1 (Hastie et al.)
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Approximate Nearest Neighbors
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Approximate Nearest Neighbor (ANN)

- |dea: rather than retrieve the exact closest neighbor,
Make a “good guess” of the nearest neighbor

- ¢c-ANN: for any query g and points p:

- ris the distance to the exact nearest neighbor g

Returns pin P, ||p — q|| < er, with probability at least

1—90,0>0
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ANN: Altering kd-Tree Search

(Augmented) kd-Trees are used but interrupt search earlier
[Arya et al., 1994

- Prune when distance to bounding box is greater than
some distance r over some value alpha

+ Saves lots of search time by removing some nodes of
the tree

- In practice can get O(p log n) but worst case still has
exponential running time
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Beyond kd-Trees

- Works for low and medium dimensional data, but has
problems with high-dimensional data

- Non-trivial to implement efficiently and still requires some
computation of object similarities

- Can we represent similarities between objects in a more
succinct manner?

+ Sacrifice exactness for efficiency by using randomization

- Obtain a “sketch” of the object instead
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Johnson-Lindenstrauss Lemma

Main Idea: small set of points in high-dimensional space
can be embedded into a space of much lower dimension In
such a way that distances between the points are nearly
preserved

+ One proof of the lemma uses projection onto random
subspace

- Used in compressed sensing, manifold learning,
dimensionality reduction, and graph embedding
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Hash Functions

- A hash function, h, is a function which transforms a key from
a set K, into an index In a table of size n
h: K —>{0, 1, ..., n-2, n-1}

- A good hash function should:
- Minimize collisions
+ Be easy and quick to compute

- Distribute key values evenly amongst the buckets

+ Use all the information provided in the key
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| ocality Sensitive Hashing (LSH)

- General idea: Use a hash function that tells whether x and
v IS a candidate pair (a pair of elements whose similarity

must be evaluated)

- A hash function, h, is LSH if it satisfies for some similarity
function d:

- P(h(x) = h(y)) is highif D(x,y) <r,r >0
- P(h(x) = hly) is low if D(x,y) > ar,r > 0,a > 0

- (In between, not sure about probability)

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/Ish-hashkernels-annotated.pdf
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L SH [Indyk-Motwani, 1998]

- Family of hash functions q
O O
- Close points to same buckets O
D O
- Faraway points to different
buckets

- |dea: Only examine those items ‘S ‘ ‘ O I ‘. \

where the buckets are shared
- (Pro) Designed correctly, only a ‘ O ‘

| fracti f pairs are examined > l > l .l I
small fraction of pairs are exam

- [®eJo o] T ]
- (Con) There maybe false negatives ‘S ‘ ‘ I ‘“\
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Random Projection lllustrated

Pick a random vector v
using independent
(Gaussian coordinates

Project the points onto this
random vector

-0or most vectors, 1t will
oreserve some notion of
separability
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Experiment: Motorcycle Images

- 59,500 20x20 patches taken from motorcycle
Images

- Each image is represented as 400-
dimensional column vectors

- Convert feature vectors into binary strings and
use Hamming hash functions
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Experiment: Motorcycle Example Query

- Examples searched: 7,722 of 59,500

- Result =
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