
Artificial Neural Networks
CS 534: Machine Learning

Slides adapted from Jinho Choi, Stuart Russell, Fei-Fei Li, Andrej Karpathy, Justin 
Johnson, John Buillinaria, and Kyunghyun Cho
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Class Logistics

• Homework #3 due March 21st 

• Project proposal feedback on Canvas 

• Project madness at beginning of class on March 21st 

• 1 slide, 90 seconds presentation per group — 
submission on Canvas by 11:59 pm March 20th 

• Overview of project
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Class Logistics: Project Presentation

• 8 group projects —> 4 groups per class 

• 18 minutes per group (includes Q&A) 

• Allocate 2-3 minutes for question and answer 

• Avoid downtime by using single computer for 
presentations — must be sent (email) to me by 9 AM 
on the morning of class
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Class Logistics: Presentation Order

• 4/18 

1. Reza, Zelalem 

2. Qiyang, Zining, Jiayu 

3. Yidong, Qiyang 

4. Jing, Yi 

• 4/20 

1. Steve, Katherine 

2. Funing, Yunyi, Xiaokun 

3. Damian 

4. Olivia, Tomer 
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Motivation: Human Brain
• Contains 1011 neurons, each 

with up to 105 connections 

• Each neuron is fairly slow 
with switching time of 1 ms 

• Computers at least 106 
times faster in raw switching 
speed 

• Brain is fast, reliable, and 
fault-tolerant
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Motivation: Neuron

• Electrically excitable cell 
that processes and 
transmits information 

• Information comes in on 
the dendrites (input) 

• If neuron excited/activated, 
send a spike of electrical 
activity to axon (output)
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Artificial Neural Networks

• Based on assumption that a computational architecture 
similar to brain would duplicate its abilities 

• Many neuron-like threshold switching units 

• Many weighted interconnections among units 

• Highly parallel, distributed process 

• Many different kinds of architectures
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Review: Linear Regression (MLR)

• Hypothesis of the form 

• Learn weights to minimize least squares problem 

• Alternative to matrix inversion: gradient descent

f(x) = �0 +
pX

i=1

xi�i

min
�

(y �X�)>(y �X�) =) �̂ = (X>X)�1X>y
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Review: Gradient Descent (GD)

• Simple and popular 
algorithm 

• Idea: Take a step 
proportional to the 
negative of the gradient 

• Eventually will find the 
optimal (minimum) point

✓i := ✓i � ⌘
@L

@✓i
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Example: GD for MLR

• Optimization problem: 

• Gradient update: 

min
�

||y � �X||22

�+ = � +
⌘

N

X

i

(yi � xi�)xi
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Perceptron [Rosenblatt, 1957]

• Uses hyperplane classifier 
to map input to binary 
output 

• Compute linear 
combination of the inputs 
and threshold it 

fw(x) = sign(x ·w)

=

(
+1 if x ·w > 0

�1 otherwise
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Neuron —> Perceptron
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Perceptron Algorithm

• Loss function uses functional margin 

• Solve via gradient descent 

• But what if we want it to be online (does not need to 
consider the entire data set at the same time)?

`(y, fw(x)) =
X

n

w

>
xiyi
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Gradient Descent: Reformulated

• Recall empirical risk: 

• Think of GD in terms of ERM: 

• “True” gradient descent is a batch algorithm

REMP[f(x)] =
1

N

X

n

`(f(xn), yn)

learning rate or gain

rREMP[f(x)]✓+ = ✓ � �
1

N

X

n

r✓`(f(xn), yn)
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Motivation: Stochastic Optimization

• Online / streaming data —> can’t wait for all 

• Non-stationary data (moving target) —> model should 
not be static 

• Sufficient samples means information is redundant 
amongst samples —> more frequent, noisy updates
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Stochastic Optimization

• Idea: Estimate function and gradient from a small, current 
subsample of your data 

• Function: 

• Gradient:  

• With enough iterations and data, you will converge in 
expectation to the true minimum

f(x) ! f̃(x)

rf(x) ! r̃f(x)
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Stochastic Optimization

• Pro: Better for large datasets and often faster 
convergence 

• Con: Hard to reach high accuracy 

• Con: Best classical methods can’t handle stochastic 
approximation 

• Con: Theoretical definitions for convergence not as well-
defined
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Stochastic Gradient Descent (SGD)

• Randomized gradient estimate to minimize the function 
using a single randomly picked example 

• The resulting update is of the form: 

• Although random noise is introduced, it behaves like 
gradient descent in its expectation

E[r̃f ] = rf

✓+ = ✓ � �r✓`(f(xi), yi)
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SGD Algorithm

https://wikidocs.net/3413

Initialize parameter ✓ and learning rate ⌘
while not converged do

Randomly shu✏e training data

for i = 1, ·, N do

✓+ = ✓ � �r✓`(f(xi), yi)
end

end

https://wikidocs.net/3413
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Perceptron: Learning
• Perceptron uses SGD to learn the parameters 

• Without loss of generality, can set learning parameter to 
be 1 

• For each point: 

• If successfully classified, do nothing 

• Incorrectly classified, update weight vector 

w

+ = w + xiyi
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Perceptron: Learning Example

Training data

Initialize parameters
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Perceptron: Learning Example

Randomly select point 
— incorrectly classified

Update parameters
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Perceptron: Learning Example

Randomly select 
another point — 

correct classified do 
nothing

Randomly select 
another point — 

correct classified do 
nothing
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Perceptron: Learning Example

Randomly select 
another point —

incorrectly classified

Update parameters
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Perceptron Convergence Theorem

• Intuition: perceptron will converge more quickly for easy 
learning problems compared to large learning problems 

• Classify “easy” and “hard” via the margin 

•   Theorem. Suppose the perceptron algorithm is run on

a linearly separable data set D with margin � > 0.
Assume that ||x||  1 for all x 2 D. Then the algorithm

will converge after at most

1
�2 updates.
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Perceptron: Issues

• If data isn’t linearly separable, no guarantees of 
convergence or training accuracy 

• Even if training data is linearly separable, perceptron can 
overfit 

• Averaged perceptron (average weight vectors across all 
iterations) is an algorithmic modification that helps both 
issues
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Motivation: Need for Networks

• Perceptrons have very simple decision surface (linearly 
separable functions) 

• What if we connect several of them together? 

• Error surface is not differentiable — why? 

• Can’t apply gradient descent to find a good set of 
weights
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Perceptron: Revisited

http://ataspinar.com/2016/12/22/the-perceptron/

What if we change the 
activation function?Introduce bias 

(input = 1)

http://ataspinar.com/2016/12/22/the-perceptron/
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Neuron: Generalized Perceptron

http://dataminingtheworld.blogspot.com/

http://dataminingtheworld.blogspot.com/
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Neuron: Sigmoid Unit

• Activation function is sigmoid function 

• Nice property of sigmoid 

• Can derive gradient descent rules to train multi-layer 
networks

�(x) =
1

1 + exp(�x)

@�(x)

@x

= �(x)(1� �(x))
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Sigmoid Units vs Perceptron

• Sigmoid units provide “soft” threshold 

• Perceptrons provide “hard” threshold 

• Expressive power is the same: limited to linearly 
separable instances
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Neuron: Popular Activation Functions

• Sigmoid function 

• Hyperbolic tangent function 

• Rectified linear unit (ReLU)  

• Softplus https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

f(x) = sinh(x)/cosh(x)

f(x) = max(0,x)

f(x) = log(1 + exp(x))

https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/
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Neural Networks
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Neural Networks
• Collection of neurons that are connected in an acyclic 

graph 

• Outputs of some neurons become inputs to other 
neurons 

• Compute non-linear decision boundaries 

• Often organized into distinct layers of neurons 

• AKA Artificial Neural Networks (ANN) or Multi-Layer 
Perceptrons (MLP)
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Neural Networks: Architectures

2-layer neural network 3-layer neural network

Naming convention doesn’t count input layer
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MLP: Feedforward Neural Network

• Composition of neurons 
with sigmoid activation 
function 

• Typically, each unit of layer t 
is connected to every unit of 
the previous layer t - 1 only 

• No cross-connections 
between units in the same 
layer

http://neuralnetworksanddeeplearning.com/chap1.html

http://neuralnetworksanddeeplearning.com/chap1.html
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MLP: Expressiveness
• Single sigmoid neuron has same representational power 

as a perceptron: Boolean AND, OR, NOT, but not XOR 

• Every boolean function can be represented by a network 
with a single hidden layer, but may require exponential 
number of hidden units compared to inputs 

• Every bounded continuous function can be approximated 
by a network with one, sufficiently hidden layer 

• Any function can be approximated by a network with two 
hidden layers
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MLP: Layer Comparison
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MLP: Prediction

• Single forward pass to predict for a new sample 

• For each layer 

• Compute the output of all neurons in the layer 

• Copy this output as inputs to the next layer and repeat 
until at the output layer
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MLP: Learning Weights

• Assume the network structure (units and connections) is 
given 

• Learning problem is finding good set of weights 

• Answer: Backpropogation = gradient descent + chain 
rule 
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Backpropogation
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Backpropogation Algorithm
• Method of training neural 

network via gradient 
descent 

• Calculate error at output 
layer for each training 
example 

• Propagate errors backward 
through the network and 
update the weights 
accordingly https://openi.nlm.nih.gov/imgs/512/121/2716495/PMC2716495_bcr2257-1.png

https://openi.nlm.nih.gov/imgs/512/121/2716495/PMC2716495_bcr2257-1.png
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Backpropogation Algorithm

• Assume fully connected network (all units in layer k are 
connected to all units in layer k+1) 

• N input units (x1, …, xN) 

• One hidden layer with M hidden units (h1, …, hM) 

• One output unit (f) 

• Loss function: squared error
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Backpropogation: Forward Pass

• Forward computation 

• MLP with single hidden layer 

L(f(h1(x1, · · · ,xN ,✓h1), · · · , hM (x1, · · · ,xN ,✓h1),✓f , y)

L(x, y, ✓) =
1

2
(y �U

>
�(W>

x))2
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Backpropogation: Chain Rule
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Backpropogation: Shared Derivative
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Example: Backpropogation
• Simple neural network with two 

inputs, two hidden neurons 
and two output neurons 

• Activation function is sigmoid 
function 

• Imagine single training set with 
inputs (0.05, 0.10) and want 
output to be 0.01 and 0.09 
and want to minimize squared 
error

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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Example: Forward Pass

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

h1 = w1⇥ i1 + w2⇥ i2

h2 = w3⇥ i1 + w4⇥ i2

o1 = 1/(1 + exp�(w5⇥ h1 + w6⇥ h2))

o2 = 1/(1 + exp�(w7⇥ h1 + w8⇥ h2))

e

ô1

=

1

2

(o1� ô1)

2

= 0.274811083

e

ô2

= 0.023560026

e

total

= e

ô1

+ e

ô2

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


CS 534 [Spring 2017] - Ho

Example: Backward Pass

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

out

o1

= 1/1 + exp(�net

o1

)

@out
o1

@net
o

1

= out

o1

(1� out

o1

)

net

o1

= w5⇥ out

h1

+ w6⇥ out

h2

+ b2

@net
o1

@w5
= out

h1

+ 0 + 0

w5+ = w5� ⌘
@e

total

@w5

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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Example: Backward Pass

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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Backpropogation: Practical Considerations

• Do we need to pre-process the training data? If so, how? 

• How do we choose the initial weights? 

• How do we choose an appropriate learning rate? 

• Are some activation functions better than others?
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Pre-processing Data
• In principle, can use any raw input-output data 

• Pre-process can help learning 

• Rescale continuous features: normalize to zero mean 
and standard deviation of 1 

• De-correlate data: remove correlated features and 
transformed data with diagonal covariance matrix 

• Whiten data: convert diagonal covariance matrix to 
identity matrix so all eigenvalues are the same
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Pre-processing Data
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Pre-processing Data
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Choosing Initial Weights

• All weights are treated the same way using gradient 
descent —> do not initialize with the same values 

• Generally start off weights with small random values that 
do not cause saturation 

• Works okay for small networks  

• Proper initialization is an active area of research
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Choosing Learning Rate

• If learning rate is too small, it will take a long time to get 
anywhere near the minimum of the error function 

• If learning rate is too large, the weight updates will 
overshoot the error minimum and weights will oscillate or 
even diverge 

• Solution: Babysit the learning process at the beginning 
for small portion of training data
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Choosing Learning Rate



CS 534 [Spring 2017] - Ho

Activation Functions: Sigmoid
• Squashes numbers to [0, 1] 

• Popular due to nice interpretation as 
a saturating “firing rate” of neuron 

• (Con) Saturated neurons “kill” the 
gradients 

• (Con) Sigmoid outputs not zero-
centered 

• (Con) Exponential expensive to 
compute
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Activation Functions: Tanh

• Squashed numbers to [-1, 1] 

• Zero-centered 

• (Con) Saturated neurons “kill” the 
gradients
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Activation Functions: ReLU
• Does not saturate in positive 

region 

• Very computationally efficient 

• Converges much faster than 
sigmoid/tanh in practice (e.g., 6x) 

• (Con) Not zero-centered 

• (Con) What is the gradient for 
negative region?
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Activation Functions: Leaky ReLU

• Does not saturate 

• Computationally efficient 

• Converges much faster than 
sigmoid/tanh 

• Will not “die”
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Activation Functions: ELU

• All benefits of ReLU 

• Does not die 

• Closer to zero-mean outputs 

• (Con) Requires exp() 
computation

f(x) =

(
x x > 0

↵(exp(x� 1) x  0
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Activation Functions: In Practice

• Use ReLU and be careful with the learning rates 

• Try out Leaky ReLU / ELU 

• Try out tanh but don’t expect too much 

• Don’t use sigmoid 
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• Scanned 28 x 28 greyscale images of handwritten digits 

• Training data 

• 60,000 images 

• 250 people 

• Test Data 

• 10,000 images 

• Different 250 people

MNIST Dataset



CS 534 [Spring 2017] - Ho

Experiment: 2 Layer Perceptron

• 784 input units, variable number of 
hidden units, and 10 output units 

• Activation function = logistic sigmoid 

• Sum of squared error function 

• Stochastic variant of mini-batch 
training

http://davidstutz.de/recognizing-handwritten-digits-mnist-dataset-twolayer-perceptron

http://davidstutz.de/recognizing-handwritten-digits-mnist-dataset-twolayer-perceptron
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Experiment: 2 Layer Perceptron

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf
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Obstacles to Deep MLPs
• Requires lots of labeled 

training data 

• Computationally extremely 
expensive 

• Vanishing & unstable 
gradients 

• Training can be slow and 
get stuck in local 
minimum

http://neuralnetworksanddeeplearning.com/chap5.html

http://neuralnetworksanddeeplearning.com/chap5.html
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Obstacles to Deep MLPs

• Difficult to tune 

• Choice of architecture 
(layers + activation 
function) 

• Learning algorithm 

• Hyperparameters
http://neuralnetworksanddeeplearning.com/chap5.html

http://neuralnetworksanddeeplearning.com/chap5.html
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Convolutional Neural Networks (CNN)

• Specialized neural network for processing known, grid-
like topology 

• Powerful model for image, speech recognition 

• LeNet helped propel field of deep learning in 1988 

• Use convolution instead of general matrix multiplication in 
one of its layers
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CNN: Comparison with NN
3-layer neural network

Constrain architecture 
to look at width, 

height, depth and 
avoid fully-connected 

network

ConvNet architecture

Regular NN does not scale 
well to full images — think 

about 200 x 200 x 3 = 
120,000 weights at first layer



CS 534 [Spring 2017] - Ho

CNN: Four Main Layers

• Convolutional layer — output neurons that are connected 
to local regions in the input 

• ReLU layer — elementwise activation function 

• Pooling layer — perform a downsampling operation 
along the spatial dimensions 

• Fully-connected layer — same as regular neural networks
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CNN: Example
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CNN: Convolution Layer

Convolve the filter with the image 
(i.e., slide over image spatially 

computing dot products)

1 number to 
represent result of 

filter with small 
chunk of image

Filters always extend the 
full depth of input volume
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CNN: Convolution Layer

Stacking up multiple filters yields “new image”
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CNN: Convolution Filters

• Filters act as feature detectors from 
original image 

• Network will learn filters that active 
when they see some type of visual 
feature (e.g., edge of some 
orientation, blotch of some color, 
etc.) 

• Only need to learn the weights of 
the filters

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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CNN: Example Filters

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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CNN: ReLU

Used after every convolution operation and 
introduces non-linearity



CS 534 [Spring 2017] - Ho

CNN: Pooling Layer

• Make representations smaller 
and more manageable 

• Helps control overfitting 

• Operates over each activation 
map independently 

• Common use of max pooling 
(take max of spatial 
neighborhood)
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CNN: Pooling Example
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CNN: Fully-Connected Layer

• Traditional MLP using softmax activation function 

• Generalization of logistic function to multi-class 
problem 

• Output probabilities for each class that sum to 1 

• Output of convolutional and pooling layers represent 
high-level features
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LeNet 5 [LeCun et al., 1998]

• 32 x 32 pixel with largest character 20 x 20 

• Black and white pixel values are normalized to get mean of 0, 
standard deviation of 1 

• Output layer uses 10 RBF (radial basis activation function), one 
for each digit
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CNN: MNIST Dataset Results

• Original dataset 
(60,000 images) 

• Test error = 0.95% 

• Distorted dataset 
(540,000 artificial distortions 
+ 60,000 images) 

• Test error = 0.8%
Misclassified examples
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Why is CNN Successful?

Compared to standard feedforward neural networks with 
similarly-sized (5-7) layers 

• CNNS have much fewer connections and parameters 
—> easier to train 

• Traditional fully-connected neural network is almost 
impossible to train when initialized randomly 

• Theoretically-best performance is likely only slightly 
worse than vanilla neural networks
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Neural Networks: When to Consider

• Noisy data 

• Training time is unimportant 

• Form of target function is unknown or very complex 

• Human readability of results is unimportant


