Artificial Neural Networks

CS 534: Machine Learning

Slides adapted from Jinho Choi, Stuart Russell, Fei-Fei Li, Andrej Karpathy, Justin
Johnson, John Buillinaria, and Kyunghyun Cho

Class Logistics

- Homework #3 due March 21st
- Project proposal feedback on Canvas
- Project madness at beginning of class on March 21st

-1 slide, 90 seconds presentation per group —
submission on Canvas by 11:59 pm March 20th

- Qverview of project

CS 534 [Spring 2017] - Ho

Class Logistics: Project Presentation

8 group projects —> 4 groups per class

- 18 minutes per group (includes Q&A)
- Allocate 2-3 minutes for question and answer
- Avoid downtime by using single computer for

presentations — must be sent (email) to me by 9 AM
on the morning of class

CS 534 [Spring 2017] - Ho

Class Logistics: Presentation Order

-+ 4/18 - 4/20
1. Reza, Zelalem 1. Steve, Katherine
2. Qiyang, Zining, Jiayu 2. Funing, Yunyi, Xiaokun
3. Yidong, Qiyang 3. Damian

4. Jing, Yi 4. Olivia, Tomer

CS 534 [Spring 2017] - Ho

Motivation: Human Brain

- Contains 10" neurons, each
with up to 10° connections < _ —

- Each neuron is fairly slow
with switching time of 1 ms

- Computers at least 10°
times faster in raw switching
speed

- Brain Is fast, reliable, and
fault-tolerant

CS 534 [Spring 2017] - Ho

Motivation: Neuron

- Electrically excitable cell
that processes and
transmits information

Information comes in on
the dendrites (input)

If neuron excited/activated, =
send a spike of electrical /
activity to axon (output)

CS 534 [Spring 2017] - Ho

Artificial Neural Networks

- Based on assumption that a computational architecture
similar to brain would duplicate its abilities

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process

- Many different kinds of architectures

CS 534 [Spring 2017] - Ho

Review: Linear Regression (MLR)

- Hypothesis of the form
P
f(X> — BO + szﬁz
1=1

- Learn weights to minimize least squares problem

A

min(y —XB)' (y - XpB) = B=(X X)Xy

- Alternative to matrix inversion: gradient descent

CS 534 [Spring 2017] - Ho

Review: Gradient Descent (GD)

- Simple and popular
algorithm

dea: Take a step
oroportional to the
negative of the gracgﬁnt
0; = 0; — 77(‘99-

- EBEventually will find the
optimal (minimum) point

CS 534 [Spring 2017] - Ho

Example: GD for MLR

- Optimization problem:
min ||y — BX|3

- Gradient update:

CS 534 [Spring 2017] - Ho

Perceptron [Rosenblatt, 1957]

- Uses hyperplane classifier
to map input to binary @
output

- Compute linear
combination of the inputs ;29\
and threshold it

—1 otherwise

fw(x) = sign(x - w) @ @ @
{-I—ﬁ_ it x-w >0

CS 534 [Spring 2017] - Ho

Neuron —> Perceptron

impulses carried
toward cell body

branches

dendrites of axon
nucleus terminals
impulses carried il
away from cell body =.OS napse
cell body axon from a neuron > P

Wo o

/" cell body f (Z w;T; + b)
wl a:]_ Z wimi + b f i N
: output axon
activation
function

Wo X9

CS 534 [Spring 2017] - Ho

Perceptron Algorithm

- Loss function uses functional margin
ya fw Z w' XiYq
+ Solve via gradient descent

- But what if we want it to be online (does not need to
consider the entire data set at the same time)?

CS 534 [Spring 2017] - Ho

Gradient Descent: Reformulated

- Recall empirical risk:

Rempl|f Z 0(f

hink of GD In terms of ERM:

— 0 — C Z VQg yn/VREMP[f(X)]

Iearnlng rate or gain

- “True” gradient descent Is a batch algorithm

CS 534 [Spring 2017] - Ho

Motivation: Stochastic Optimization

+ Online / streaming data —> can’t walit for all

- Non-stationary data (moving target) —> model should
not be static

- Sufficient samples means information is redundant
amongst samples —> more frequent, noisy updates

CS 534 [Spring 2017] - Ho

Stochastic Optimization

- |dea: Estimate function and gradient from a small, current
subsample of your data

- Function: f(z) — f(z)
- Gradient: Vf(z) — Vf(z)

- With enough iterations and data, you will converge in
expectation to the true minimum

CS 534 [Spring 2017] - Ho

Stochastic Optimization

- Pro: Better for large datasets and often faster
convergence

-+ Con: Hard to reach high accuracy

- Con: Best classical methods can’t handle stochastic
approximation

-+ Con: Theoretical definitions for convergence not as well-
defined

CS 534 [Spring 2017] - Ho

Stochastic Gradient Descent (SGD)

- Randomized gradient estimate to minimize the function
using a single randomly picked example

EVf]=Vf
- The resulting update is of the form:

O =0 — YVol(f(x:),y;)

- Although random noise is introduced, it behaves like
gradient descent In its expectation

CS 534 [Spring 2017] - Ho

SGD Algorithm

///)
Initialize parameter # and learning rate n % /
. Stochastic Gradient RNV N
while not converged do y,

Randomly shufile training data
for:=1,-,N do
‘ 0" =0 — yVol(f(xi),v:)

end) ~___ I

end

https://wikidocs.net/3413

CS 534 [Spring 2017] - Ho

https://wikidocs.net/3413

Perceptron: Learning

- Perceptron uses SGD to learn the parameters

- Without loss of generality, can set learning parameter to
be 1

+ For each point:
- |f successfully classified, do nothing

- Incorrectly classified, update weight vector

I

wh = w+xy;

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

® o0
® o @

O O ® o , Initialize parameters
Training data O ® o

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

. L 4
E ' .

f f Update parameters

Randomly select point
— Incorrectly classified

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

Randomly select
another point —
correct classified do

% nothing

Randomly select
another point —
correct classified do

nothing

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

>

Randomly select
another point —
iIncorrectly classified

Update parameters

CS 534 [Spring 2017] - Ho

Perceptron Convergence Theorem

- Intuition: perceptron wi
learning problems com

| converge more quickly for easy

pared to large learning problems

+ Classify “easy” and “hard” via the margin

- Theorem. Suppose the perceptron algorithm is run on
a linearly separable data set D with margin v > 0.

Assume that ||z|| < 1 for all r € D. Then the algorithm
will converge after at most 2 updates.

CS 534 [Spring 2017] - Ho

Perceptron: [ssues

f data isn’t linearly separable, no guarantees of
convergence or training accuracy

- Even If training data is linearly separable, perceptron can
overtit

- Averaged perceptron (average weight vectors across all
terations) is an algorithmic modification that helps both
ISSues

CS 534 [Spring 2017] - Ho

Motivation: Need for Networks

- Perceptrons have very simple decision surface (linearly
separable functions)

- What if we connect several of them together?
- Error surface is not differentiable — why?

- Can’t apply gradient descent to find a good set of
welights

CS 534 [Spring 2017] - Ho

Perceptron: Revisited

What it we change the

INntroduce bias weights S .
activation function?

(input = 1)

weighted

sum unit step function

http://ataspinar.com/2016/12/22/the-perceptron/

CS 534 [Spring 2017] - Ho

http://ataspinar.com/2016/12/22/the-perceptron/

Neuron: Generalized Perceptron

input
variables
X1 variable
weights
X le
2 \
sz
X3 W3;
. Whj
Xn

neuron |j

vati output
z activation ! yj

function

eg: RelLU, sigmoid

http://dataminingtheworld.blogspot.com/

CS 534 [Spring 2017] - Ho

http://dataminingtheworld.blogspot.com/

Neuron: Sigmoid Unit

- Activation function is sigmoid function

1
1+ exp(—x)
- Nice property of sigmoid

o(x)

Oo(x)
70— o(x)(1 - o(x)

- Can derive gradient descent rules to train multi-layer
networks

CS 534 [Spring 2017] - Ho

Sigmoid Units vs Perceptron

+ Sigmoid units provide “soft” threshold
- Perceptrons provide “hard” thresholad

+ EXxpressive power Is the same: limited to linearly
separable instances

CS 534 [Spring 2017] - Ho

Neuron: Popular Activation Functions

- Sigmoid function

- Hyperbolic tangent function
f(x) = sinh(x)/cosh(x)
- Rectified linear unit (ReLLU)
f(x) = max(0,x)

- Softplus
f(x) = log(1 + exp(x))

CS 534 [Spring 2017] - Ho

https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

Neural Networks

CS 534 [Spring 2017] - Ho

Neural Networks

- Col
gra

ection of neurons that are connected in an acyclic

olg

+ Qutputs of some neurons become inputs to other
Nneurons

- Compute non-linear decision boundaries

- Often organized into distinct layers of neurons

- AKA Artificial Neural Networks (ANN) or Multi-Layer
Perceptrons (MLP)

CS 534 [Spring 2017] - Ho

Neural Networks: Architectures

2-layer neural network 3-layer neural network

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

Naming convention doesn’t count input layer

CS 534 [Spring 2017] - Ho

MLP: Feedforward Neural Network

Composition of neurons
with sigmoid activation
function

ypically, each unit of layer 1
IS connected to every unit of e
the previous layer t - 1 only

NoO cross-connections
between units In the same
layer

http://neuralnetworksanddeeplearning.com/chap1.html

CS 534 [Spring 2017] - Ho

http://neuralnetworksanddeeplearning.com/chap1.html

MLP: Expressiveness

+ Single sigmoid neuron has same representational power
as a perceptron: Boolean AND, OR, NOT, but not XOR

- Every boolean function can be represented by a network
with a single hidden layer, but may require exponential
number of hidden units compared to inputs

»+ Every bounded continuous function can be approximated
by a network with one, sufficiently hidden layer

-+ Any function can be approximated by a network with two
hidden layers

CS 534 [Spring 2017] - Ho

MLP: Layer Comparison

of Layers

Exclusive OR

Meshed Regions

General Regions

PaN

&

—

()
N

«

<
N

>

CS 534 [Spring 2017] - Ho

‘D

MLP: Prediction

- Single forward pass to predict for a new sample
- For each layer
- Compute the output of all neurons in the layer

- Copy this output as inputs to the next layer and repeat
until at the output layer

CS 534 [Spring 2017] - Ho

MLP: Learning Weights

- Assume the network structure (units and connections) is
given

- Learning problem is finding good set of weights

- Answer: Backpropogation = gradient descent + chain
rule

CS 534 [Spring 2017] - Ho

Backpropogation

CS 534 [Spring 2017] - Ho

Backpropogation Algorithm

Method of training neural

netWOrk Vla gradlent Back propagation of weights
descent
X
1
- Calculate error at output "
layer for each training 2

example

Propagate errors backward

through the network and X
update the weights !
aCCO rd I n g |y https://openi.nim.nih.gov/imgs/512/121/2716495/PMC2716495 bcr2257-1.png

CS 534 [Spring 2017] - Ho

https://openi.nlm.nih.gov/imgs/512/121/2716495/PMC2716495_bcr2257-1.png

Backpropogation Algorithm

- Assume fully connected network (all units in layer k are
connected to all units in layer k+1)

- N input units (x4, ..., XN)
-+ One hidden layer with M hidden units (h, ..., hwm)
- One output unit (f)

- Loss function: squared error

CS 534 [Spring 2017] - Ho

Backpropogation: Forward Pass

+ Forward computation

L(f(hl(Xh”' 7XN79h1)7”° 7hM(X17°” 7XN79h1)79f7y>

- MLP with single hidden layer

L(x,0,8) = 5 (y — UT6(WT)?

CS 534 [Spring 2017] - Ho

Backpropogation: Chain Rule

Chain rule of derivatives:

oL 9L Of 9L (Of dhy | Of Oh
(9X1 N of 8x1 N of 8h1 (9X1 | 8h2 8X1

CS 534 [Spring 2017] - Ho

Backpropogation: Shared Derivative

| ocal derivatives are shared-

oL 0L (af Ohy Of ah2>

Ox; _ Of \Ohy 051 Oy O,
OL _ 0L (Of Ohy Of oh,
(9X2 N of 6h1 8X2 8/72 8x2

CS 534 [Spring 2017] - Ho

Example: Backpropogation

- Simple neural network with two
iInputs, two hidden neurons
and two output neurons

- Activation function is sigmoid
function

Imagine single training set with
inputs (0.05, 0.10) and want

b1.35 b2 .60

output to be 0.01 and 0.09 1 1
and want to minimize squared

error

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Example: Forward Pass

hl =wl x 11+ w2 X 12
h2 = w3 X 11 + w4 X 12
ol =1/(1 4 exp —(wd x hl + w6 X h2))
1) Ve 02 =1/(14 exp—(w7 x hl + w8 X h2))

1
o1 = 5(01 — 61)* = 0.274811083

es2 = 0.023560026

€s1 T €62

€total

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Example: Backward Pass

e /,,] (.)””l“l (.)I“‘/(I/h'/ (.)l',‘/,,/“./

output Jws dnet dout,y Ows
h1
w5
outbut W0 N'net o1| outos E., = Y(target o - out,)?
Etotal = Eo1 + E02
b2
out,; = 1/1 + exp(—net,)
1 0
out,1
°- = 0ut01(1 — outol)
Onet,1
net,; = wd X outy; + wb X outyo + b2
81161301
= outhl + 040
Owb
Oe
4+ total
wHT = wd —
{ OwH

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Example: Backward Pass

(’)E’:”:’,lf (’)E‘o’,",l ()’I(lf; l ()]If f,’ 1
dw dout dnetp,y dun
(.)1".“1:“1'1 ()1:.111 (.)1-—.11')
: - = -+ 3 =
"“”li'l ‘)“”/i'l ‘)“”I.‘ll

b1 b2

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Backpropogation: Practical Considerations

- Do we need to pre-process the training data” If so, how?

- How do we choose the initial weights”?

ow do we choose an appropriate learning rate”?

- Are some activation functions better than others?

CS 534 [Spring 2017] - Ho

Pre-processing Data

In principle, can use any raw input-output data

Pre-process can help learning

Rescale continuous features: normalize to zero mean
and standard deviation of 1

De-correlate data: remove correlated features and
transformed data with diagonal covariance matrix

- Whiten data: convert diagonal covariance matrix to
identity matrix so all eigenvalues are the same

CS 534 [Spring 2017] - Ho

Pre-processing Data

original data zero-centered data

>
1"

CS 534 [Spring 2017] - Ho

normalized data

np.mean(X, axis = 0) .

Pre-processing Data

original data

10

~10

-10 -5

14

10

~10
-10

decorrelated data

-5 0 5 19

(data has diagonal
covariance matrix)

CS 534 [Spring 2017] - Ho

-10

10

whitened data

~10

=5 0 5

(covariance matrix is the
identity matrix)

10

Choosing Initial Weights

- All weights are treated the same way using gradient
descent —> do not initialize with the same values

-+ Generally start off weights with small random values that
do not cause saturation

- Works okay for small networks

-+ Proper initialization is an active area of research

CS 534 [Spring 2017] - Ho

Choosing Learning Rate

f learning rate is too small, it will take a long time to get
anywhere near the minimum of the error function

f learning rate Is too large, the weight updates will
overshoot the error minimum and weights will oscillate or

even diverge

- Solution: Babysit the learning process at the beginning
for small portion of training data

CS 534 [Spring 2017] - Ho

Choosing Learning Rate

loss

low learning rate

high learning rate

good learning rate

epoch

CS 534 [Spring 2017] - Ho

Activation Functions: Sigmoid

- Squashes numbers to [0, 1]

- Popular due to nice interpretation as
a saturating “firing rate” of neuron

+ (Con) Saturated neurons “kill” the /
gradients i
- (Con) Sigmoid outputs not zero- - J/ ‘‘‘‘‘‘‘‘‘‘

centered

- (Con) Exponential expensive to
compute

CS 534 [Spring 2017] - Ho

Activation Functions: Tanh

- Squashed numbers to [-1, 1]

- /ero-centered

nnnnnnnn

A A

AAAAAAAAAA

-+ (Con) Saturated neurons “kill” the
gradients =

CS 534 [Spring 2017] - Ho

Activation Functions: Rel LU

- Does not saturate in positive
region

- Very computationally efficient

+ Converges much faster than
sigmoid/tanh in practice (e.g., 6x)

- (Con) Not zero-centered B T

10 F

A A

nnnnnnnnnn

- (Con) What is the gradient for
negative region”?

CS 534 [Spring 2017] - Ho

Activation Functions:

| eaky RelLU

-+ Does not saturate
- Computationally efficient

- Converges much faster than
sigmoid/tanh

- Will not “die”

10

....................

CS 534 [Spring 2017] - Ho

Activation Functions: ELLU

- All benefits of Rel LU

fix)

- Does not die

- Closer to zero-mean outputs

- (Con) Requires exp()
computation f(x) = {

CS 534 [Spring 2017] - Ho

Activation Functions: In Practice

- Use RelLU and be careful with the learning rates

ry out Leaky RelLLU / ELU
- Try out tanh but don't expect too much

- Don’t use sigmoid

CS 534 [Spring 2017] - Ho

MNIST Dataset

+ Scanned 28 x 28 greyscale images of handwritten digits

- Training data

ATEEREREE
. ST 1S LERVARERP ARICIRD AN <
- 60,000 iImages A/ A2 BRI
750 E S
. P ARY, % 19] 18 8] 1313 [S
250 people 0999074970
bl

: 7 7
lest Data 00675006
2l Yl (el (g1 0] (7] (8] 3] [/] 5]

- 10,000 images

- Different 250 people

CS 534 [Spring 2017] - Ho

Experiment: 2 Layer Perceptron

/84 Input units, variable number of
hidden units, and 10 output units

hidden layer
input layer ‘ «‘)ut])ui layer
Activation function = logistic sigmoid @ Xl
"*-.\\‘ /,./" : \\\\ \ ‘|~‘\ .'/-_)
G D G
Sum of squared error function 2N TN
¢ ! : yw .‘\./

Stochastic variant of mini-batch
training

CS 534 [Spring 2017] - Ho

http://davidstutz.de/recognizing-handwritten-digits-mnist-dataset-twolayer-perceptron

Experiment: 2 Layer Perceptron

[[[[0.98
1 o
o o 0.96 |- =
—
§ 0.5 | . g 0.94
< <
—eo—v=0.5 0.92 —e— batch size 100 |
—a—v=0.1 —=— batch size 200
%0 200 400 600 800 “90 500 1,000 1,500 2,000
Hidden Units Epochs
(a) 500 epochs with batch size 100. (b) 500 epochs with learning rate v = 0.5.

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf

CS 534 [Spring 2017] - Ho

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf

Obstacles to Deep MLPs

Requires lots of labeled
tralnlng data 1005 ! Speed of Ie!arning: 4 hic!iden layers |

. | — Hidden layer 1 §

' Hidden layer 2 |
e Hidden layer 3 [3
| — Hidden layer 4]

Computationally extremely
expensive

Vanishing & unstable
gradients

10°°

Tra”"“ng can be SlOW and 0 100 200 300 200 500

Number of epochs of training

g et St u C k | n | Ocal http://neuralnetworksanddeeplearning.com/chap5.html
MinimMum

CS 534 [Spring 2017] - Ho

http://neuralnetworksanddeeplearning.com/chap5.html

Obstacles to Deep MLPs

Speed of learning: 4 hidden layers

Difficult to tune [iddenayera].

“ : : ; Hidden layer 2 ||
10-1 “T“ R Hidden |ayer3 _
: : | — Hidden layer 4 |]

ChOlce Of arChlteCture 102 ______________________ ______________________
(layers + activation |
function) |

Learning algorithm

0 100 200 300 400 500
Number of epochs of training

Hyperparameters

http://neuralnetworksanddeeplearning.com/chap5.html

CS 534 [Spring 2017] - Ho

http://neuralnetworksanddeeplearning.com/chap5.html

Convolutional Neural Networks (CNN)

- Specialized neural network for processing known, grid-
ike topology

- Powerful model for image, speech recognition
+ LeNet helped propel field of deep learning in 1988

- Use convolution instead of general matrix multiplication in
one of its layers

CS 534 [Spring 2017] - Ho

CNN: Comparison with NN

3-layer neural network

Regular NN does not scale
X;‘%:?i% well to full images — think
SN I =
e /,\‘:'//. ~ about200x200x 3

input layer
hidden layer 1 hidden layer 2 g
ConvNet architecture

Constrain architecture o
to look at width, oo

120,000 weights at first layer

OOOTCHA)] height
height, depth and

QOOO0K
. Ed . OOOOO K
avold fully-connecteo s RLOOOOV dth
network

CS 534 [Spring 2017] - Ho

CNN: Four Main Layers

- Convolutional layer — output neurons that are connected
to local regions in the input

RelLU layer — elementwise activation function

Pooling layer — perform a downsampling operation
along the spatial dimensions

Fully-connected layer — same as regular neural networks

CS 534 [Spring 2017] - Ho

Example

CNN

RELU RELU

=
=i
L
14
=
=
L
14

REEUSREU

— N 5

lCONV

CONV

|

.$E§EE§§EEEE

—_—

.+§H!! EW&ES

CONV | CONV

l

|V_J,. JM_ _, , gﬁ,:

lCONV

.%@I,EEE?QE

CONV

CS 534 [Spring 2017] - Ho

CNN: Convolution Layer

Filters always extend the
——full depth of input volume o
activation map

32x32x3 image /

5x5x3 filter
32 1 number to 28
B represent result of

> filter with small

chunk of image

Convolve the filter with the image 28
32 (i.e., slide over image spatially 1
3 computing dot products)

CS 534 [Spring 2017] - Ho

CNN: Convolution Layer

activation maps

YAE
Convolution Layer

IZ 111/

3 6
Stacking up multiple filters yields “new image”

CS 534 [Spring 2017] - Ho

28

CNN: Convolution Filters

Filters act as feature detectors from m s
original image

Network will learn filters that active .
when they see some type of visual)

feature (e.g., edge of some [-

Edge detection

orientation, blotch of some color,
etc.) 5

Only need to learn the weights of o
the filters A

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
CS 534 [Spring 2017] - Ho

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

CNN: Example Filters

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

CS 534 [Spring 2017] - Ho

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

CNN: RelLU

Input Feature Map Rectified Feature Map

J X

| ,.4".

white ="positive values Only non-negative values

Used after every convolution operation and
iIntroduces non-linearity

CS 534 [Spring 2017] - Ho

CNN: Pooling Layer

Make representations smaller

and more manageable
224x224x64

112x112x64

Helps control overfitting pool

- Operates over each activation
map independently : I

, 224 downsampling> L
- Common use of max pooling 112

224

(take max of spatial
neighborhood)

CS 534 [Spring 2017] - Ho

CNN: Pooling Example

Only non-negative valy

Rectified Feature Map

CS 534 [Spring 2017] - Ho

CNN: Fully-Connected Layer

- Traditional MLP using softmax activation function

- Generalization of logistic function to multi-class
problem

- Qutput probabillities for each class that sum to 1

- Qutput of convolutional and pooling layers represent
high-level features

CS 534 [Spring 2017] - Ho

LeNet 5 [LeCun et al., 1998]

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28
S2: f. maps C5: layer F6 layer OUTPUT

32x32
6@14x14 r 120

| O

‘ FuII coanectlon ‘ Gaussuan connections
Convolutions Subsampling Convolutlons Subsamplmg Full connection

—

32 X 32 pixel with largest character 20 x 20

Black and white pixel values are normalized to get mean of O,
standard deviation of 1

Qutput layer uses 10 RBF (radial basis activation function), one
for each digit

CS 534 [Spring 2017] - Ho

CNN: MNIST Dataset Results

. QOriginal dataset A '5 & 1
(60,000 images) 552 25
D 7S

+ Test error = 0.95% =4 9=3d

, _8 3 ¥ 3

- Distorted dataset 8->2 5->3 4->B 3->9
(540,000 artificial distortions

+ 60,000 images) :,2)4 P ;r.&l ; 5

- Test error = 0.8% f_' : Z_’ _q } 4/_' ;

Misclassified examples

CS 534 [Spring 2017] - Ho

Why is CNN Successful?

Compared to standard feedforward neural networks with
similarly-sized (5-7) layers

- CNNS have much fewer connections and parameters
—> easler to train

- Traditional fully-connected neural network is almost
impossible to train when initialized randomly

heoretically-best performance is likely only slightly
worse than vanilla neural networks

CS 534 [Spring 2017] - Ho

Neural Networks: When to Consider

- Noisy data

raining time is unimportant
-+ Form of target function is unknown or very complex

- Human readabillity of results is unimportant

CS 534 [Spring 2017] - Ho

