
Artificial Neural Networks
CS 534: Machine Learning

Slides adapted from Jinho Choi, Stuart Russell, Fei-Fei Li, Andrej Karpathy, Justin
Johnson, John Buillinaria, and Kyunghyun Cho

CS 534 [Spring 2017] - Ho

Class Logistics

• Homework #3 due March 21st

• Project proposal feedback on Canvas

• Project madness at beginning of class on March 21st

• 1 slide, 90 seconds presentation per group —
submission on Canvas by 11:59 pm March 20th

• Overview of project

CS 534 [Spring 2017] - Ho

Class Logistics: Project Presentation

• 8 group projects —> 4 groups per class

• 18 minutes per group (includes Q&A)

• Allocate 2-3 minutes for question and answer

• Avoid downtime by using single computer for
presentations — must be sent (email) to me by 9 AM
on the morning of class

CS 534 [Spring 2017] - Ho

Class Logistics: Presentation Order

• 4/18

1. Reza, Zelalem

2. Qiyang, Zining, Jiayu

3. Yidong, Qiyang

4. Jing, Yi

• 4/20

1. Steve, Katherine

2. Funing, Yunyi, Xiaokun

3. Damian

4. Olivia, Tomer

CS 534 [Spring 2017] - Ho

Motivation: Human Brain
• Contains 1011 neurons, each

with up to 105 connections

• Each neuron is fairly slow
with switching time of 1 ms

• Computers at least 106
times faster in raw switching
speed

• Brain is fast, reliable, and
fault-tolerant

CS 534 [Spring 2017] - Ho

Motivation: Neuron

• Electrically excitable cell
that processes and
transmits information

• Information comes in on
the dendrites (input)

• If neuron excited/activated,
send a spike of electrical
activity to axon (output)

CS 534 [Spring 2017] - Ho

Artificial Neural Networks

• Based on assumption that a computational architecture
similar to brain would duplicate its abilities

• Many neuron-like threshold switching units

• Many weighted interconnections among units

• Highly parallel, distributed process

• Many different kinds of architectures

CS 534 [Spring 2017] - Ho

Review: Linear Regression (MLR)

• Hypothesis of the form

• Learn weights to minimize least squares problem

• Alternative to matrix inversion: gradient descent

f(x) = �0 +
pX

i=1

xi�i

min
�

(y �X�)>(y �X�) =) �̂ = (X>X)�1X>y

CS 534 [Spring 2017] - Ho

Review: Gradient Descent (GD)

• Simple and popular
algorithm

• Idea: Take a step
proportional to the
negative of the gradient

• Eventually will find the
optimal (minimum) point

✓i := ✓i � ⌘
@L

@✓i

CS 534 [Spring 2017] - Ho

Example: GD for MLR

• Optimization problem:

• Gradient update:

min
�

||y � �X||22

�+ = � +
⌘

N

X

i

(yi � xi�)xi

CS 534 [Spring 2017] - Ho

Perceptron [Rosenblatt, 1957]

• Uses hyperplane classifier
to map input to binary
output

• Compute linear
combination of the inputs
and threshold it

fw(x) = sign(x ·w)

=

(
+1 if x ·w > 0

�1 otherwise

CS 534 [Spring 2017] - Ho

Neuron —> Perceptron

CS 534 [Spring 2017] - Ho

Perceptron Algorithm

• Loss function uses functional margin

• Solve via gradient descent

• But what if we want it to be online (does not need to
consider the entire data set at the same time)?

`(y, fw(x)) =
X

n

w

>
xiyi

CS 534 [Spring 2017] - Ho

Gradient Descent: Reformulated

• Recall empirical risk:

• Think of GD in terms of ERM:

• “True” gradient descent is a batch algorithm

REMP[f(x)] =
1

N

X

n

`(f(xn), yn)

learning rate or gain

rREMP[f(x)]✓+ = ✓ � �
1

N

X

n

r✓`(f(xn), yn)

CS 534 [Spring 2017] - Ho

Motivation: Stochastic Optimization

• Online / streaming data —> can’t wait for all

• Non-stationary data (moving target) —> model should
not be static

• Sufficient samples means information is redundant
amongst samples —> more frequent, noisy updates

CS 534 [Spring 2017] - Ho

Stochastic Optimization

• Idea: Estimate function and gradient from a small, current
subsample of your data

• Function:

• Gradient:

• With enough iterations and data, you will converge in
expectation to the true minimum

f(x) ! f̃(x)

rf(x) ! r̃f(x)

CS 534 [Spring 2017] - Ho

Stochastic Optimization

• Pro: Better for large datasets and often faster
convergence

• Con: Hard to reach high accuracy

• Con: Best classical methods can’t handle stochastic
approximation

• Con: Theoretical definitions for convergence not as well-
defined

CS 534 [Spring 2017] - Ho

Stochastic Gradient Descent (SGD)

• Randomized gradient estimate to minimize the function
using a single randomly picked example

• The resulting update is of the form:

• Although random noise is introduced, it behaves like
gradient descent in its expectation

E[r̃f] = rf

✓+ = ✓ � �r✓`(f(xi), yi)

CS 534 [Spring 2017] - Ho

SGD Algorithm

https://wikidocs.net/3413

Initialize parameter ✓ and learning rate ⌘
while not converged do

Randomly shu✏e training data

for i = 1, ·, N do

✓+ = ✓ � �r✓`(f(xi), yi)
end

end

https://wikidocs.net/3413

CS 534 [Spring 2017] - Ho

Perceptron: Learning
• Perceptron uses SGD to learn the parameters

• Without loss of generality, can set learning parameter to
be 1

• For each point:

• If successfully classified, do nothing

• Incorrectly classified, update weight vector

w

+ = w + xiyi

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

Training data

Initialize parameters

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

Randomly select point 
— incorrectly classified

Update parameters

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

Randomly select
another point —

correct classified do
nothing

Randomly select
another point —

correct classified do
nothing

CS 534 [Spring 2017] - Ho

Perceptron: Learning Example

Randomly select
another point —

incorrectly classified

Update parameters

CS 534 [Spring 2017] - Ho

Perceptron Convergence Theorem

• Intuition: perceptron will converge more quickly for easy
learning problems compared to large learning problems

• Classify “easy” and “hard” via the margin

• Theorem. Suppose the perceptron algorithm is run on

a linearly separable data set D with margin � > 0.
Assume that ||x|| 1 for all x 2 D. Then the algorithm

will converge after at most

1
�2 updates.

CS 534 [Spring 2017] - Ho

Perceptron: Issues

• If data isn’t linearly separable, no guarantees of
convergence or training accuracy

• Even if training data is linearly separable, perceptron can
overfit

• Averaged perceptron (average weight vectors across all
iterations) is an algorithmic modification that helps both
issues

CS 534 [Spring 2017] - Ho

Motivation: Need for Networks

• Perceptrons have very simple decision surface (linearly
separable functions)

• What if we connect several of them together?

• Error surface is not differentiable — why?

• Can’t apply gradient descent to find a good set of
weights

CS 534 [Spring 2017] - Ho

Perceptron: Revisited

http://ataspinar.com/2016/12/22/the-perceptron/

What if we change the
activation function?Introduce bias 

(input = 1)

http://ataspinar.com/2016/12/22/the-perceptron/

CS 534 [Spring 2017] - Ho

Neuron: Generalized Perceptron

http://dataminingtheworld.blogspot.com/

http://dataminingtheworld.blogspot.com/

CS 534 [Spring 2017] - Ho

Neuron: Sigmoid Unit

• Activation function is sigmoid function

• Nice property of sigmoid

• Can derive gradient descent rules to train multi-layer
networks

�(x) =
1

1 + exp(�x)

@�(x)

@x

= �(x)(1� �(x))

CS 534 [Spring 2017] - Ho

Sigmoid Units vs Perceptron

• Sigmoid units provide “soft” threshold

• Perceptrons provide “hard” threshold

• Expressive power is the same: limited to linearly
separable instances

CS 534 [Spring 2017] - Ho

Neuron: Popular Activation Functions

• Sigmoid function

• Hyperbolic tangent function 

• Rectified linear unit (ReLU)  

• Softplus https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

f(x) = sinh(x)/cosh(x)

f(x) = max(0,x)

f(x) = log(1 + exp(x))

https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

CS 534 [Spring 2017] - Ho

Neural Networks

CS 534 [Spring 2017] - Ho

Neural Networks
• Collection of neurons that are connected in an acyclic

graph

• Outputs of some neurons become inputs to other
neurons

• Compute non-linear decision boundaries

• Often organized into distinct layers of neurons

• AKA Artificial Neural Networks (ANN) or Multi-Layer
Perceptrons (MLP)

CS 534 [Spring 2017] - Ho

Neural Networks: Architectures

2-layer neural network 3-layer neural network

Naming convention doesn’t count input layer

CS 534 [Spring 2017] - Ho

MLP: Feedforward Neural Network

• Composition of neurons
with sigmoid activation
function

• Typically, each unit of layer t
is connected to every unit of
the previous layer t - 1 only

• No cross-connections
between units in the same
layer

http://neuralnetworksanddeeplearning.com/chap1.html

http://neuralnetworksanddeeplearning.com/chap1.html

CS 534 [Spring 2017] - Ho

MLP: Expressiveness
• Single sigmoid neuron has same representational power

as a perceptron: Boolean AND, OR, NOT, but not XOR

• Every boolean function can be represented by a network
with a single hidden layer, but may require exponential
number of hidden units compared to inputs

• Every bounded continuous function can be approximated
by a network with one, sufficiently hidden layer

• Any function can be approximated by a network with two
hidden layers

CS 534 [Spring 2017] - Ho

MLP: Layer Comparison

CS 534 [Spring 2017] - Ho

MLP: Prediction

• Single forward pass to predict for a new sample

• For each layer

• Compute the output of all neurons in the layer

• Copy this output as inputs to the next layer and repeat
until at the output layer

CS 534 [Spring 2017] - Ho

MLP: Learning Weights

• Assume the network structure (units and connections) is
given

• Learning problem is finding good set of weights

• Answer: Backpropogation = gradient descent + chain
rule

CS 534 [Spring 2017] - Ho

Backpropogation

CS 534 [Spring 2017] - Ho

Backpropogation Algorithm
• Method of training neural

network via gradient
descent

• Calculate error at output
layer for each training
example

• Propagate errors backward
through the network and
update the weights
accordingly https://openi.nlm.nih.gov/imgs/512/121/2716495/PMC2716495_bcr2257-1.png

https://openi.nlm.nih.gov/imgs/512/121/2716495/PMC2716495_bcr2257-1.png

CS 534 [Spring 2017] - Ho

Backpropogation Algorithm

• Assume fully connected network (all units in layer k are
connected to all units in layer k+1)

• N input units (x1, …, xN)

• One hidden layer with M hidden units (h1, …, hM)

• One output unit (f)

• Loss function: squared error

CS 534 [Spring 2017] - Ho

Backpropogation: Forward Pass

• Forward computation

• MLP with single hidden layer

L(f(h1(x1, · · · ,xN ,✓h1), · · · , hM (x1, · · · ,xN ,✓h1),✓f , y)

L(x, y, ✓) =
1

2
(y �U

>
�(W>

x))2

CS 534 [Spring 2017] - Ho

Backpropogation: Chain Rule

CS 534 [Spring 2017] - Ho

Backpropogation: Shared Derivative

CS 534 [Spring 2017] - Ho

Example: Backpropogation
• Simple neural network with two

inputs, two hidden neurons
and two output neurons

• Activation function is sigmoid
function

• Imagine single training set with
inputs (0.05, 0.10) and want
output to be 0.01 and 0.09
and want to minimize squared
error

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

Example: Forward Pass

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

h1 = w1⇥ i1 + w2⇥ i2

h2 = w3⇥ i1 + w4⇥ i2

o1 = 1/(1 + exp�(w5⇥ h1 + w6⇥ h2))

o2 = 1/(1 + exp�(w7⇥ h1 + w8⇥ h2))

e

ô1

=

1

2

(o1� ô1)

2

= 0.274811083

e

ô2

= 0.023560026

e

total

= e

ô1

+ e

ô2

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

Example: Backward Pass

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

out

o1

= 1/1 + exp(�net

o1

)

@out
o1

@net
o

1

= out

o1

(1� out

o1

)

net

o1

= w5⇥ out

h1

+ w6⇥ out

h2

+ b2

@net
o1

@w5
= out

h1

+ 0 + 0

w5+ = w5� ⌘
@e

total

@w5

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

Example: Backward Pass

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

CS 534 [Spring 2017] - Ho

Backpropogation: Practical Considerations

• Do we need to pre-process the training data? If so, how?

• How do we choose the initial weights?

• How do we choose an appropriate learning rate?

• Are some activation functions better than others?

CS 534 [Spring 2017] - Ho

Pre-processing Data
• In principle, can use any raw input-output data

• Pre-process can help learning

• Rescale continuous features: normalize to zero mean
and standard deviation of 1

• De-correlate data: remove correlated features and
transformed data with diagonal covariance matrix

• Whiten data: convert diagonal covariance matrix to
identity matrix so all eigenvalues are the same

CS 534 [Spring 2017] - Ho

Pre-processing Data

CS 534 [Spring 2017] - Ho

Pre-processing Data

CS 534 [Spring 2017] - Ho

Choosing Initial Weights

• All weights are treated the same way using gradient
descent —> do not initialize with the same values

• Generally start off weights with small random values that
do not cause saturation

• Works okay for small networks

• Proper initialization is an active area of research

CS 534 [Spring 2017] - Ho

Choosing Learning Rate

• If learning rate is too small, it will take a long time to get
anywhere near the minimum of the error function

• If learning rate is too large, the weight updates will
overshoot the error minimum and weights will oscillate or
even diverge

• Solution: Babysit the learning process at the beginning
for small portion of training data

CS 534 [Spring 2017] - Ho

Choosing Learning Rate

CS 534 [Spring 2017] - Ho

Activation Functions: Sigmoid
• Squashes numbers to [0, 1]

• Popular due to nice interpretation as
a saturating “firing rate” of neuron

• (Con) Saturated neurons “kill” the
gradients

• (Con) Sigmoid outputs not zero-
centered

• (Con) Exponential expensive to
compute

CS 534 [Spring 2017] - Ho

Activation Functions: Tanh

• Squashed numbers to [-1, 1]

• Zero-centered

• (Con) Saturated neurons “kill” the
gradients

CS 534 [Spring 2017] - Ho

Activation Functions: ReLU
• Does not saturate in positive

region

• Very computationally efficient

• Converges much faster than
sigmoid/tanh in practice (e.g., 6x)

• (Con) Not zero-centered

• (Con) What is the gradient for
negative region?

CS 534 [Spring 2017] - Ho

Activation Functions: Leaky ReLU

• Does not saturate

• Computationally efficient

• Converges much faster than
sigmoid/tanh

• Will not “die”

CS 534 [Spring 2017] - Ho

Activation Functions: ELU

• All benefits of ReLU

• Does not die

• Closer to zero-mean outputs

• (Con) Requires exp()
computation

f(x) =

(
x x > 0

↵(exp(x� 1) x 0

CS 534 [Spring 2017] - Ho

Activation Functions: In Practice

• Use ReLU and be careful with the learning rates

• Try out Leaky ReLU / ELU

• Try out tanh but don’t expect too much

• Don’t use sigmoid

CS 534 [Spring 2017] - Ho

• Scanned 28 x 28 greyscale images of handwritten digits

• Training data

• 60,000 images

• 250 people

• Test Data

• 10,000 images

• Different 250 people

MNIST Dataset

CS 534 [Spring 2017] - Ho

Experiment: 2 Layer Perceptron

• 784 input units, variable number of
hidden units, and 10 output units

• Activation function = logistic sigmoid

• Sum of squared error function

• Stochastic variant of mini-batch
training

http://davidstutz.de/recognizing-handwritten-digits-mnist-dataset-twolayer-perceptron

http://davidstutz.de/recognizing-handwritten-digits-mnist-dataset-twolayer-perceptron

CS 534 [Spring 2017] - Ho

Experiment: 2 Layer Perceptron

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf

http://davidstutz.de/wordpress/wp-content/uploads/2014/03/seminar.pdf

CS 534 [Spring 2017] - Ho

Obstacles to Deep MLPs
• Requires lots of labeled

training data

• Computationally extremely
expensive

• Vanishing & unstable
gradients

• Training can be slow and
get stuck in local
minimum

http://neuralnetworksanddeeplearning.com/chap5.html

http://neuralnetworksanddeeplearning.com/chap5.html

CS 534 [Spring 2017] - Ho

Obstacles to Deep MLPs

• Difficult to tune

• Choice of architecture
(layers + activation
function)

• Learning algorithm

• Hyperparameters
http://neuralnetworksanddeeplearning.com/chap5.html

http://neuralnetworksanddeeplearning.com/chap5.html

CS 534 [Spring 2017] - Ho

Convolutional Neural Networks (CNN)

• Specialized neural network for processing known, grid-
like topology

• Powerful model for image, speech recognition

• LeNet helped propel field of deep learning in 1988

• Use convolution instead of general matrix multiplication in
one of its layers

CS 534 [Spring 2017] - Ho

CNN: Comparison with NN
3-layer neural network

Constrain architecture
to look at width,

height, depth and
avoid fully-connected

network

ConvNet architecture

Regular NN does not scale
well to full images — think

about 200 x 200 x 3 =
120,000 weights at first layer

CS 534 [Spring 2017] - Ho

CNN: Four Main Layers

• Convolutional layer — output neurons that are connected
to local regions in the input

• ReLU layer — elementwise activation function

• Pooling layer — perform a downsampling operation
along the spatial dimensions

• Fully-connected layer — same as regular neural networks

CS 534 [Spring 2017] - Ho

CNN: Example

CS 534 [Spring 2017] - Ho

CNN: Convolution Layer

Convolve the filter with the image 
(i.e., slide over image spatially

computing dot products)

1 number to
represent result of

filter with small
chunk of image

Filters always extend the
full depth of input volume

CS 534 [Spring 2017] - Ho

CNN: Convolution Layer

Stacking up multiple filters yields “new image”

CS 534 [Spring 2017] - Ho

CNN: Convolution Filters

• Filters act as feature detectors from
original image

• Network will learn filters that active
when they see some type of visual
feature (e.g., edge of some
orientation, blotch of some color,
etc.)

• Only need to learn the weights of
the filters

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

CS 534 [Spring 2017] - Ho

CNN: Example Filters

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

CS 534 [Spring 2017] - Ho

CNN: ReLU

Used after every convolution operation and
introduces non-linearity

CS 534 [Spring 2017] - Ho

CNN: Pooling Layer

• Make representations smaller
and more manageable

• Helps control overfitting

• Operates over each activation
map independently

• Common use of max pooling
(take max of spatial
neighborhood)

CS 534 [Spring 2017] - Ho

CNN: Pooling Example

CS 534 [Spring 2017] - Ho

CNN: Fully-Connected Layer

• Traditional MLP using softmax activation function

• Generalization of logistic function to multi-class
problem

• Output probabilities for each class that sum to 1

• Output of convolutional and pooling layers represent
high-level features

CS 534 [Spring 2017] - Ho

LeNet 5 [LeCun et al., 1998]

• 32 x 32 pixel with largest character 20 x 20

• Black and white pixel values are normalized to get mean of 0,
standard deviation of 1

• Output layer uses 10 RBF (radial basis activation function), one
for each digit

CS 534 [Spring 2017] - Ho

CNN: MNIST Dataset Results

• Original dataset 
(60,000 images)

• Test error = 0.95%

• Distorted dataset 
(540,000 artificial distortions
+ 60,000 images)

• Test error = 0.8%
Misclassified examples

CS 534 [Spring 2017] - Ho

Why is CNN Successful?

Compared to standard feedforward neural networks with
similarly-sized (5-7) layers

• CNNS have much fewer connections and parameters
—> easier to train

• Traditional fully-connected neural network is almost
impossible to train when initialized randomly

• Theoretically-best performance is likely only slightly
worse than vanilla neural networks

CS 534 [Spring 2017] - Ho

Neural Networks: When to Consider

• Noisy data

• Training time is unimportant

• Form of target function is unknown or very complex

• Human readability of results is unimportant

