Support Vector Machine

CS 534: Machine Learning

Slides adapted from David Sontag, Luke Zettlermoyer, Carlos Guestrin, Vibhav Gogate,
Jason Weston, Trevor Hastie, and Rob Tibshirani



Review: LDA & Logistic Regression

- DA assumes class conditional densities are multivariate
normal with same covariance and different mean

- Logistic regression is generalized linear model with logit
iNk

- Both estimate linear decision boundaries in similar but
different ways
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Hyperplane

yperplane in p dimensions is a flat affine subspace of
dimension p - 1

- General equation for a hyperplane

Bo + P1x1 + oo + -+ + Ppxy =0

- Normal vector 8 = (51, B2, - - , Bp) points in the direction
orthogonal to the surface of a hyperplane
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Hyperplane: Pictorially
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Figure 4.15 (Hastie et al.)
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Two-Class Problem

. If the data is truly linearly ! ’
separable, can we find the . g/
hyperplane that separates the ¢
classes in our feature space .. // e °

- Which separator is optimal if | / e
there are many options?? .
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Support Vector Machine (SVM)

- Introduced by Boser, Guyon,
and Vapnik in 1992

-+ Chose the linear separator with
the largest margin

- Robust to outliers

+ (Good according to intuition,
theory, and practice
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SVM: Key |deas

Find large margin separator to improve generalization
- Use optimization to find solution with few errors

Use kernel trick to make large feature spaces
computationally efficient

Empirically good performance in many fields such as
text, iImage recognition, bioinformatics, etc.
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Key Idea #1: Maximal Margin

- Want to enforce the following
constraint for every data point

Go+ 0B -x; > +M, y; = +1

o+ B -x; < —-M, y; =—1

+— -+ Equivalent to linear constraints

vi(Bo+ 8 -x;) > M
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Key ldea #1: Maximal Margin

- Pose it as a constrained optimization problem

- Let M denote the distance of the margin

max M
/8750

s.t.y | 7 =1 < controls for complexity

7
Yi(Bo+ B -x;) > M, Vi
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Key ldea #1: Maximal Margin

- SImplify the optimization problem by removing the norm

constraint

1
- .X
(i

(Bo+B-x1) = ||B||M

- We can arbitrarily scale the norm vector to satisfy these
iInequalities, so for convenience:
1 Maximizing margin IS
M = N equivalent to
MiNimizing norm!
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Key ldea #1: Maximal Margin

- Equivalent optimization problem

min
min 8]

s.t. Yi(Bo+ 8 -%x;) > 1, Vi
- Example of a convex quadratic program

-+ Polynomial time algorithms to solve —> very efficient

CS 534 [Spring 2017] - Ho



Key ldea #1: Maximal Margin

Moving these points Support vectors: data points on
will not change our :‘_Ihe “margin” hyperplanes
separating hyperplanes

What about non-separable case”?
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Minimize Errors: O-1 Loss

- Try to find weights that violate as few constraints as
possible

Lty o£sign()}
//

g}iﬁrol(HBH + (yi, B - %))

s.t. yi(Bo+8-x;) > 1

- Minimizing O-1 loss is NP-hard in the worst case
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Key ldea #2: Slack

- Introduce the notion of “slack”
variables

- If functional margin is correct, o
don’t care © Y¥o o©

- If functional margin is incorrect | Tmergn
(< 1), pay linear penalty @ ®

- Modify the constraint: ©
min || 3|

s.t. yi(Bo+ 8 -%x;) > (1 —&;),Vi & > O,Z& <C

CS 534 [Spring 2017] - Ho




Key ldea #2: Slack

|| : T
M = 13

Figure 12.1 (Hastie et al.)
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Key ldea #2: Slack

- What is the optimal value of the slack variable as a
function of the hyperplane”?

- |f functional margin is correct:

Yi(Bo+ B -%x;) 21— & =0
- If functional margin is incorrect

Ui(Bo+ 8 -x;) <1 =& =1—y;(Bo+ B -%x;)
- Optimal slack variable

& = max(0,1 — y;(Bo + B -x;))
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Recap: Classification Loss

o - Misclassification
Exponential
Binomial Deviance
2 — —— Squared Error
—— Support Vector
S _|
) (Q\/
n
3 -
S |
0 |
Hinge loss / support

vector Is tightest convex
upper bound on O-1 loss

Figure 10.4 (Hastie et al.)
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Key |dea #2: Slack

-+ Convert to an unconstrained optimization problem

min (,3% + C'Zmax((), 1 —yi(Bo+ 8- Xz))>
- Equivalent form looks like regularization term + hinge loss
- As C gets large, have to separate the data

- As C gets small, ignores the data entirely
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C Regularization Parameter
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Linear SVM

Example

Test Error:

0.21

Bayes Error:

Test Error:

Bayes Error:

0.01

O —

10000

C =

Figure 12.2 (Hastie et al.)
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Fallure of Linear Boundaries

Sometimes a linear
boundary won’t work.
What should we do in

this case”?
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Feature Expansion

- Enlarge the space of features by including
transformations

Example: z7, ©3, 129, T125

- Feature space dimension from p to D where D > p

- Fit SVM on new feature space —> non-linear decision
boundaries in original space
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Example: Cubic Polynomials

2 —> 9 features

SVM on new feature
space solves the =<
problem in the lower-
dimensional space ¥

s there a more elegant s
and controlled way to
introduce nonlinearities”
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Key ldea #3: Kernels

- Solve for hyperplane in high dimensional space where
data Is separable

- High dimensional feature spaces at no extra cost
- If D is very large, many more parameters to learn than in

original space. Can we use just the data points to learn
the separating hyperplane?
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SVM: Optimization Problem

» Primal problem
min (53 +CY max(0,1 - yi(Bo + 8- xi>>)
- Computationally Con\;enient to express SVM classifier as
min 18]+ €36
s.t. & >0, yi(Bo+B8-%x) 2 (1 —-&),V
- This Is a quadratic program
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Review: Lagrange Duality

- Bound or solve an optimization problem via a different
optimization problem

- Optimization problems (even non-convex) can be
transformed to their dual problems

- Purpose of the dual problem is to determine the lower
bounds for the optimal value of the original problem

- Sometimes, solving dual problem is easier
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Review: Lagrangian

Original (primal) problem

min  fo(x)
S.t fk(x)go,k: ,2, ,K
hi(z)=0,7=1,2, J

@ Posmwty constraints

Lagrangian function
L(z, A\, v) ) + Z fr(z) + Z@

Lagrange multipliers or dual variables
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Review: Dual Problem

Primal problem

min fo(z)
s.t. fr(x) <0,k=1,2,--- K
h](aj):O)]: 727°°°7J

Dual problem
max g(A,v) = inf L(x, A, v)
subject to A >0

g(Av) < L(x, A\, v) < fol)
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Karush-Kuhn-Tucker Conditions

+ For general optimization problem, satistying Karush-Kuhn-
Tucker (KKT) conditions means zero duality gap between
primal and dual solutions

- Stationarity: 0 € 9 fo(x) + Z MO fr () + Z v;0h;(x)
k J

- Complementary slackness: \ fi.(x) = 0, Vi

- Primal feasibility: fx(z) <0, hij(x) =0, Vi,

- Dual feasibility: A > 0, VEk
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SVM: Lagrange Function

- Lagrange (primal) function

1
- glIBlE+C 3¢

_Zazyzﬁ Xz"‘ﬁO 1_52 Z:uzgz

- Dual vanables

a; >0, ;=0
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SVM: Minimize w.r.t. Primal

- Minimize with respect to primal variables

g—g = 3 — Z%szz = 0= 0= Z%y@Xz
850 ;yz@z =0
oL

agi:C_Oéi_Mi:OjOéi:C_ﬂi
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SVM: KKT Conditions

- Subset of KKT conditions:

iy (B-x;i+ 80— (1—-¢&)] =0
pi& =0
vi(B-xi+Po) —(1—=&) >0

CS 534 [Spring 2017] - Ho



SVM: Complementary Slackness

- Look at data points and dual variables

- Non support vectors: points correctly classified
a;i=0=pu; #0=& =0

- Margin support vectors: points on margin correctly
classified

O<Ck7;<C:>,UJ7;#O$€Z':O

- Non-margin support vectors: points incorrectly
classified
a;=C=u=0=%¢ >0

CS 534 [Spring 2017] - Ho



SVM: Primal Solution via Dual Variable

Final solution as linear combination of training data

B = Z Y X
Sparse

Non-support vectors
a; =0

Support vectors
a,; > 0

http://rwarloplabs.com/machinelearning/posts/svm.php
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http://rwarloplabs.com/machinelearning/posts/svm.php

SVM: Dual Problem

- Substitute primal optimal solution into dual objective

—HZOzzyZXZHerCZfz
—Zozz U ( Zoz]yng X + Bo) — (1= &)]

— Z — O gz
=D ai— 3 L D iaYiYX, X,
i |
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SVM Primal vs Dual

- Primal problem: learn p parameters

min (ﬁ% + C’ZmaX(O, 1 —yi(Bo+ 8- Xz)>)

- Dual problem: learn N parameters
)

s.t. 0 < oy <, W,Zaiyi =0

- T
- Dual form only involves (x; x;)
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Inner Products & Support Vectors

Inner product provide some measure of ‘similarity’

In Euclidean space, inner product is dot product
<X, y>S=X'y= Z:L‘iyi,where x,y € R"

- Can rewrite the dual problem to use inner products

maXZozz — — LL@Z&jyzyj < X;, X5 >

? J

s.t. 0 < a; <C, W,Zaiyi =0
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Key ldea #3: Kernels

- Feature map (original feature to new feature space):
®:x - ®(x),RP - R”

- Hyperplane:
f(x) =08 2(x;) + Bo

» Primal problem:

min (,8% + C’Zmax((), 1 —yi(Bo+ 13- (I)(Xz))))
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Example: Quadratic Features

d: R > R3

(:UlaxQ) = (21,22,23) c— (ZU%, \/(2)3313327:6%)
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Key ldea #3: Kernels

- Primal solution with respect to dual:
=) a;y;0(x5) - D(x) + Bo
J

- Dual problem:

maXZozz — — LLOzza]yzy] < P(x;), P(x;) >

? J

s.t. 0 S ; < C, Vi,ZCkiyi =0
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Key ldea #3: Kernels

- Primal space: need to learn in the new D dimension
space

- Dual space: only needs to compute the inner product
between the pairs to learn N dimensional vector

Introduce the notion of a kernel (finally):

K(X@,Xj) =< @(Xi),q)(Xj) >
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Key ldea #3: Kernels

- Dual problem
1
maxz i — Z Z oYy K (X, %)
i i
s.t. 0 < oy <, W,Z%yi =0

- Kernel function is used to make non-linear feature map

-+ Think of kernel measure as similarity
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INntuition ot Kernels

2 very similar vectors that predict different classes tend to
maximize the margin width

A
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INturtion of Kernels

2 similar vectors that predict same class are redundant,
keep the one closer to the margin

A
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INntuition ot Kernels

2 dissimilar vectors that predict same class don’t count
at all
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Polynomial SVM

Kernel:
K(x;,x5) = (x; - x;)°

Example: polynomial of degree 2

Explicit computation:

O((z1,22)) - P((Z1,32)) = (22, V22129, 23) - (83, V2% 152, T3)

2 ~2 ~ A 2~2
= x{x] + 2212120222 + 575

Kernel: - -
K(x,%) = (x-%)?
= 21T° + 201812000 + T5T5
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Benetfits of Kernels

- Efficient: often times easier than computing feature map
and then dot product

+ Especially fromm memory perspective — need to store
less

- Flexibllity: function chosen arbitrary so long as existence
of feature map Is guaranteed
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Common Kernels

Name Kernel Function

Polynomials of degree exactly d K(u,v)=(u-v)*
Polynomials of degree up to d K(u,v)=(u-v+ l)d
Gaussian / Radial K(u,v) = exp (—7| u— v \3)
Sigmoid (neural network) K(u,v) = tanh(nu - v + v)

Active area of research!
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xample: Nonlinear Kernels

SVM - Radial Kernel in Feature Space

SVM - Degree-4 Polynomial in Feature Space

-
i

g
|l
Il
I\
l‘
I‘
\ \
o
f
Training Error: 0.160 Nig »
Test Error: 0.218 \“\\\ \
\\\ .l

Bayes Error:  0.210

Training Error: 0.180
Test Error: 0.245
Bayes Error:  0.210

Figure 12.3 (Hastie et al.)
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Example: Radial Kernel Curves

Test Error Curves — SVM with Radial Kernel

Y =09 v=1 v = 0.9 v = 0.1

lest Error

1e-01 1e+01 1e+03 1e-01 1e+01 1e+03 1e-01 1e+01 1e+03 1e-01 1e+01 1e+03

C

Figure 12.6 (Hastie et al.)
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Kernel SVM: Overditting

- Huge feature space with kernels — what about
overfitting”?

- SVM theory says that a solution with a large margin
leads to good generalization

- But overfitting Is always likely at some point in time
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Example: Skin of Orange

-+ 2 class problem
+ First class as 4 standard normal independent features

- Second class has 4 standard normal independent
features but conditioned on the 2-norm being between 9
and 16

- Augment features with 6 additional standard Gaussian
noise features
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Example: Kernel SVM

TABLE 12.2. Skin of the orange: Shown are mean (standard error of the mean)
of the test error over 50 simulations. BRUTO fits an additive spline model adap-
tively, while MARS fits a low-order interaction model adaptively.

Test Error (SE)
Method No Noise Features Six Noise Features
1 SV Classifier 0.450 (0.003) 0.472 (0.003)
2 SVM/poly 2 0.078 (0.003) 0.152 (0.004)
3 SVM/poly 5 0.180 (0.004) 0.370 (0.004)
4 SVM/poly 10 0.230 (0.003) 0.434 (0.002)
5 BRUTO 0.084 (0.003) 0.090 (0.003)
6 MARS 0.156 (0.004) 0.173 (0.005)
Bayes 0.029 0.029
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Kernel SVM: Overditting

- Control overfitting by
+ Setting C via cross-validation
+ Choose better kernel

- Vary parameters of the kernel (i.e., width of Gaussian,
etc.)
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Multi-class SVM

One versus all; Fit K different 2-class SVM classifiers,

each class versus the rest. Classify for the largest value

One-vs-all (one-vs-rest):
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https://houxianxu.github.io/2015/04/25/support-vector-machine/
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Multi-class SVM

One versus one: Fit all pairwise classifiers. Classify using
the class that wins the most pairwise competitions

A (-
A

2

NV > |og /s

A
N
— =

https://www.slideshare.net/Paxcel/binary-and-multi-class-strategies-for-machine-learnin

O
>
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SVM vs Logistic Regression

- For linear kernel, rephrase SVM optimization problem:

min (Z max(0, 1 — y; f(xi)) + Aﬂ%)

+ Loss + penalty i = SVM Loss

= |ogistic Regression Loss

- Similar to logistic regression

- Hinge loss is slightly different o -
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SVM vs Logistic Regression

- For (nearly) separable classes, SVM and LDA is better
than logistic regression

- When not, logistic regression with ridge penalty and SVM
are very similar

+Logistic regression provides probabilities while SVM does
NOot

- For nonlinear boundaries, kernel SVM is popular and
computationally efficient
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Support Vector Regression

+  Adapt SVM for regression
- Linear SVR model using “e -insensitive” error measure

r| — € otherwise

- Minimization objective (separable case):

A
> Vel = (T 8+ ) + 5181
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SVR Error Measure
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Figure 12.8 (Hastie et al.)
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Linear SVR Problem

1 A
min S|8]5 +C p_(& + &)

S.t. yi—X;rﬁ—50§€+€i
X, B+ Bo—yi <e+¢&
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Linear SVR Problem

- Solution function has the form:

. Dual kernel trick!
min — LL a; — Q) ( )[< X, X >
+eZoz —ozz Zyzoz —oa,,

1
S.t. Z _OO<az,a.§X, ;o =0

CS 534 [Spring 2017] - Ho



Example: Kernel SVR

X (P(X).

http://webgol.dinfo.unifi.it/wordpress/wp-content/uploads/2016/02/pic.png
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