Ensembles & Random Forest

CS 534: Machine Learning

Slides adapted from Lee Cooper, Ryan Tibshirani, Yubin Park, and Joydeep Ghosh
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Review: [rees
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Figure 9.2 (Hastie et al.)



Review: [rees

- Divide up the feature space into regions
- Greedy split the features based on some criterion
- Grow a large tree and prune back using cross-validation

- Each leaf then predicts class based on majority class and
probabillity is the proportion of points of that class k
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Review: Boosting

dea: Combine output of many weak classifiers to
oroduce powerful committee

- Method: Sequentially fit weak learners with later models
compensating the shortcomings of the existing learners

- Also shown to be an additive model fit using forward
stage-wise manner

- Gradient boosting & Adaboost identify shortcomings
differently
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Review: Bootstrap

“The population is to the sample as the sample is
to the bootstrap samples”
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Review: [ree Properties

- (Pro) Popular since they are highly interpretable
- (Pro) Model-free (don’t assume an underlying distribution)

- (Con) Prediction accuracy is not that great — inherently
high variance

We controlled variance and stabilized predictions
using boosting — is there an other way?

CS 534 [Spring 2017] - Ho



Bagging
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Bagging

- Bootstrap Aggregating: variance reduction technique
iIntroduced by Breiman in 1992

- Method: Average predictions over collection of bootstrap
samples

- Create B bootstrap replicates
- Fits model to each replicate

- Combines predictions via averaging or voting

J?bag(X) = argmax; Z ]1{ free(x)=g}
b
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Bagging Strategies

-+ Simple strategy: Grow fairly large trees on each sampled
data set with no pruning

- More involved strategy: Prune bback each tree but use

original training data as validation set instead of
performing cross-validation
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Example: Bagging
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Example: Breiman’s Experiment

Data Set €q €R Decrease
waveform 291 193 34%
heart 4.9 2.8 43%
breast cancer 59 3.7 37%
ionosphere 11.2 7.9 29%
diabetes 253 239 6%
glass 304 23.6 22%
soybean 8.6 6.8 21%

Comparison of misclassification error between CART tree
(oruned via cross-validation) and bagging (B = 50)
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Bagqging: Estimated Probability

- What if we were use to the proportion of votes for class
ol

Abag
Z Ly poree (x)=g)

- Why would this not be a good estimate?
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Bagging: Estimated Probabllity

- Alternative form using predicted class probabilities from
each tree

PP (y = glx) = Z 5 (y = g|x)

-Inal bagged classifier chooses class with highest
orobability

- Preferable for estimates of class probabilities and can
help overall prediction accuracy
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Example: Bagging
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Bagging helps decrease the misclassification rate of
the classifier (evaluated on large independent test set)

Figure 8.10 (Hastie et al.)
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Why Does Bagging Work"?

+ Suppose that for a given input x in a binary classification
oroblem where we have B independent classifiers and
each as a misclassification rate e = 0.4

- Assume without loss of generality that the true class is 1

A

Pr(fy(x)=—-1)=0.4

Our bagged classifier:

AN

f(x) = argmaxg ) 1 jiree(s0=)
b
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Why Does Bagging Work"?

- Let B-1 be the number of votes for class -1, a binomial
variable with p=0.4

- Misclassification rate of the bagged classifier:
B_1 ~ Binom(B, 0.4)
Pr(f, *¢(x) = —1) = Pr(B_; > B/2)

- As B grows larger, our classifier should be pertect in theory

- This is not the case as this assumes independence and
our classifiers are not independent
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When Does Bagging Fail?

-+ Assume misclassification rate is higher than 0.5
Pr(fy,(x) = —1) = 0.6
-+ Bag misclassitication rate
B_1 ~ Binom(B, 0.6)
Pr(f *8(x) = —1) = Pr(B_, > B/2)
B — 00,Pr(B_1 > B/2) —» 1

- |f the misclassification rate is high, the bagged classifier Is
perfectly inaccurate as B approaches infinity (degradation
in predictive accuracy)
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Example: Wisdom of Crowds

Wisdom of Crowds
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Figure 8.11 (Hastie et al.)
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Bagqging: Properties

- (Pros) Stabilizes unstable models
- (Pros) Easily parallelizable

- (Cons) Loss of interpretability

- (Cons) Computational complexity

- (Cons) Limited model space — bagging can still not
easlly represent certain boundaries
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Bagging & Irees

- Bagging — average noise but approximately unbiased
models to reduce variance

- Irees are ideal candidates for bagging
- Capture complex interactions
- Relatively low bias (with sufficient depth)

- Each tree grown in bagging is 1.I.d — expectation of
average Is same as expectation of one of them
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Boosting vs Bagging

- Boosting fits the entire training set whereas bagging is just
bootstrap samples

- Boosting adaptively adjusts the weight of the
observations to encourage better predictions for
misclassified points — bagging uses equal weights for all
observations

- Boosting tends to have greater accuracy compared to
bagging but also risks overfitting

+  Boosting reduces bias while bagging does not
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Boosting vs Bagging

Bagged Decision Rule Boosted Decision Rule

Figure 8.12 (Hastie et al.)
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Random Forest
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Random Forest: Motivation

- Average of B i.i.d random variables with variance o has
variance o*/B

+ Average of B I.d. random variables with positive pairwise
correlation has a variance

2

1 —
o2 1 ,002

B

- Size of the correlation of bagged trees limits benefits of
averaging —> reduce correlation between trees without
INncreasing variance too much
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Random Forests (Breiman, 2001)

-+ Bagged classifier using decision trees
-+ Each split only considers a random group of features
- Tree Is grown to maximum size without pruning

- Final predictions obtained by aggregating over the B
trees

FR) = 3 3 T(x:00)
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Random Forest: Algorithm

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}5.
To make a prediction at a new point x:
Regression: fB(z) = = Zszl Ty(z).

Classification: Let C, (z) be the class prediction of the bth random-forest
tree. Then CE(z) = majority vote {Cy(z)}F.
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Example: Spam Data
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Figure 15.1 (Hastie et al.)
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Out of Bag (O0OB) Samples

-Or each olbservatio
oredictor by averagi
pootstrap samples |

N, construct its random forest
ng only those trees corresponding to

N which olbservation does not appear

- OOB error estimates almost identical to N-fold cross-

validation — means

can be fit In one sequence

- Once OOB stabilizes, training can be stopped
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Example: OOB Error
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Figure 15.4 (Hastie et al.)
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Variable Importance

- Option 1: Same way as gradient-boosted models
- Option 2: OOB samples to measure prediction strength

- For bth tree, OOB samples are passed down tree and
accuracy recorded

- Values for jth variable are randomly permuted in OOB
samples and accuracy again computed

- Decrease In accuracy Is used as measure of
Importance
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Example: Variable Importance
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Random Forests: Properties

- State of the art method, generally one of the most
accurate general-purpose learners available

- Handles a large number of input variables without
overfitting

- Easy to train and tune

+ Reduces correlation amongst bagged trees by
considering only a subset of variables at each split
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Random Forest: Advantages

- Easily parallelized by training
- Robust to errors and outliers
- Can model non-linear boundaries

- Qives variable importance and out of bag error rates
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Random Forest: Disadvantages

- Loss of interpretability

Difficult to analyze as an algorithm and mathematical
oroperties still largely unknown

- Large number of trees iIs memory-intensive

- Bias towards categorical variables with larger number of
levels
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Extra Trees
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Recap: Tree Growing

1.

Start with dataset
Pick a splitting feature
Pick a splitting cut-point

Split dataset into two sets based on feature and cut-
point

Repeat from step 2 with the partitioned dataset
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Recap: C4.5, CART

1. Start with dataset

2. Pick a splitting feature Information gain —> C4.5
Gini impurity —> CART
3. Pick a splitting cut-point | Variance reduction —> CART

4. Split dataset into two sets based on feature and cut-
point

5. Repeat from step 2 with the partitioned dataset
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Recap: Random Forest

1. Start with dataset Bootstrap samples

2. Pick a splitting feature Random subset of features

FInd best feature / cutpoint

3. Pick a splitting cut-point

4. Split dataset into two sets based on feature and cut-
point

5. Repeat from step 2 with the partitioned dataset
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Extra Trees

1. Start with dataset

2. Pick a splitting feature Select random subset of
(feature, cutpoint) pairs
3. Pick a splitting cut-point | Find best (feature, cutpoint)

4. Split dataset into two sets based on feature and cut-
point

5. Repeat from step 2 with the partitioned dataset
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Favorite Tradeoff: Bias & Variance

Recursive partition —> fewer samples as tree grows

Split features / cutpoints are susceptible to training
examples

Randomization decreases variance

. 2 .
bias variance

Original algorithm m o
> Randomization
Randomized algorithm &\\\‘ vary g Ey ,S Epgvarg s
) Averaging
Averaged algorithm &\§

Fig. 11 Expected evolution of bias and variance by randomization and averaging.

Geurts et al. 2006
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Example: Predicting MedAdh Scores

- Centers for Medicare and Medicaid Services (CMS)
measures the performance of Medicare Advantage (MA)
Plans via Star Rating System

- Medication Adherence (MedAdh) is one of the most
important quality measures

- MA plans want to know how much their MedAdh scores
will change in next two years
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Example: MedAdh Data

Data can be found at CMS Part C and Part D
oerformance webpage

- Datasets
- Train: MedAdh data from 2012, 2013 to predict 2015

-+ Test: MedAdh data from 2013, 2014 to predict 2016
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Example: MedAdh Missing Values

Not all MA plans are measured in a given year

X1,X2,X3,X4,X5,X6,X7,X8,X9,Y

71.2,72.7,69.9,75.2,75.9,71.0,1.8
,75.8,72.5,68.8,-4.8

61.8,59.4,57.7,57.3,59.3,58.3,16.7

; ) ,82.8,80.0,69.8,-11.8
73.8,73.2,71.8,74.5,76.1,72.9,4.5

How to deal with missing data”? Mean imputation
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Example: MedAdh Model Bakeoff

Try four different models

Linear regression

sklearn linear_model
sklearn tree
sklearn.utils resample

Decision tree

sklearn.metrics mean_squared_error
sklearn.ensemble ExtraTreesRegressor
sklearn.ensemble GradientBoostingRegressor

Extra tree

Gradient boosting

CS 534 [Spring 2017] - Ho



Example: MedAdh Model Bakeoff

- Code snippet:

Im = linear_model.LinearRegression()
dt = tree.DecisionTreeRegressor()
etr = ExtraTreesRegressor(n estimators , max_depth

gbr = GradientBoostingRegressor(n estimators ,
learning_rate

max_depth=8)
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Example: Results

0: LinearRegression 1: DecisionTreeRegressor

RMSE Results ,;3"“:!!...3 g : .:..:"...,.,.-:':f:' -

Im: 2.7125536923 S A

® 0: LinearRegression

y.pred

dt: 3.10460672029

2: ExtraTreesRegressor 3: GradientBoostingRegressor * 1: DecisionTreeRegressor
e 2: ExtraTreesRegressor

et r : 2 i 1 8 5 9 7 3 O 3 4 2 1 . 4 A .o ‘7 | ¢ 3: GradientBoostingRegressor

gbr: 2.02698129388 T

y.true

Extra trees and gradient boosting exhibit better improvement
over linear regression & decision tree
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5-7-08 ©2008Scott Adams, Inc./Dist. by UFS, Inc.
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Ensemble & Multi-Learner System
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Ensembles & Multi-Learner Systems

- Goal: use multiple “learners” to solve (parts of) the same
problem

- Function approximation
- Classification

- Ensembles — competing learners with multiple looks at
the same problem

- Mixture of experts — cooperative learners with the divide
and conqguer approach
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Generic Multi-Learner System
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“This i1s how you win ML competitions: you
take other peoples’ work and ensemble them
together.”

—Vitaly Kuznetsov, NIPS 2014
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Voting: Ensemble w/o Retraining

- Given existing model predictions, find different ways to
team them up

- Voting ensembles mimic error-correcting codes
- More voters —> potential better signal to noise
-+ Lower correlation between models

- Weighted majority (better model gets more weight) vs
average
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Stacked Generalization

- Introduced by Wolpert, 1992

- Use a pool of base classifiers, then use another classifier
to combine their predictions

- Stacker model gains information by using first-stage
predictions as features

- |f used incorrectly, can lead to information leakage
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Example: 2-fold Stacking

- Split training data into 2 parts, A and B
-+ Fit a first-stage model on A and create predictions on B
- Fit a first-stage model on B and create predictions on A

- Train a second-stage stacker model on probabilities from
first-stage model(s)
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Blending

- Close to stacked generalization, but a bit simpler

Instead of out-of-fold predictions, create small holdout
set that the stacker is then trained on this set

- (Generalizers and stackers use different information
NoO need to share seed for stratified folds with teammates

— throw models in the ‘blender’ and blender decides to
keep it or not
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Blending: Disadvantages

- Less data used overall
- Final model may overfit to holdout set

- Single small holdout set won’t necessarily yield good
generalization errors
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Stacking / Blending

- BEverything is a hyperparameter
- Different preprocessing of the data
- Imputation
- Feature selection

- Why stop at two stages”? Why not combine multiple
ensembles models?
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Example: Otto Product Classification
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http://mlwave.com/kaggle-ensembling-guide/
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Example: Airbnb 2nd Place

1st
layer

out-of-fold CV predictions
(18 models)

2nd
Feature selection layer
at the ratio of

90% many times

N/

Final Model

Public: 0.88209/Private: 0.88682  'nal

LEARNING ARCHITECTURE

http://blog.kaggle.com/2016/03/17/airbnb-new-user-bookings-winners-interview-2nd-place-keiichi-kuroyanagi-keiku/
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