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Tree-based Models
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Tree-based Methods

• Divides the feature space into rectangles 

• Successive binary splits on predictor variables 

• Fits very simple model in each rectangle (e.g., 
constant) 

• Works for both discrete and continuous responses
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Real World Inspiration

http://hcv.org.nz/wordpress/?tag=treatment-flow-chart

http://hcv.org.nz/wordpress/?tag=treatment-flow-chart
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Classification Trees

• Popular and interpretable 

• Mimic (to some extent) decision making process 

• Can be thought of as defining m regions (rectangles) 
each corresponding to a leaf of the tree 

• Each region is assigned a class label 

• Finding region for new point is easy since we just need to 
scan the tree
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Example: Simple Classification Tree
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Example: Region Split & Tree

Figure 9.2 (Hastie et al.)
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Example: Unachievable Tree Partition

Figure 9.2 (Hastie et al.)
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Power of Trees

Model 
Assumption

Estimated 
Prob Interpretable Flexible Predicts 

Well

LDA Yes Yes Yes No Depends on 
X

LR Yes Yes Yes No Depends on 
X

Tree No Yes Yes Somewhat ?
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Building Trees

• Two main issues arise when building a tree: 

• How to choose the splits 

• How big to grow the tree
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Learning Simplest Decision Tree

• Learning the simplest (smallest) decision tree is an NP-
complete problem [Hyafil & Rivest ’76] 

• Resort to a greedy heuristic 

• Start from empty tree 

• Split on next best feature 

• Recurse
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Splitting: Choosing Good Attribute

• Would we prefer X1 or X2? 

• Idea: Use counts at leaves to define 
probability distributions to measure 
uncertainty

X1 X2 Y

T T T

T F T

T T T

T F T

F T T

F F F

F T F

F F F

X1 X2
t f t f

Y = t: 4 
Y = f: 0

Y = t: 1 
Y = f: 3

Y = t: 3 
Y = f: 1

Y = t: 2 
Y = f: 2
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Splitting: Uncertainty

• Good split if we are more certain about classification after 
split 

• Deterministic — good (all true or false) 

• Uniform distribution — bad 

• What about in-between?
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Entropy

• Entropy of a random variable 

• Information theory interpretation: number of bits needed 
to encode a randomly drawn value of Y 

• High entropy —> uniform like distribution / flat histogram 

• Low entropy —> varied (peaks and valleys) with more 
predictable values

H(G) = �
X

i

P (G = gi) log2 P (G = gi)
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Splitting Criterion: Information Gain

• Decrease in entropy (uncertainty) after split 

• Also referred to as cross-entropy or deviance 

• Commonly used in ID3 (Iterative Dichotomiser 3) and 
C4.5 (successor of ID3) algorithms

H(G|X) = �
X

j

P (X = xj)

X

i

P (G = gi) log2 P (G = gi)

IG(X) = H(G)�H(G|X)
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Splitting Criterion: Gini Index

• Measure of how often a randomly chosen element from 
set would be incorrectly labeled if it was randomly labeled 
based on the labels in subset 

• Also known as measure of node purity 

• Commonly used in CART (Classification and Regression 
Trees)

X

i

P (G = gi)(1� P (G = gi))
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Splitting Criterion: Misclassification Error

• Probability of incorrect classification in the node 

• Fraction of training observations that does not belong to 
the most common class 

• Less commonly used as not differentiable —> less 
amendable to numerical optimization

1�max

i
(P (G = gi))
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Classification Impurity Measures

Figure 9.3 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.3. Node impurity measures for two-class
classification, as a function of the proportion p in
class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).
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Tree Growing Details

• Select predictor Xj such that splitting predictor space into 
regions leads to greatest reduction in splitting criterion 

• Repeat the process looking for best predictor to split 
data further within each of the newly defined regions 

• Continue in this manner until stopping criterion reached

R1 = {X 2 Rp : Xj = s}, R2 = {X 2 Rp : Xj 6= s}
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Stopping Criterion

• Minimum number of instances in a leaf 

• Maximum tree depth 

• 100% node purity 

• Gain tolerance
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Predicted Class Probabilities
• Each region Rj contains some subset of training data 

point 

• Predicted probability is just proportion of points in the 
region belong to class k  

• Predicted class is the most common class occurring 
amongst these points 

p̂g(Rj) =
1

nj

X

xi2Rj

{yi=g}

gj = argmax p̂g(Rj)
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Need for Pruning

• Tree growing process may overfit training data leading to 
poor generalization performance 

• Smaller tree with fewer splits might lead to lower variance 
and better interpretation 

• Why not just grow smaller trees?
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Pruning Details

• Grow a very large tree and prune it back to get a subtree 

• Cost complexity pruning (aka weakest link pruning) 

• Tuning parameter determines size of tree and can be 
chosen via CV 

• Prune the weakest leaf one at a time

C↵(T ) =

|T |X

j=1

[1� p̂gj (Rj)] + ↵|T |
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Example: SPAM Dataset

Figure 9.4 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.4. Results for spam example. The blue
curve is the 10-fold cross-validation estimate of mis-
classification rate as a function of tree size, with stan-
dard error bars. The minimum occurs at a tree size
with about 17 terminal nodes (using the “one-standard-
-error” rule). The orange curve is the test error, which
tracks the CV error quite closely. The cross-validation
is indexed by values of α, shown above. The tree sizes
shown below refer to |Tα|, the size of the original tree
indexed by α.
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Example: SPAM Decision Tree

Figure 9.5 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 9
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Regression: Baseball Salary Data

Salary is color-
coded from low 
(blue, green) to 

high (yellow, red)
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Regression: Baseball Salary Data
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Regression Trees

• Similar idea to classification trees 

• Splitting criteria: Minimize RSS in region 

• Each region predicts a single continuous outcome

X

j

X

i2Rj

(yi � ŷRj )
2
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Regression Example
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Dealing with Missing Values

• Suppose missing predictor values in some of the 
variables 

• Standard approaches 

• Delete observations w/ missing data 

• Impute (fill in) missing values with mean
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Trees: Dealing with Missing Values

• Two better approaches 

• Categorical predictors — create a new category for 
“missing” 

• Construct surrogate variables 

• Create list of surrogate predictors and split points 

• If missing primary, try the surrogate splits in order
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Tree vs Linear Model
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Predictive Performance of Trees

• Predictive performance is not that great 

• Bias/variance trade-off: larger size means smaller bias, 
high variance 

• High variance overall because trees are quite unstable — 
small change in observed data can lead to drastically 
different splits 
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Trees: Pros & Cons
• (Pro) Easy to explain  

• (Pro) Mirrors human decision-making process than other 
approaches 

• (Pro) Graphical display lends it to be easily interpreted by 
non-expert 

• (Pro) Tree can handle qualitative predictors without 
creating dummy variables 

• (Con) Lower predictive accuracy
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Additive Models
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Additive Model: Regression

• Attractiveness of linear regression 

• Simple 

• Understanding for importance of different inputs 

• Quite restrictive— effects often not linear 

• Generalized additive model 

E[y|x1, · · · ,xp] = ↵+ f1(x1) + f2(x2) + · · ·+ fp(xp)

fj are unspecified smooth 
functions
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Review: Logistic Regression as GLM

• Logistic regression is generalized linear model 

• Linear regression model is tied to response via logit link 
function 

µ(x) = Pr(y = 1|x)

log

✓
µ(x)

1� µ(x)

◆
= ↵+ �1x1 + · · ·+ �pxp
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Generalized Additive Model (GAM)

• Generalization of additive linear regression 

• Conditional mean of response Y is related to additive 
function via a link function 

g[µ(x)] = ↵+ f1(x1) + f2(x2) + · · ·+ fp(xp)
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Additive Logistic Regression

log

✓
µ(x)

1� µ(x)

◆
= ↵+ �1x1 + · · ·+ �pxp

log

✓
µ(x)

1� µ(x)

◆
= ↵+ f1(x1) + f2(x2) + · · ·+ fp(xp)

logistic regression as GLM

additive logistic regression
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Common Link Functions

• Identity link: linear and additive models for Gaussian 
response data 

• Logit link: binomial probabilities 

• Log link: log-linear or log-additive models for Poisson 
count data 

g(µ) = µ

g(µ) = logit(µ)

g(µ) = log(µ)
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GAM: Properties

• Local regression to low dimensional projections of the 
data 

• Surface estimation via a collection of one-dimensional 
functions (each function is analogous to coefficients in 
linear regression) 

• Ability to model nonlinearities in the data automatically
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Example: Spam DataElements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.1. Spam analysis: estimated functions for
significant predictors. The rug plot along the bottom
of each frame indicates the observed values of the cor-
responding predictor. For many of the predictors the
nonlinearity picks up the discontinuity at zero.

Figure 9.1 (Hastie et al.)
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Boosting
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Boosting

• Weak learner: model whose error rate is only slightly 
better than random guessing 

• Idea: Combine output of many weak classifiers to 
produce powerful committee 

• Method: Sequentially fit weak learners with later models 
compensating the shortcomings of the existing learners
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Tree with Observation Weights

• Each observation has a weight 

• Higher value means higher importance of correctly 
classifying this observation 

• Tree can be easily adapted to use weights 

• Predictive probability uses weighted class 

p̂g(Rj) =

P
xi2Rj

wi {yi=g}P
xi2Rj

wi
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• Most popular boosting algorithm developed by Freund & 
Schapire (1997) 

• Consider two-class problem with the output variable is 
coded as {+1, -1} 

• Each weak classifier Gm(X) produces prediction taking 
one of the two values 

• Combine a weighted sum of M different classifiers

AdaBoost
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AdaBoost

Figure 10.1 (Hastie et al.)

classifier contribution 
weights computed by 
algorithm — higher 
influence to more 

accurate classifiers
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AdaBoost: Algorithm

Algorithm 10.1 (Hastie et al.)
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Example: Toy Data

weak classifier: single 
horizontal or vertical half-plane

http://media.nips.cc/Conferences/2007/Tutorials/Slides/schapire-NIPS-07-tutorial.pdf

http://media.nips.cc/Conferences/2007/Tutorials/Slides/schapire-NIPS-07-tutorial.pdf
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Example: Toy Data

Round 1

Round 2
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Example: Toy Data

Round 3
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Example: Toy Data
Final Classifier
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Example: Boosting Stumps

• Simulated data with 
1000 points draw from 
known model 

• Classification tree with 
one split (two leaves) 

• Misclassification rate of 
45.8% for single tree

Figure 10.2 (Hastie et al.)
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Review: Forward Stepwise MLR

• Given continuous response y and predictors X1, ..., Xp  

• Forward stepwise modeling: 

• Choose predictor Xj giving smallest squared error 

• Choose predictor Xk giving smallest additional loss  

• Repeat last step until stopping criterion reached

(y � �̂jXj)
>(y � �̂jXj)

(r� �̂kXk)
>(r� �̂kXk)
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Boosting as Additive Model

• Exponential loss function 

• Analogous stepwise modeling: 

• Find tree and weight giving smallest loss  

• Find new tree and weight giving smallest additional loss  

• Repeat last step

L(yi, f(xi)) = exp(�yif(xi))

X

i

exp(�yi�jGj(xi))

X

i

exp(�yi(�jGj(xi) + �kGk(xi)))
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Example: Simulated Data

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.3. Simulated data, boosting with stumps:
misclassification error rate on the training set, and av-
erage exponential loss: (1/N)

PN
i=1 exp(−yif(xi)). Af-

ter about 250 iterations, the misclassification error is
zero, while the exponential loss continues to decrease.

Figure 10.2 (Hastie et al.)
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Classification: Loss Functions

exp(�yf(x))

� log(1 + exp(�2yf(x))

{yf(x)<0}

(y � f(x))2

max(0, 1� yf(x))

Loss function

Exponential

Binomial deviance

Misclassification

Squared error

Support vector
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Classification: Loss Functions

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = ±1; the prediction is
f , with class prediction sign(f). The losses are mis-
classification: I(sign(f) ̸= y); exponential: exp(−yf);
binomial deviance: log(1 + exp(−2yf)); squared er-
ror: (y − f)2; and support vector: (1 − yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0, 1).

Figure 10.4 (Hastie et al.)
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Classification: Margin

• Several of the loss functions are functions of the 
“margin”: y f(x) 

• Positive margin are correct 

• Negative margin are misclassified 

• Classification algorithms attempt to produce positive 
margin for each training data point — should penalize 
negative margins more heavily
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Classification: Robust Loss

• Exponential and deviance are continuous approximations 
to misclassification loss 

• Binomial deviance penalty increases linearly with 
negative margin 

• Exponential loss penalty increases exponentially with 
negative margin 

• Binomial criterion far more robust than exponential in 
noisy settings
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Gradient Boosting

• Gradient descent + boosting 

• Powerful algorithm that can be used for regression, 
classification, ranking 

• Data mining competition winner most likely uses this 
algorithm
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Gradient Boosting: Regression

• We have training data, (x1, y1), …, (xn, yn), and task to fit 
model f(x) to minimize square loss 

• Friend gives you a model f, with some mistakes 

• You are not allowed to remove anything from f or change 
any parameter in f 

• You are allowed to add additional models h to f, so new 
prediction is f(x) + h(x)
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Gradient Boosting: Regression

• Simple solution:  

f(x1) + h(x1) = y1

f(x2) + h(x2) = y2

...
...

f(xn) + h(xn) = yn

h(x1) = y1 � f(x1)

h(x2) = y2 � f(x2)

...
...

h(xn) = yn � f(xn)

Can this be done using any regression tree?
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Gradient Boosting: Regression

• Fit a regression tree to new data, (x1, y1-f(x1)), …, (xn, yn-
f(xn)) 

• yi-f(xi) are residuals — parts that existing model f cannot 
do well 

• If new model f + h is still not satisfactory, reiterate again 

How does this relate to gradient descent?
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Review: Gradient Descent

• Simplest and extremely popular 

• Idea: Take a step proportional to 
the negative of the gradient 

✓i := ✓i � ⌘
@L

@✓i
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Gradient Boosting: Regression
• Loss function:  

• Treat f(xi) as parameters and take derivatives 

• Interpret residuals as negative gradients 

L(y, f(X)) =
X

i

1

2
(yi � f(xi))

2

@L

@f(xi)
= f(xi)� yi

f(xi) := f(xi) + yi � f(xi)

f(xi) := f(xi)� 1
@L

@xi
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Gradient Boosting: Algorithm
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Regression: Loss Functions

Figure 10.5 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.5. A comparison of three loss functions
for regression, plotted as a function of the margin y−f .
The Huber loss function combines the good properties
of squared-error loss near zero and absolute error loss
when |y − f | is large.
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Regression: Robust Loss

• Squared error puts more emphasis on observations with 
large deviation than absolute loss 

• Squared error is less robust and performance degrades 
for long-tailed error distributions and mislabelings 

• Huber loss has strong resistance to gross outliers with 
efficiency of least squares for Gaussian errors
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Gradient Boosting: Regression

1

2
(yi � f(xi))

2 yi � f(xi)

|y � f(x)| sign(yi � f(xi))

(
1
2 (yi � f(xi))2 |y � f(x)|  �

�(|y � f(x)|� �/2) |y � f(x)| > �

(
yi � f(xi) |y � f(x)|  �

�sign(yi � f(xi)) |y � f(x)| > �

Loss function Negative gradient

Squared Loss

Absolute Loss

Huber Loss
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Gradient Boosting: Classification

• Regression setting can be easily adapted for 
classification 

• Generalization of Adaboost to general classification loss 
functions



CS 534 [Spring 2017] - Ho

Gradient Boosting vs AdaBoost

• Boosting: Fit additive model in a forward stage-wise 
manner where each stage, new weak learner 
compensates shortcomings of existing models 

• Gradient boosting — “shortcomings” identified by 
gradient 

• Adaboost — “shortcomings” identified by high-weight 
data points
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Size of Trees

• Best method is to grow 
small trees with no 
pruning 

• Right size will depend on 
level of interaction 
between variables 

• Generally 2-8 leaves 
works well

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.9. Boosting with different sized trees,
applied to the example (10.2) used in Figure 10.2. Since
the generative model is additive, stumps perform the
best. The boosting algorithm used the binomial deviance
loss in Algorithm 10.3; shown for comparison is the
AdaBoost Algorithm 10.1.

Figure 10.9 (Hastie et al.)
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Trees: Variable Importance

• Squared importance for variable j 

• m is number of internal modes (non-leaves) 

•      is the improvement in training misclassification error 
from making the nth split

Imp2j (f̂
tree) =

mX

k=1

d̂k {split at node k is on variable j}

d̂k
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Boosting: Variable Importance

• Average squared importance over all fitted trees 

• Stabilizes variable importances —> more accurate than 
for single tree 

• Relative importance: Scale largest importance to 100 and 
scale all other variable importances accordingly

Imp2j (f̂
boost) =

1

M

MX

m=1

Imp2j (f̂
tree

m )
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Example: Spam Data
Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 10
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Boosting: Advantages

• Provably effective — reduces both bias and variance 

• Easy — limited number of parameters to tune 

• Flexible — combine with any learning algorithm 

• Versatile — can be used with data that is numeric, 
discrete, textual
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Boosting: Disadvantages

• Lack of interpretability — lose benefit of classification tree 

• Serializability — computation can be difficult and hard to 
perform in parallel 

• Performance dependent on weak learner and data — 
can fail if weak classifiers are too complex or too weak 

• Noise susceptibility — empirically seems susceptible to 
uniform noise
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Extreme Gradient Boosting (XGBoost)

What these various data mining competitors have in 
common: all used XGBoost
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Why XGBoost?
• Implements basic idea of GBM with some tweaks 

• Regularization of base tree 

• Approximate split finding 

• Weighted quantile sketch 

• Sparsity-aware split finding 

• Cache-aware block structure for out of core 
computation
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–T. Chen and C. Guestrin

“XGBoost scales beyond billions of examples 
using far fewer resources than existing 

systems.”


