Boosting, Irees, and Additive
Models

CS 534: Machine Learning

Slides adapted from Lee Cooper, Ryan Tibshirani, Cheng Li, David Sontag, Luke Zettlermoyer, Carlos
Guestrin, Andrew Moore, and Yubin Park



Tree-based Models
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Tree-based Methods

- Divides the feature space into rectangles
- Successive binary splits on predictor variables

- Fits very simple model in each rectangle (e.q.,
constant)

- Works for both discrete and continuous responses
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Real World Inspiration

Patient with suspected Chronic HCV infection
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Classification Trees

- Popular and interpretable
- Mimic (to some extent) decision making process

- Can be thought of as defining m regions (rectangles)
each corresponding to a leaf of the tree

-+ Each region is assigned a class label

+ Finding region for new point is easy since we just need to
scan the tree
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Example: Simple Classification Tree
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Example: Region Split & Tree
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Figure 9.2 (Hastie et al.)
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Example: Unachievable [ree Partition

X1

Figure 9.2 (Hastie et al.)
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Power of [rees
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Building Trees

- Iwo main issues arise when building a tree:
- How to choose the spilits

- How big to grow the tree
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| earning Simplest Decision Tree

- Learning the simplest (smallest) decision tree is an NP-
complete problem [Hyafil & Rivest '70]

- Resort to a greedy heuristic
- Start from empty tree
- Split on next best feature

- Recurse
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Splitting: Choosing Good Attribute

- Would we prefer X1 or X27?

dea:; Use counts at leaves to define
orobabllity distributions to measure
uncertainty F

T T

X X2 T F
/N /N -
Y=t:4 Y=11 Y=1:3 Y=t1:2 T F
Y=f:0 Y=f:3 Y=f1 Y=1f2 F T
F

T

F
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Splitting: Uncertainty

- Good split if we are more certain about classification after
split

- Deterministic — good (all true or false)
- Uniform distribution — bad

- \What about in-between?
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Entropy

- Entropy of a random variable
Z P(G = g;)logy, P(G = g;)

- Information theory mterpretatlon. number of bits needeo
to encode a randomly drawn value of Y

- High entropy — > uniform like distribution / flat histogram

- Low entropy —> varied (peaks and valleys) with more
predictable values
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Splitting Criterion: Information Gain

- Decrease in entropy (uncertainty) after spilit
H(G|X) = ZP ZP g;)log, P(G = g;)

1G(X) = H(G) - H(GIX)

-+ Also referred to as cross-entropy or deviance

- Commonly used in ID3 (Iterative Dichotomiser 3) and
C4.5 (successor of ID3) algorithms

CS 534 [Spring 2017] - Ho



Splitting Criterion: Gini Index

- Measure of how often a randomly chosen element from
set would be incorrectly labeled if it was randomly labeleo
based on the labels in subset

ZP(G = 9:)(1 = P(G = g5))
- Also known as measure of node purity

- Commonly used in CART (Classification and Regression
Trees)
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Splitting Criterion: Misclassification Error

- Probabillity of incorrect classification in the node

1 —max(P(G = g;))

1

- Fraction of training observations that does not belong to
the most common class

- Less commonly used as not differentiable —> less
amendable to numerical optimization
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Classification Impurity Measures
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Figure 9.3 (Hastie et al.)
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Tree Growing Details

- Select predictor X; such that splitting predictor space into
regions leads to greatest reduction in splitting criterion

Ry ={XeR\:X;=s} R ={X€eR: X; # s}

+ Repeat the process looking for best predictor to spilit
data further within each of the newly defined regions

-+ Continue in this manner until stopping criterion reached
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Stopping Criterion

- Minimum number of Instances In a leaf
- Maximum tree depth
- 100% node purity

- Gain tolerance

CS 534 [Spring 2017] - Ho



Predicted Class Probabillities

- Each region R; contains some subset of training data
point

- Predicted probabillity is just proportion of points in the
region belong to class k

A 1
Pyg(Rj) = n_j Z Lry,=g)
X, ER;

- Predicted class Is the most common class occurring
amongst these points

g; = argmax p,(R;)
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Need for Pruning

- Tree growing process may overfit training data leading to
poor generalization performance

- Smaller tree with fewer splits might lead to lower variance
and better interpretation

- Why not just grow smaller trees?
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Pruning Detalls

- Grow a very large tree and prune it back to get a subtree

- Cost complexity pruning (aka weakest link pruning)
|T|

Co(T) = ) [1 =g, (R)] + T

j=1
+Tuning parameter determines size of tree and can be
chosen via CV

- Prune the weakest leaf one at a time
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Example: SPAM Dataset
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Figure 9.4 (Hastie et al.)
CS 534 [Spring 2017] - Ho



Example: SPAM Decision Tree
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Regression: Baseball Salary Data

. . Salary is color-
Fliise coded from low
IS (blue, green) to
. !!: high (yellow, red)
8‘§::!:
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Years
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Regression: Baseball Salary Data
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Regression Irees

- Similar idea to classification trees

- Splitting criteria: Minimize RSS in region

> Y (yi—ir,)

J 1€ER;
- Each region predicts a single continuous outcome
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Regression Example
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Dealing with Missing Values

+ SuUppose missing predictor values in some of the
variables

-+ Standard approaches
- Delete observations w/ missing data

- Impute (fill in) missing values with mean
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Trees: Dealing with Missing Values

-+ Two better approaches

- Categorical predictors — create a new category for
“missing”

- Construct surrogate variables
- Create list of surrogate predictors and split points

- |f missing primary, try the surrogate splits in order
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Tree vs Linear Model
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Predictive Performance of Trees

- Predictive performance is not that great

- Bias/variance trade-off: larger size means smaller bias,
high variance

* High variance overall because trees are quite unstable —
small change in observed data can lead to drastically
different splits
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Trees: Pros & Cons

+ (Pro) Easy to explain

+ (Pro) Mirrors human decision-making process than other
approaches

+ (Pro) Graphical display lends it to be easlily interpreted by
non-expert

- (Pro) Tree can handle qualitative predictors without
creating dummy variables

- (Con) Lower predictive accuracy
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Additive Models
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Additive Model: Regression

- Attractiveness of linear regression
- Simple
-+ Understanding for importance of different inputs

- Quite restrictive— effects often not linear

- Generalized additive model fj are unspecified smooth
functions

E[Y‘Xla"' 7Xp] — CV"‘fl(Xl) ‘|‘f2(X2) ‘|‘""|‘fp(Xp)
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Review: Logistic Regression as GLM

- Logistic regression is generalized linear model

- Linear regression model is tied to response via logit link
function

u(x) = Pr(y = 1|x)

log( px) >:a+51x1+..._|_5pxp
1 — p(x)
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Generalized Additive Model (GAM)

+ (Generalization of additive linear regression

- Conditional mean of response Y is related to additive
function via a link function

glp(x)] = a+ fi(x1) + fa(x2) + - + fp(xp)
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Additive Logistic Regression

logiistic regression as GLM

log<1'u(;<) >:a+51:€1—|—...+5p:€p

N

o (259 ) = at filxa) + falxa) + -+ + fylx)

additive logistic regression
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Common Link Functions

- |dentity link: linear and additive models for Gaussian
response data

g(p) = p
- Logit link: binomial probabilities
g(p) = logit(u)

- Log link: log-linear or log-additive models for Poisson

count data
g(p) = log(u)
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GAM: Properties

Local regression to low dimensional projections of the
data

+ Surface estimation via a collection of one-dimensional
functions (each function is analogous to coefficients in

linear regression)

- Abllity to model nonlinearities in the data automatically
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Example: Spam Data
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Boosting
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Boosting

- Weak learner: model whose error rate is only slightly
better than random guessing

dea: Combine output of many weak classifiers to
oroduce powerful committee

- Method: Sequentially fit weak learners with later models
compensating the shortcomings of the existing learners
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Tree with Observation Weights

- Each observation has a weight

- Higher value means higher importance of correctly
classifying this observation

- Tree can be easily adapted to use weights

- Predictive probabillity uses weighted class

ZX@ GRJ' Wy ]]'{yz:g}

in ERJ wz

ﬁg(Rj) —
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AdaBoost

- Most popular boosting algorithm developed by Freund &
Schapire (1997)

-+ Consider two-class problem with the output variable is
coded as {+1, -1}

- Each weak classifier Gm(X) produces prediction taking
one of the two values

- Combine a weighted sum of M different classifiers
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AdaBoost

FINAL CLASSIFIER

G(x) = sign [szl amGm (CL’)]

!
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classifier contribution
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_’.—’.—.....

T

INfluence to more
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raining Sample JEEEENENE)

Figure 10.1 (Hastie et al.)
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AdaBoost: Algorithm

Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights w; = 1/N, i =1,2,...,N.
2. Form =1 to M:

(a) Fit a classifier G,,(x) to the training data using weights w;.
(b) Compute

_ il wil (i # Gm(2:)

err,, =
N
Zi:l W

(c) Compute a,, = log((1 — err,,)/erry,).
(d) Set w; + w; - explam - I(y; # Gm(z;))], 1=1,2,...,N.

3. Output G(z) = sign [fozl ame(a:)].

Algorithm 10.1 (Hastie et al.)
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Example: Toy Data

weak classifier: single
horizontal or vertical half-plane

http://media.nips.cc/Conferences/2007/Tutorials/Slides/schapire-NIPS-07-tutorial.pdf
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Example: Toy Data

h 1 [f)2

® -
+| - + -
+ — +
£1=0.30
Round 2
+ + |
+ 4+ —I— a
+| - + O S
+ — + -
— ©
€)=0.21
(X2~U.65
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Example: Toy Data

Round 3
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Example: Toy Data

Final Classifier

H =sign | 0.42 +0.65
final
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Example: Boosting Stumps

0.5

- Simulated data with | Sngestmp
1000 points draw from 5 -
known model

. Classification free with 1 B
one split (two leaves)
Misclassification rate of -

45.8% for single tree 0 100 200 300 400

Boosting Iterations

Figure 10.2 (Hastie et al.)
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Review: Forward Stepwise MLR

- Given continuous response y and predictors Xi, ..., Xp
-+ Forward stepwise modeling:

-+ Choose predictor X giving smallest squared error

(y = B;X5) T (y — B, X;)
- Choose predictor Xk giving smallest additional loss

(r — BeXk) ' (r — BrXk)
+ Repeat last step until stopping criterion reached
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Boosting as Additive Model

- Exponential loss function L(y;, f(x;)) = exp(—y; f(x;))
- Analogous stepwise modeling:

- FInd tree and weight giving smallest loss
> exp(—yiBiGj(xi))
+ FInd new tree ar%d weight giving smallest additional loss
> exp(—wi(B;Gj(xi) + BeGr(xi)))

- Repeat Iést step
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Example: Simulated Data

o _
(00)
Q-
— © _|
o o
L0
(@)]
C
=
s .
— S T
o Exponential Loss
g
Misclassification Rate
o
S T
| | | | |
0 100 200 300 400
Boosting lterations Figure 10.2 (Hastie et al.)
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Classification: Loss Functions

Exponential exp(—yf(x))
Binomial deviance —log(1 + exp(—2y f(x))
Misclassification ]l{yf(x)<0}
Squared error (y — f(x))?
Support vector max (0,1 — yf(x))
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Classification: Loss Functions

g - Misclassification
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N —— Squared Error
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| l l |
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Figure 10.4 (Hastie et al.)
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Classification: Margin

- Several of the loss functions are functions of the
“margin”: y f(x)

- Positive margin are correct

-+ Negative margin are misclassified

- (Class
margi
negati

fication algorithms attempt to produce positive

n for each training data point — should penalize

ve margins more heavily
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Classification: Robust Loss

Exponential and deviance are continuous approximations
to misclassification loss

Binomial deviance penalty increases linearly with
negative margin

Exponential loss penalty increases exponentially with
negative margin

Binomial criterion far more robust than exponential in
noisy settings
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Gradient Boosting

- (Gradient descent + boosting

- Powertul algorithm that can be used for regression,
classification, ranking

- Data mining competition winner most likely uses this
algorithm
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Gradient Boosting: Regression

- We have training data, (x1, v1), ..., (Xn, Yn), and task to fit
model f(x) to minimize square 0SS

- Friend gives you a model f, with some mistakes

»You are not allowed to remove anything from f or change
any parameter in f

- You are allowed to add additional models h to f, so new
prediction is f(x) + h(x)

CS 534 [Spring 2017] - Ho



Gradient Boosting: Regression

- Simple solution:

f(x1) + h(z1) = 1 h(z1) =y — f(z1)
f(x2) + h(z2) = yo :: :: h(z2) = y2 — f(x2)
f(xn) + h(xn) = yn "Mzn) = Yn — f2n)

Can this be done using any regression tree?
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Gradient Boosting: Regression

- Fit a regression tree to new data, (x1, y1-f(x1)), ..., (Xn, Yn-
f(xn))

- yi-f(x) are residuals — parts that existing model f cannot
do well

- [f new model f + h Is still not satistactory, reiterate again

How does this relate to gradient descent”
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Review: Gradient Descent

- Simplest and extremely popular

- |dea: Take a step proportional to
the negative of the gradient

oL
96,

(91' . — (9@'—
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Gradient Boosting: Regression

- Loss function:

Ly, (X)) = 3 5 (s — f(x:))?

- Treat f(x) as parameters and take derivatives
oL
= f(Xi) — v
Of (xi) )

- Interpret residuals as negative gradients
f(xi) == f(xi) +yi — f(Xi)

0L
f(xi) == f(x1) — 18x7;
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Gradient Boosting: Algorithm

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fy(z) = arg min, Zfil L(y;, ).
2. Form =1 to M:

(a) Fori=1,2,..., N compute

.

Tim = —

(b) Fit a regression tree to the targets r;,, giving terminal regions
Rim, j=1,2,...,Jm.

(c) For j =1,2,...,J, compute

Vjm = arg min Z L (yz-, fm—l(xi) + '7) .
7 TiERjm

(d) Update fm(z) = frm—1(z) + ZJ 1 VimI(Z € Rjm).

3. Output f(z) = fur(z).
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Regression: Loss Functions

Squared Error
: Absolute Error
0 — : —— Huber
Lo —]
n
n
O
—
<t —
N —]
O p—

Figure 10.5 (Hastie et al.)

CS 534 [Spring 2017] - Ho



Regression: Robust Loss

-+ Squared error puts more emphasis on observations with
large deviation than absolute loss

- Squared error is less robust and performance degrades
for long-tailed error distributions and mislabelings

|_

uber loss has strong resistance to gross outliers with

e

ficiency of least squares for Gaussian errors
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Gradient Boosting: Regression

Loss function Negative gradient

(Yi — f(Xi))2 yi — f(xi)

Squared Loss

Absolute Loss |y — f(X)| Sigﬂ(yi — f(Xz))

(yi — [(x1))? y— f(x)] <6 {yif(xq;) y— f(x)] <6

1
2
Huber Loss {5(|y — f(x)|=6/2) |y—f(x)|>6 |dsign(yi— f(x:) ly—fx)]>36
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Gradient Boosting: Classification

- Regression setting can be easily adapted for
classification

-+ Generalization of Adaboost to general classification loss
functions
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Gradient Boosting vs AdaBoost

- Boosting: Fit additive model in a forward stage-wise
manner where each stage, new weak learner
compensates shortcomings of existing models

- Gradient boosting — “shortcomings” identified by
gradient

- Adaboost — “shortcomings” identified by high-weight
data points
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Size of Trees

Best method is to grow
small trees with no
pruning

Stumps
10 Node
100 Node
Adaboost

0.4

Right size will depend on
evel of iInteraction
petween variables

Test Error

0.2

0.1

0.0

Generally 2-8 leaves | | | | |
WO rkS Wel | Number of Terms

Figure 10.9 (Hastie et al.)
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Trees: Variable Importance

- Squared importance for variable |

m
2( ftree\ __ E 7
Impj (f ) — dk]l{split at node k is on variable j}
k=1

- m is number of internal modes (non-leaves)

. dy, is the improvement in training misclassification error
from making the nth spilit
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Boosting: Variable Importance

- Average squared importance over all fitted trees

Imp; (f

boost -

Z Impj tree

- Stabilizes variable importances — > more accurate than

for single tree

- Relative importance: Sca
scale all other variable im

e largest importance to 100 and

portances accordingly
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Example: Spam Data

3d
addresses
labs

telnet

857

415

direct

cs
table
85

#
parts
credit

[

lab
conference
report
original
data
prog'ect

ont

make
address
order

all

hpl
technology
people

pm

mail

over

650

meeting
email
000
internet
receive

re
business
1999

will
money
our

you

edu
CAPTOT
george
CAPMAX
your
CAPAVE
free
remoxe

P

3

0 20 40 60 80 100

Figure 10.6 (Hastie et al.)
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Boosting: Advantages

-+ Provably effective — reduces both bias and variance
- Easy — limited number of parameters to tune
- Flexible — combine with any learning algorithm

- \ersatile — can be used with data that is numeric,
discrete, textual
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Boosting: Disadvantages

-+ Lack of interpretability — lose benefit of classification tree

- Serializability — computation can be difficult and hard to
perform in parallel

- Performance dependent on weak learner and data —
can fall if weak classifiers are too complex or too weak

-+ Noise susceptibility — empirically seems susceptible to
uniform noise
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Extreme Gradient Boosting (XGBoost)

Homesite Quote Conversion, Winners' Prudential Life Insurance Assessment,
. Winner's Interview: 2nd place, Bogdan
Interview: 3rd place, Team New Model Zhurakovskyi

Army | CAD & QuY
=
Q
@3S
\F

Airbnb New User Bookings, Winner's Telstra Network Disruption, Winner's

Interview: 2nd place, Keiichi Interview: 1st place, Mario Filho
Kuroyanagi (@Keiku)

What these various data mining competitors have in
common: all used XGBoost
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Why XGBoost?

- Implements basic idea of GBM with some tweaks
- Regularization of base tree
- Approximate split finding
- Weighted quantile sketch
- Sparsity-aware split finding

- Cache-aware block structure for out of core
computation
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“XGBoost scales beyond billions of examples
using far fewer resources than existing
systems.”

—T. Chen and C. Guestrin
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