
Model Selection & Bootstrap
CS 534: Machine Learning

Slides adapted from Lee Cooper, Piyush Rai, and Ryan Tibshirani
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Review: Validation
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Example: Improper Validation
Dataset Feature Selection

Cross-validation on selected features 

Err
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Example: Proper Validation
Dataset Partition into k-folds

Feature selection on the fold

Err
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Model Selection
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CV & Model Selection

• Consider an algorithm with parameters θ that needs to 
be tuned 

• How to do both model selection and model assessment 
within a cross-validation framework?
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Nested CV (K=3)
Training + Validation Test

Rotating	“validation”	sets

θ1

θM

.	.	.	
θ * = argmin

i
 Er̂rθi

= Er̂rθ1+ +

= Er̂rθM+ +

Model Selection 
(do not report this error!)
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Nested CV (K=3)

Test

Build optimal model using your non-testing samples

θ * = argmin
i

 Er̂rθi+ Model*

Model*

Report test error on testing samples (report this)

+ Err
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Nested CV

1. Generate T partitions of training + validation samples 
only 

2. Use validation errors from all partitions to estimate the 
optimal parameters 

3. Train a single model with the optimal parameters and 
evaluate on test samples
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Nested CV: Pictorially

Training + Validation Test

θ1

θM

.	.	.	

θ1

θM
.	.	.	

.	.	.	

Partition	1

Partition	T

Test samples not  
included in any trials
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Training1 + Validation1 Test1

θ1

θM

.	.	.	

θ1

θM

.	.	.	
.	.	.	

Partition	j=1

Partition	j=	T

TrainingT + ValidationT TestT

1. Estimate best parameter 
for all partitions

Nested CV: The Wrong Way

2. Fit a model using      and  
evaluate on all Testj

Err =
X

partitions

L(f̂✓⇤ ,Testj)✓⇤ = argmin✓i
X

partitions

Err✓i

✓⇤
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1. Estimate best parameter  
for one partition

✓⇤j = argmini Err✓i

2. Apply the best parameter for each 
partition to that partition’s test samples only

Nested CV: The Correct Way

Best model from partition j

Training1 + Validation1 Test1

θ1

θM

.	.	.	

θ1

θM

.	.	.	
.	.	.	

Partition	j=1

Partition	j=	T

TrainingT + ValidationT TestT

Err =
X

partitions

L(f̂✓⇤
j
,Testj)
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Best Practices: Model Selection

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html
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Best Practices: Model Selection

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html
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Validation: Takeaway

• Validation can be confusing topic 

• Guidelines: 

• If you have to choose an error from multiple possible 
errors, then this error cannot be reported as test/
generalization error 

• You cannot use the same samples to estimate both 
optimal model parameters and test/generalization error
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Review: Training Error

• Estimator adapts to the training data and thus will have 
an overly optimistic estimate of the generalization error! 

• Generalization error: 

• Expected error: 

ErrT = EX0,Y 0 [L(Y 0, f̂(X0))|T ]

Err = ET [EX0,Y 0 [L(Y 0, f̂(X0))|T ]]
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Training Error Optimism

• Training error is less than true error 

• In-sample error 

• Optimism 

TrainErr =
1

N

X

i

L(yi, f̂(xi))

Errin =
1

N

X

i

EY 0 [L(Y 0
i , f̂(Xi))|T ]

op = Errin � TrainErr
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Rationale for Optimism

• Expect good performance at or close to xi in training set 
and future samples unlikely to coincide with same xi 

• Noise: imagine drawing a new response at the same xi 
using conditional distribution
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Average Optimism

• Optimism is usually positive since training error is biased 
downward 

• Average optimism (expectation of training sets) 

• For squared error, 0-1, and other loss functions 

w = Ey(op)

Harder we fit the 
data, higher the 

optimism
w =

2

N

X

i

Cov(ŷi, yi)



CS 534 [Spring 2017] - Ho

Optimism of Linear Fit

• Linear fit with additive error model and d inputs 

• Covariance simplifies to 

• Average in-sample prediction error 

y = f(X) + ✏

X

i

Cov(ŷi, yi) = d�2
✏

Ey(Errin) = Ey(TrainErr) + 2
d

N
�2
✏
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R2

• “Goodness” of fit measure 

• Easy interpretation —the percentage of variation in data 
explained by the model 

• What is wrong with this predictor?

R2 = 1�
P

i(yi � ŷi)2P
i(yi � ȳ)2
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Adjusted R2

• Adjust for model size 

• Interpretation — percentage of variation explained by 
only the independent variables that actually affect the 
dependent variable

R2
a = 1� n� 1

n� d� 1
(1�R2)
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Mallows Cp Statistic

• Under squared error loss with d parameters: 

• Linear regression Cp statistic 

• Think of the statistic as lack of fit + complexity parameter

Cp = TrainErr + 2
d

N
�̂2
✏

estimated from 
low bias model

Cp =
RSSd
�̂2
p

+ 2d�N
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Mallows Cp Statistic

• Easy to compute 

• Closely related to adjusted R2 and AIC 

• For full model, Cp = p exactly 

• Disadvantage is the need to estimate the variance with 
full set of predictors
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Akaike Information Criterion (AIC)

• Estimate of in-sample error when log-likelihood loss 
function is used 

• Used as model selection criteria (takes into account both 
error and model complexity) 

• Linear models: 

AIC = 2

d

N
� 2

N
log(L)
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AIC: Estimation of In-sample Error

Figure 7.4 (Hastie et al.)
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Bayesian Information Criterion (BIC)

• Applicable in settings with maximization of log-likelihood 

• Also known as Schwarz criterion 

• General form: 

BIC = d log(N)� 2 log(L)
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Linear Regression: AIC and BIC

• Criterion 

• What does this tell us about the two models?

AIC = N log

SSEd

N
+ 2d

BIC = N log

SSEd

N
+ d log(N)
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AIC vs BIC

• BIC is asymptotically consistent 

• Probability BIC will select the correct model with large 
sample size approaches 1 

• AIC favors complex models as N becomes large 

• BIC chooses models that are too simple 

• No clear choice between the two
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Example: Credit Card Data

• Predicting credit card 
default 

• Features: Balance, age, 
number of cards, 
education, income, 
credit card limit, credit 
rating
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Example: Credit Card Data

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/model_selection.pdf

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/model_selection.pdf
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Example: Credit Card Data

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/model_selection.pdf

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/model_selection.pdf
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Minimum Description Length (MDL)

• Turn model selection into a communication / coding 
problem 

• Idea: Best model should lead to best way to compress 
the available data 

• Why does this make sense?
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Data Compression Basics

• If we want to send a message z out of a possible m 
messages, what is the best way to encode it for the 
shortest code? 

• Example: If we use a binary code {0,1} and had only 
four messages, we could use {0, 10, 110, 111} — 
instantaneous prefix code 

• We could imagine that we may want to use how often 
messages are being sent — shorter codes for more 
frequent messages
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Shannon’s Theorem

• Code lengths li = - log2 P(zi) 

• Average message length satisfies 

• Optimal lower bound on the best coding scheme

E[length] � �
X

Pr(zi) log2(Pr(zi))

entropy of distribution
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Classification as Coding

• Sender has access to training data (xi, yi), and needs 
communicate the labels to receiver 

• Receiver has the examples but not the labels 

• A perfect classifier will permit the receiver to reproduce 
the labels for the training examples
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Minimum Description Length (MDL)

• MDL measures number of bits to encode a probability 
distribution 

• MDL for model measures number of bits for the posterior 
distribution 

Length(M) = � logP (y|X,w,M)� logP (w|M)

average code length 
for transmitting model 

parameters

average code length for 
discrepancy between model 

and actual target values
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Minimum Description Length (MDL)

• Complex posterior distribution —> complex model 

• Choose the model with the lowest MDL 

• Can think of it as equivalent to preferring the best 
regularized model
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Recall: Learning & VC Dimension

• VC dimension: Measures relevant size of hypothesis 
space 

• Bound on generalization error 

✏(ˆh) 
✓
min

h2H
✏(h)

◆
+O

 s
V C(H)

m
log

m

V C(H)

+

1

m
log

1

�

!
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Model Selection & VC Dimension

• Ideally select a model from a nested sequence of models 
of increasing VC dimensions 
h1 < h2 < …  

• Model selection criterion: Find the model that achieves 
the lowest upper bound on the generalization error 

Expected error  Training error + Complexity penalty
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Structural Risk Minimization (SRM)

• Choose the hypothesis class that minimizes the upper 
bound on the expected error 

• Although upper bound can be loose, it can be good 
criteria for model selection 

• Difficulty is calculating VC dimension

✏(ˆhi)  ✏̂N (

ˆhi) +

r
VCi(log(2N/VCi) + 1))� log(�/4)

N
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Example: SRM

http://www.ai.mit.edu/courses/6.867-f04/lectures/lecture-12-ho.pdf

http://www.ai.mit.edu/courses/6.867-f04/lectures/lecture-12-ho.pdf
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Example: SRM

• N = 50, delta = 0.005 

• SRM would select linear model

http://www.ai.mit.edu/courses/6.867-f04/lectures/lecture-12-ho.pdf

http://www.ai.mit.edu/courses/6.867-f04/lectures/lecture-12-ho.pdf
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Model Size Comparison
Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.7. Boxplots show the
distribution of the relative error
100×[ErrT (α̂)−minα ErrT (α)]/[maxα ErrT (α)−minα ErrT (α)]
over the four scenarios of Figure 7.3. This is the error
in using the chosen model relative to the best model.
There are 100 training sets each of size 80 represented

Figure 7.7 (Hastie et al.)

100⇥ ErrT (↵̂)�min↵ ErrT (↵)

max↵ ErrT (↵)�min↵ ErrT (↵)

Plot of relative error in using 
chosen model versus the 

best model
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Revisiting Feature Selection
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Why Feature Selection

• Some algorithms scale (computationally) poorly with 
increased dimension 

• Irrelevant features can confuse some algorithms 

• Redundant features adversely affect regularization 

• Removal of features can increase generalization 

• Reduction of data set and resulting model size 



CS 534 [Spring 2017] - Ho

Feature Selection Methods

• Methods agnostic to the learning algorithm 

• Preprocessing based methods 

• Filter feature selection methods 

• Wrapper methods (keep learning in loop) 

• Repeated runs of learner with different set of features 

• Can be computationally expensive
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Filter Feature Selection

• Based on heuristics but much faster than wrapper 
methods 

• Use statistical measure to assign a scoring to each 
feature 

• Methods are often univariate and consider the feature 
independently, or with regard to the dependent variable.
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Filter Feature Measures

• Correlation criteria: Rank features in order of their 
correlation with the labels 

• Mutual information criterion: High mutual information 
means high relevance 

R(xd,y) =
Cov(xd,y)p
Var(xd)Var(y)

MI(xd,y) =
X

xd2{0,1}

X

y2{�1,+1}

P (xd,y)
logP (xd,y)

P (xd)P (y)
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Wrapper Method

• Forward and backward search (covered in linear 
regression lecture) 

• Greedily add / remove features 

• Inclusion / removal uses cross-validation 

• Can use any of the criterion covered earlier in class to 
determine when to stop
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Measure of Uncertainty
• Suppose we have independent samples drawn from some 

population 

• We estimate our parameter of interest 
(e.g., coefficient weights, etc) 

• We want to know the variance of our parameter(s) or even 
construct approximate confidence intervals 

• What if we can’t make usual assumptions (e.g., normality)?

x1, · · · , xn ⇠ P✓

✓̂



CS 534 [Spring 2017] - Ho

Bootstrap
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Bootstrap Method

Metaphor for a “self-sustaining process that 
proceeds without external help”

http://www.gmw.rug.nl/~huisman/sgs/2012_10_25_Bootstrap.pdf

http://www.gmw.rug.nl/~huisman/sgs/2012_10_25_Bootstrap.pdf
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Bootstrapping (Efron, 1979)

• Fundamental resampling tool in statistics 

• General and most widely used tool to estimate measures 
of uncertainty associated with a given statistical model  
(e.g., confidence intervals, bias, variance, etc.) 

• Resampling technique with replacement 

• Distribution-independent or non-parametric
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Bootstrap: Idea
“The population is to the sample as the sample is 

to the bootstrap samples”

https://onlinecourses.science.psu.edu/stat555/node/119

https://onlinecourses.science.psu.edu/stat555/node/119
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Bootstrap Method: Uncertainty

Given a sample of size n 

• Draw B samples of size n with replacement from the 
sample (bootstrap samples) 

• Compute for each bootstrap sample the statistic of 
interest (e.g., learn the weights) 

• Estimate the sample distribution of the statistic method 
by the bootstrap sample distribution
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Bootstrap Method: Uncertainty

...
...

X1, . . . , Xn

X�(1)
1 , . . . , X�(1)

n

X�(2)
1 , . . . , X�(2)

n

X�(m)
1 , . . . , X�(m)

n

�̂�(1)n

�̂�(2)n

�̂�(m)
n

⇥(�̂�(1)n , . . . , �̂�(m)
n )

original 
sample

bootstrap samples

parameter estimate 
(bootstrap samples)

uncertainty 
estimate



CS 534 [Spring 2017] - Ho

Bootstrap: Measuring Uncertainty

• Estimating standard errors  
 

• Estimating bias 

• Estimating confidence  
 

SE(✓̂) =

vuut 1

B

BX

b=1

(✓b �
1

B

BX

r=1

✓r)2

E(✓̂) ⇡ 1

B

BX

b=1

(✓b � ✓̂)

P(2✓̂ � q1�↵/2  ✓  2✓̂ � q↵/2) = 1� ↵
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Bootstrap: Number of Points

• Sampling with replacement from N samples 

• Each bootstrap sample will contain roughly 63.2% 
of the original instances

Pr(i 2 B) = 1� (1� 1

N
)N

⇡ 0.632
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Simple Example: Bootstrap

• Suppose that we wish to invest a fixed sum of money in 
two financial assets that yield returns of X and Y, where X 
and Y are random quantities 

• Fraction of money in X with remaining in Y 

• We wish to choose the fraction to minimize the total risk 
(variance) of our investment 

Var(↵X + (1� ↵)Y )
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Simple Example: Bootstrap

• Estimate variance and 
covariance for X, Y 

• Estimated value that 
minimizes the variance of 
our investment 

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv_boot.pdf

↵̂ =
�̂2
y

� �̂
xy

�̂2
x

+ �̂2
y

� 2�̂
xy

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv_boot.pdf
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Simple Example: Bootstrap

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv_boot.pdf

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv_boot.pdf
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Example: Bootstrap Splines

Figure 8.2 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.2. (Top left:) B-spline smooth of data.
(Top right:) B-spline smooth plus and minus 1.96×
standard error bands. (Bottom left:) Ten bootstrap
replicates of the B-spline smooth. (Bottom right:)
B-spline smooth with 95% standard error bands com-
puted from the bootstrap distribution.

Estimated

Bootstrap
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Bootstrap: General

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv_boot.pdf

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv_boot.pdf
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Bootstrap Properties

• Simple and straightforward to derive estimates of 
standard errors and confidence intervals for complex 
estimators 

• Asymptotically consistent (under certain conditions) 

• In more complex data situations, bootstrapping may not 
be easy 

• Example: time series data — how to deal with 
sampling with replacement?
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Bootstrap for Prediction Error

Figure 7.12 (Hastie et al.)



CS 534 [Spring 2017] - Ho

Bootstrapping for Prediction Error

• Fit model in question on a set of bootstrap samples 

• Keep track of how well it predicts on the original training 
set 

• Estimate of in-sample error 

Err
boot

=
1

B

1

N

X

b

X

i

L(yi, f̂
⇤b(xi))

Anything wrong with this?
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Leave-one-out Bootstrap

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html
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Leave-one-out Bootstrap

• For each observation, keep track of predictions from 
bootstrap samples not containing that observation 

• Solves overfitting problem from before 

• What is downside? (Hint: how many samples)

Err
(1)

=
1

N

X

i

1

|C�i|
X

b2C�i

L(yi, f̂
⇤b(xi))
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“0.632 Estimator”

• Corrects the bias of LOO bootstrap error 

• Works well in “light” (under) fitting scenarios 

• Account for the overfitting by taking into account “no-
information error rate” — when inputs and class labels 
are independent

Err
(.632)

= 0.368TrainErr + 0.632Err
(1)
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“0.632+ Estimator”

• No-information error rate 

• Relative overfitting rate 

• New estimator 

� =
X

`

p̂`(1� q̂`)

R̂ =
Err

(1) � TrainErr

�̂ � TrainErr

Err
(.632+)

= (1� ŵ)TrainErr + ŵErr
(1)

, ŵ =
0.632

1� 0.368R̂
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Bootstrap for Prediction Error

Figure 7.13 (Hastie et al.)

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.13. Boxplots show
the distribution of the relative error
100 · [Errα̂−minα Err(α)]/[maxα Err(α)−minα Err(α)]
over the four scenarios of Figure 7.3. This is the error
in using the chosen model relative to the best model.
There are 100 training sets represented in each boxplot.
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Bootstrap vs Cross-Validation

• Cross validation sacrifices dataset size to estimate 
error 

• Bootstrapping approaches error estimation by 
resampling our dataset to its original size 

• Average over performance in these resampled 
datasets to estimate performance on future unseen 
data


