Model Selection & Bootstrap

CS 534: Machine Learning

Slides adapted from Lee Cooper, Piyush Rai, and Ryan Tibshirani



Review: Validation
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Example: Improper Validation

Dataset Feature Selection

Cross-validation on selected features

=Y
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Example: Proper Validation

Dataset Partition into k-folds
- = — %’
M ) -

Feature selection on the fold
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Model Selection
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CV & Model Selection

-+ Consider an algorithm with parameters 6 that needs to
be tuned

ow to do both model selection and model assessment
within a cross-validation framework??
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Nested CV (K=3)

~ Training + Validation  [RGSENIN
o | _ L

\

Rotating “validation” sets
_ ik
x R A .
0" =argmin Efr, Model Selechonl
,- | (do not report this errorl)

+

eM.
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Nested CV (K=3)

Build optimal model using your non-testing samples

+ @ =argmin Efr, ) Model"

/

Report test error on testing samples (report this)

voder - | < e
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Nested CV

1. Generate T partitions of training + validation samples
only

2. Use validation errors from all partitions to estimate the
optimal parameters

3. Train a single model with the optimal parameters and
evaluate on test samples
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Nested CV: Pictorially

 traning - Vatgacon [N
| | \

Partition 1 : Test samples not
' iIncluded in any trials

Partition T’
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Nested CV: The Wrong Way

0)
Partition j=1 . .: .
0, '
[ [ ] [ ]
0)
Partition j=T . .: .
0, '
L] [ ] [ ]
1. Estimate best parameter 2. Fit a model using ¢* and
for all partitions evaluate on all Test,
0" = argmin,. Z Erry, brr = E ~ L(fe~, Test;)
partitions partitions
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Nested CV: The Correct Way
_ Training, + Validation,

0,
Partition j=1 . .: .
0, '
[ ] [ ] [ ]
0,
Partition j=T . .: .
0, '
[] [ ] [ ]
1. Estimate best parameter 2. Apply the best parameter for each

partition to that partition’s test samples only

Err = Z L(f@;k ; Testj)

partitions T

for one partition

0> = argmin; Erry,
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Best Practices: Model Selection

Training Data

Training Labels
a Data
Labels

Test Data

Test Labels

Hyperparameter
values
Training Data Learning
_ [ Hyperparameter . Perf
" values Algorlthm erformance
Training Labels
Hyperparameter
values

— Performance

— Performance

Best
Hyperparameter
Values

Training Data
> .
Training Labels Learnmg
Algorithm

>@

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html
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Best Practices: Model Selection

Test Data

° @

Prediction

v

— Performance

Test Labels |—

Best

Data

Hyperparameter
Values

>

Labels

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.htm

> -
Learning
Algorithm
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Validation: Takeaway

- Validation can be confusing topic

- Guidelines:

If you have to choose an error from multiple possible
errors, then this error cannot be reported as test/

generalization error

*You cannot use the same samples to estimate both
optimal model parameters and test/generalization error
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Review: [raining Error

- Estimator adapts to the training data and thus will have
an overly optimistic estimate of the generalization error!

- Generalization error:

A

Erry = Exo yo[L(Y?, f(X"))|T]

- Expected error:

Err = Er|[Exo yo [L(Y", f(XO))”-ﬂ
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Training Error Optimism

- Training error Is less than true error

. 1 ;
TrainkErr = N Z L(yia f(Xz))

+In-sample error
1 0O ¢
Err;,, = N ZEYO [L(Y@ 7f(XZ))‘7-]

- Optimism
op = Err;, — Trainkrr
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Rationale for Optimism

Expect good performance at or close to X in training set
and future samples unlikely to coincide with same x

Noise: iImagine drawing a new response at the same X
using conditional distribution
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Average Optimism

- Optimism is usually positive since training error Is biased
downward

- Average optimism (expectation of training sets)
w = Ey(op)

-+ For squared error, O-1, and other loss functions

9 ) Harder we fit the
w=—» Cov(jiyi) data, higher the
U optimism
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Optimism of Linear Fit

- Linear fit with additive error model and d inputs
y =f(X)+e
- Covariance simplifies to
> Cov(ii,y;) = do?

- Average in-sample prediction error

d
E,(Erri,) = E,(TrainErr) + QNUeQ
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RZ

- “Goodness” of fit measure

Easy interpretation —the percentage of variation in data
explained by the model

2 Zz(yz — yAz)Q
A Z@(yz — g)Q

- What is wrong with this predictor?
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Adjusted R4

- Adjust for model size

R?> =1

1 — R?

- Interpretation — percentage of variation explained by
only the independent variables that actually affect the
dependent variable
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Mallows Cp Statistic

-+ Under squared error loss with d parameters:

C, = TrainkErr + 2 d 52 — estimated from

N °  low bias model

- Linear regression Gy statistic

 RSS4
-5

hink of the statistic as lack of fit + complexity parameter

C, - 2d — N
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Mallows Cp Statistic

-+ Easy to compute
+ Closely related to adjusted R? and AIC
+ For full model, Cp = p exactly

- Disadvantage Is the need to estimate the variance with
full set of predictors
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Akaike Information Criterion (AIC)

- Estimate of in-sample error when log-likelihood loss
function is used

- Used as model selection criteria (takes into account both
error and model complexity)

- Linear models:
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AlC: Estimation of In-sample Error

Log-likelihood
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Figure 7.4 (Hastie et al.)



Bayesian Information Criterion (BIC)

- Applicable in settings with maximization of log-likelihood
- Also known as Schwarz criterion

- General form:

BIC = dlog(NN) — 2log(L)
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Linear Regression: AlC and BIC

- Criterion

AIC = N log Sf\fEd 2d

)
BIC = N log va T dlog(N)

- What does this tell us about the two models?
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AlC vs BIC

BIC is asymptotically consistent

Probability BIC will select the correct model with large
sample size approaches 1

- AlC favors complex models as N becomes large
BIC chooses models that are too simple

No clear choice between the two
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Example: Credit Card Data

- Predicting credit card

default

- Features: Balance, age,

number of cards,
education, Income,

credit card limit, credit

rating
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Example: Credit Card Data
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https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatlLearning/asset/model selection.pdf
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https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/model_selection.pdf

Example: Credit Card Data
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https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/model_selection.pdf
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Minimum Description Length (MDL)

- Turn model selection into a communication / coding
problem

- |dea: Best model should lead to best way to compress
the available data

- \Why does this make sense”
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Data Compression Basics

- It we want to send a message z out of a possible m
messages, what is the best way to encode it for the

shortest code?

—xample: If we use a binary code {0,1} and had only
four messages, we could use {0, 10, 110, 111} —
iInstantaneous prefix code

- We could imagine that we may want to use how often
messages are being sent — shorter codes for more

frequent messages

CS 534 [Spring 2017] - Ho



Shannon’s Theorem

-+ Code lengths | = - logz P(z)

o entropy of distribution
- Average message length satisfies /

Ellength] > —» Pr(z;)log,(Pr(z;))

- Optimal lower bound on the best coding scheme
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Classification as Coding

- Sender has access to training data (xi, vi), and needs
communicate the labels to receiver

+  Recelver has the examples but not the labels

- A perfect classifier will permit the receiver to reproduce
the labels for the training examples
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Minimum Description Length (MDL)

- MDL measures number of bits to encode a probabillity
distribution

- MDL for model measures number of bits for the posterior
distribution

Length(M) = —log P(y|X,w, M) — log P(w|M)
™~

/
average code length for average code length

discrepancy between model  Tor transmitting model
and actual target values parameters
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Minimum Description Length (MDL)

- Complex posterior distribution —> complex model
- Choose the model with the lowest MDL

-+ Can think of it as equivalent to preferring the best
regularized model
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Recall: Learning & VC Dimension

- VC dimension: Measures relevant size of hypothesis
space

- Bound on generalization error

e(h) < (gg/g e(h)) + O (\/V%H) log VCT,r(LH) | ;log
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Model Selection & VC Dimension

|deally select a model from a nested sequence of models
of increasing VC dimensions
hi<ho < ...

Model selection criterion: Find the model that achieves
the lowest upper bound on the generalization error

Expected error < Training error + Complexity penalty
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Structural Risk Minimization (SRM)

- Choose the hypothesis class that minimizes the upper
bound on the expected error

VC;(log(2N/VC;) + 1)) — log(d/4)

e(hi) < én(h;) + \/ N

- Although upper bound can be loose, It can be good
criteria for model selection

- Difficulty is calculating VC dimension
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Example: SRM

Model 1 K (x1,x%2) = (1 + (xTx2))
Model 2 K (x1,%5) = (1 + (x1x5))?
Model 3 K (x1,x3) = (1 + (xTx3))3
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http://www.ai.mit.edu/courses/6.867-f04/lectures/lecture-12-ho.pdf
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http://www.ai.mit.edu/courses/6.867-f04/lectures/lecture-12-ho.pdf

Example: SRM

N = 50, delta = 0.005

Model dyvc Empirical fit €e(n,dyg,d)

1%t order 3 0.06 0.5501
2nd order 6 0.06 0.6999
4" order 15  0.04 0.9494
8th order 45  0.02 1.2849

SRM would select linear model

http://www.ai.mit.edu/courses/6.867-f04/lectures/lecture-12-ho.pdf
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Model Size Comparison

AIC

Plot of relative error in using -+ —=— L EE =

reg/KNN reg/linear class/KNN class/linear

chosen model versus the N

best model g
Erry (&) — ming Erry(a) Pl L
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Figure 7.7 (Hastie et al.)
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Revisiting Feature Selection
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Why Feature Selection

- Some algorithms scale (computationally) poorly with
iIncreased dimension

Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
Removal of features can increase generalization

Reduction of data set and resulting model size
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Feature Selection Methods

- Methods agnostic to the learning algorithm
- Preprocessing based methods
- Filter feature selection methods
- Wrapper methods (keep learning in loop)
- Repeated runs of learner with different set of features

- Can be computationally expensive
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Filter Feature Selection

-+ Based on heuristics but much faster than wrapper
methods

- Use statistical measure to assign a scoring to each
feature

- Methods are often univariate and consider the feature
iIndependently, or with regard to the dependent variable.
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Filter Feature Measures

- Correlation criteria: Rank features in order of their
correlation with the labels

Cov(xy,
R(xa,y) = (X4, Y)

\/Var(xd)\far(y)

- Mutual information criterion: High mutual information
means high relevance

MI(xq,y) = »_ > P(xay) og Dlxa, )

xq€4{0,1} ye{—1,+1} P(Xd)P(Y)
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Wrapper Method

Forward and backward search (covered in linear
regression lecture)

- Greedily add / remove features
INnclusion / removal uses cross-validation

- Can use any of the criterion covered earlier in class to
determine when to stop
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Measure of Uncertainty

+ Suppose we have independent samples drawn from some
population

Ti, 0, Tn ~ by

- We estimate our parameter of interest §
(e.q., coefficient weights, etc)

- We want to know the variance of our parameter(s) or even
construct approximate confidence intervals

- What if we can’t make usual assumptions (e.g., normality)?
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Bootstrap
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Bootstrap Method

|

=2

>4 HOW TO

)

A '
-\
X\

—_——

OPERATION BOOTSFRAP

\
SHCHAWMBE

Metaphor for a “self-sustaining process that

proceeds without external help”

http://www.gmw.rug.nl/~huisman/sgs/2012 10 25 Bootstrap.pdf
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Bootstrapping (Efron, 1979)

- Fundamental resampling tool in statistics

- General and most widely used tool to estimate measures
of uncertainty associated with a given statistical model
(e.g., confidence intervals, bias, variance, etc.)

- Resampling technique with replacement

- Distribution-independent or non-parametric
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Bootstrap: ldea

“The population is to the sample as the sample is
to the bootstrap samples”

Estimated Populatio

i I
I l
- y\ - "'l~ -~ - "'v‘ -~
v ,/ \\ ,/ v \\ ,/ \\
Bootstrap Bootstrap | [ Bootstrap New ¥ New 1| New \
Sample Sample Sample v Sample ,’ v Sample /' v Sample /’
A ~ -~ - ’ N ~ -~ - ’ ~ ~— - s
T r L
\ 4 \ 4 A 4
estimate : : : :
estimate estimate estimate estimate estimate

Bootstrap ) ‘\\ True -
Sampling distribution ’ . Sampling distribution
’ ~
\ , ----- s\

https://onlinecourses.science.psu.edu/stat555/node/119
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https://onlinecourses.science.psu.edu/stat555/node/119

Bootstrap Method: Uncertainty

Given a sample of size n

- Draw B samples of size n with replacement from the
sample (bootstrap samples)

- Compute for each bootstrap sample the statistic of
interest (e.q., learn the weights)

-+ Estimate the sample distribution of the statistic method
by the bootstrap sample distribution
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Bootstrap Method: Uncertainty

bootstrap samples

X0 X,;;<1>} g1 uncgrtalnty
[ estimate
Qq(z) X*<2D - () )

—_—

)
origineN : _ r
sample Q{f o X;m) f(m)

parameter estimate
(bootstrap samples)
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Bootstrap: Measuring Uncertainty

+ Estimating standard errors

: 1 o I =,
SE(0) = \ B b:Zl(eb B ;HT)

+ Estimating bias

B

. 1 .
E(0) ~ — ;(eb — )
+ Estimating confidence

P(Zé — q1—a/2 <0< Qé — QQ/Z) =1-«
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Bootstrap: Number of Points

- Sampling with replacement from N samples

Pr(iEB):l—(l—%)N

~ (0.632

+ Each bootstrap sample will contain roughly 63.2%
of the original instances
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Simple Example: Bootstrap

- Suppose that we wish to invest a fixed sum of money in
two financial assets that yield returns of X and Y, where X
and Y are random quantities

- Fraction of money in X with remaining in Y

- We wish to choose the fraction to minimize the total risk
(variance) of our investment

Var(aX + (1 — a)Y)
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Simple Example: Bootstrap

- Estimate variance and S : AR e
. > © ® e :..'.° e > od " .‘,o'?.“.
covariance for X, Y N s R R I g T
oA '3‘. e .:’..:.“.

- Estimated value that o s
minimizes the variance of

. & .: . . :...o
our Investment . = A S 70 B BT O
- :’o ::.{.;: . o] I\.C'.s" “
/\2 . :{o. Py o?.r)o'
& — Oy — Oxy . 7 X
—— A2 ,\2 N e?_.I | ‘I .I. | | ?-‘I...IQ.
o o — 20 S S S .
L —I_ y xy X X

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv _boot.pdf
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Simple Example: Bootstrap
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https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv _boot.pdf
CS 534 [Spring 2017] - Ho



https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv_boot.pdf

Example: Bootstrap Splines

Estimated =

Bootstrap >

Figure 8.2 (Hastie et al.)
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Bootstrap: General

Real World

Bootstrap World

Random Bootstrap
Sampling dataset

Estimated ]5_> T*% — (g* % ¥
Population (71, 225 n)

Random
Sampling Data

Populaton P — Z = (21, 22, . .

Bootstrap f( Z*)

Estimate

Estimate f (Z )

https://lagunita.stanford.edu/c4x/HumanitiesandScience/StatLearning/asset/cv boot.pdf
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Bootstrap Properties

- Simple and straightforward to derive estimates of
standard errors and confidence intervals for complex
estimators

- Asymptotically consistent (under certain conditions)

In more complex data situations, bootstrapping may not
be easy

Example: time series data — how to deal with
sampling with replacement?
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Bootstrap for Prediction Error

-- Bootstrap

_---- replications

---222 Bootstrap
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Figure 7.12 (Hastie et al.)



Bootstrapping for Prediction Error

- FIt model In question on a set of bootstrap samples

-+ Keep track of how well it predicts on the original training
set

-+ Estimate of in-sample error

Errboot — I AT LLL yza

Anything wrong with this”
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| eave-one-out Bootstrap

Original Dataset | X [ X5 | X5 | X, | X5 | X5 | X7 | X5 | Xg [ Xio

Bootstrap1 Xg | Xo | Xo | Xg | X5 | Xg | Xy | X4 | Xg | X X3 | X7 [ X0
Bootstrap 2 [Xjo| X; [ X3 [ X5 | X | X7 [ X, | X5 | X; [ X5 Xs | Xg
Bootstrap 3 | Xg | X5 | X4 | Xq | X5 [ Xg [ X5 [ X5 [ Xg | X5 X3 | X7 | Xs [X10
| [ I
Training Sets Test Sets

' @ @ | This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html
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| eave-one-out Bootstrap

- For each observation, keep track of predictions from
bootstrap samples not containing that observation

=—(1) 1 1 Pxb
Err T sz: ‘C_Z‘ Z L(y’wf (Xz))

be(C—

- Solves overfitting problem from before

- What is downside? (Hint: how many samples)
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“0.632 Estimator”

+ Corrects the bias of LOO bootstrap error

—(.632)
I

Er — 0.368TrainErr & 0.632Er

- Works well in “light” (under) fitting scenarios
- Account for the overfitting by taking into account “no-

iInformation error rate” — when inputs and class labels
are independent
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“0.632+ Estimator”

- No-Information error rate
= pe(1— o)
¢
Relative overfitting rate

E(l) — Trainkrr

R =
~ — Trainkrr

New estimator

—(1) 0.632

Err 0% — (1 — w)TrainErr + wErr 7, w = -
1 —0.368R

Err
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Bootstrap for Prediction

% Increase Over Best

% Increase Over Best
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Bootstrap vs Cross-Validation

- Cross validation sacrifices dataset size 1o estimate

error

- Average over performance in t
datasets to estimate performa
gata

Bootstrapping approaches error estimation by
resampling our dataset to its original size

nese resampled

nce on future unseen
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