Introduction to Machine Learning

CS 534: Machine Learning

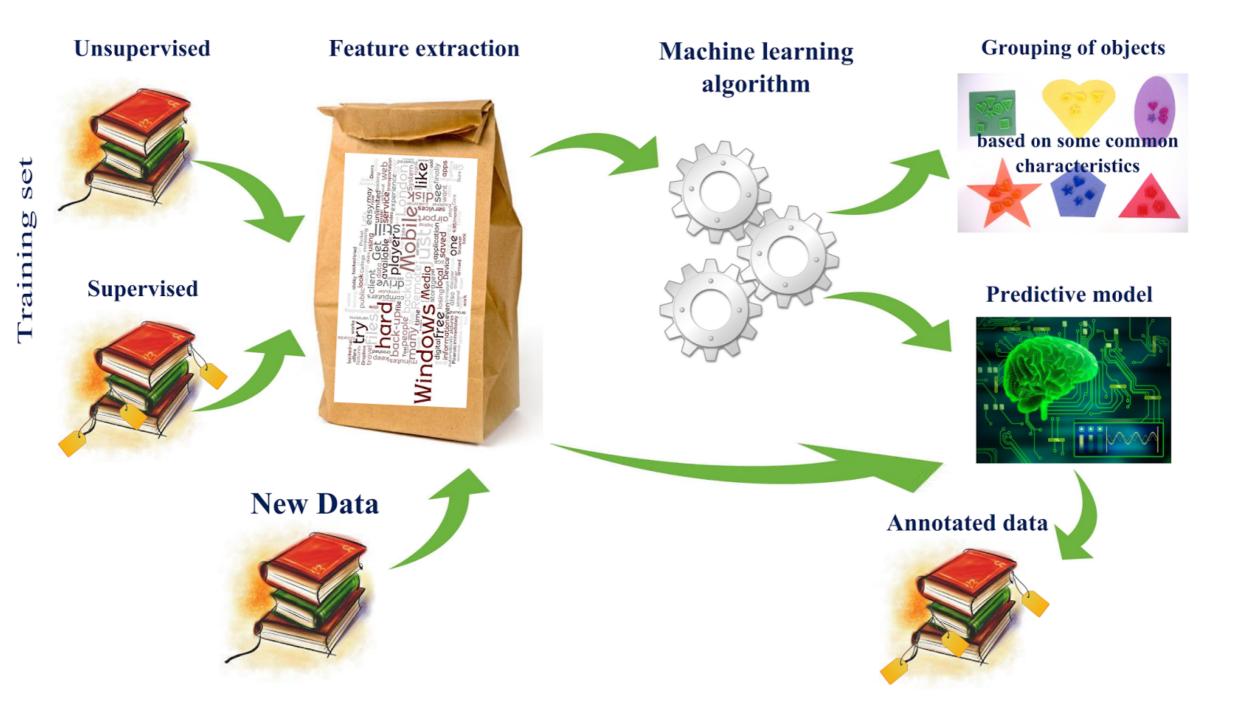
Slides adapted from Lee Cooper, David Sontag, Luke Zettlemoyer, Pedro Domingos, and Carlos Guestrin

Why Machine Learning?

"We are drowning in information and starving for knowledge." — John Naisbitt

- Big data era
- Use algorithms to discover new relationships, scale tasks, and perform decision making under uncertainty

Machine learning workflow

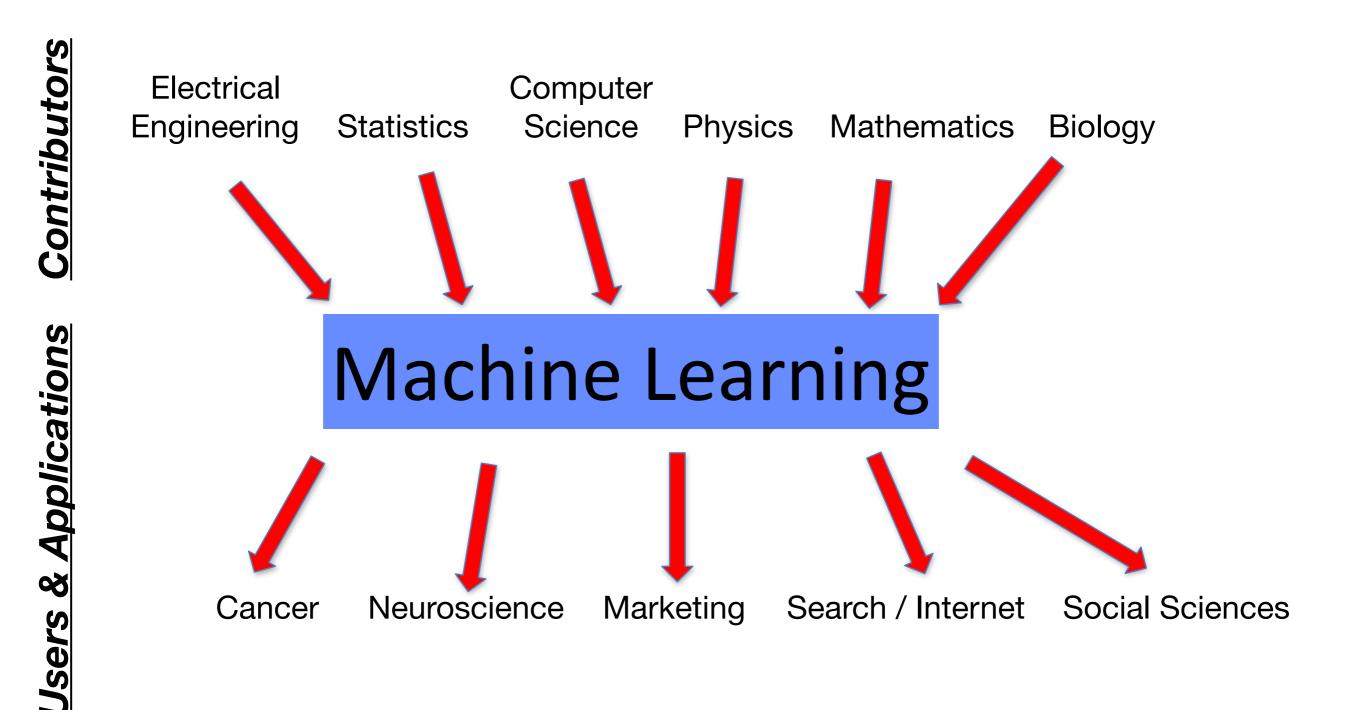


http://nkonst.com/machine-learning-explained-simple-words/

ML, DM, or Al?

- Machine Learning (ML) The study, design and development of algorithms that endow learning capabilities
- Data Mining (DM) Using ML and statistical techniques to learn something new from data
- Artificial Intelligence (AI) Broad study of developing intelligent agents (think Turing Test)

Diverse Community



Journals & Conferences

- Journals
 - Transactions on Pattern Analysis and Machine Intelligence (IEEE)
 - Journal of Machine Learning Research (ACM)
 - Machine Learning (Springer)
 - Foundations and Trends in Machine Learning (ACM)

- Conferences
 - ICML International Conference on Machine Learning
 - NIPS Neural Information Processing Systems
 - UAI Uncertainty in Artificial Intelligence
 - CVPR Computer Vision Pattern Recognition

Complete list at Microsoft Research Rankings

All About Benchmarking

- Abundant data available to compare algorithms
- Required for publication
- Makes ML more of a science
- Still difficult to make fair comparisons
 - What parameters to use
 - Difficult to sweep parameter space

Tools for Machine Learning

• Python

Pros: free, fast, many algorithms available

Cons: can be slow

Code examples will be provided in Python

• R

Pros: free, standard in bioinformatics & statistics, great vector graphics

Cons: extremely slow, poorly documented, bad language conventions

Matlab

Pros: fast, large user community & codebase, well documented

Cons: not free

Course Logistics

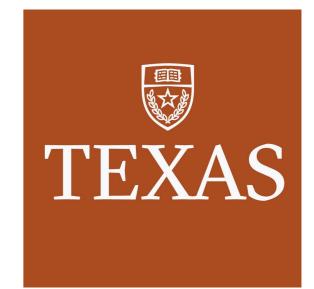
Course Website

http://joyceho.github.io/cs534-s17/index.html

- Lectures
- Assignments
- Example code (when applicable)

About Me (Joyce Ho)

- Undergraduate / MEng from MIT
- PhD from University of Texas at Austin
- Research interests:
 - Data Mining / Machine Learning
 - Healthcare Informatics
- More information: <u>http://joyceho.github.io</u>



Contact Information

- Email: joyce.c.ho@emory.edu
- Office Hours @ MSC W414
 - M 1:00 pm 3:30 pm
 - W 9:30 am 12:00 pm

Communication

- Piazza: http://piazza.com/emory/spring2017/cs534
 - Announcements
 - Questions + Discussions
 - Assignment Clarifications + Slide Corrections
- Office Hours
- By Appointment!

Course Textbook

- Elements of Statistical Learning
 - PDF available online
- Machine Learning: a Probabilistic Perspective, by Kevin Murphy (Optional)
- Pattern Recognition and Machine Learning, by Christopher Bishop (Optional)

Evaluation

- 4-5 assignments (40%)
 - Both theory & programming
- Midterm (15%)
- Project (40%)
- Participation (5%)

Collaboration Policy

- Try the assignments on your own first
- Discuss with others if necessary
- Write-up solutions on your own
- List the people you collaborated with

Project

- Work in groups of 1-2
- Emphasis on public data sets (e.g., Kaggle competitions, MovieLens, KDD Cup, etc.)
- Project proposal due by spring break for feedback
- Goal is to either develop a new algorithm or try multiple algorithms to achieve good performance

Prerequisites

- REQUIRED:
 - Probability theory
 - Linear algebra
- STRONGLY RECOMMENDED:
 - Statistics
 - Good programming skills

Jupyter [IPython] Notebooks

- Designed to make lectures more 'interactive' — in-class activity to learn together
- Provide a means for more exercises to better understand the material
- Learn some Python along the way

	*matp.	lotlib i	lline											
In [2]:	<pre>import os path = os.getcwd() + '\data\exldatal.txt' data = pd.read_csv(path, header=None, names=['Population', 'Profit']) data.head()</pre>													
Out[2]:	Pop	oulation P	rofit											
	0 6.11	101 1	7.5920											
	1 5.52	277 9.	1302											
	2 8.5		3.6620											
	3 7.00		1.8540											
	4 5.85	598 6	8233											
In [3]:	data.	describe	()											
Out[3]:		Populatio	-											
	count	-	-	2										
	mean std	8.159800 3.869884	5.839135	-										
	min	5.026900		-										
	25%	5.707700		4										
	50%	6.589400		1										
	75%	8.578100	7.046700	-										
	max Let's pl	22.20300 lot it to get	24.14700 a better idea	D	data looks	s like.								
	Let's pl	lot it to get	a better idea d='scatter	of what the	ulation	', y='1			=(12,8))				
	Let's pl	lot it to get	a better idea	of what the	ulation	', y='1			=(12,8))				
	Let's pl data.j <matp2< td=""><td>lot it to get</td><td>a better idea d='scatter</td><td>of what the</td><td>ulation</td><td>', y='1</td><td></td><td></td><td>e=(12,8)</td><td>)</td><td></td><td></td><td></td><td></td></matp2<>	lot it to get	a better idea d='scatter	of what the	ulation	', y='1			e=(12,8))				
	Let's pl data.j <matp2< td=""><td>lot it to get</td><td>a better idea d='scatter</td><td>of what the</td><td>ulation</td><td>', y='1</td><td></td><td></td><td>=(12,8)</td><td>)</td><td></td><td></td><td></td><td></td></matp2<>	lot it to get	a better idea d='scatter	of what the	ulation	', y='1			=(12,8))				
	Let's pl data.] <matp: 30</matp: 	lot it to get	a better idea d='scatter	of what the	ulation	', y='1			•)	•			
	Let's pl data.] <matp: 30</matp: 	lot it to get	a better idea d='scatter	of what the	ulation	', y='1			•)	•			
	Let's pl data.1 <matp: 30 25</matp: 	lot it to get	a better idea d='scatter	of what the	ulation	', y='1			•)	•			
	Let's pl data.j <matp2 25 - 20 - 15 -</matp2 	lot it to get	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation ubplot a	', y='1			•		•			
	Let's pl data.; <matp: 25 - 20 -</matp: 	lot it to get	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation	', y='1			•		•			
	Let's pl data.j <matp2 25 - 20 - 15 -</matp2 	lot it to get	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation ubplot a	', y='1			•		•			
	Let's pl data.) <matp: 25 - 20 - 15 - ⁴⁴ 52</matp: 	lot it to get	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation ubplot a	', y='1			•)	•			
	Let's pl data.) <matp: 25 - 20 - 15 - ⁴⁴ 52</matp: 	lot it to get	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation ubplot a	', y='1			•		•			
	Let's pl data., <matp: 20 - 20 - 15 - 10 - 5 -</matp: 	lot it to get	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation ubplot a	', y='1			•		•			
	Let's pl data., (matp: 25 20 25 20 15 15 10	lot it to get	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation ubplot a	', y='1			•		•			
	Let's pl data., <matp: 20 - 20 - 15 - 10 - 5 -</matp: 	lotitoget	a better idea d='scatter	of what the ', x='Pop Dts.AxesS	ulation ubplot a	', y='1			•		•			

Preview of Topics

Linear Regression

- How can we build linear models to predict continuousvalued outcomes?
- How can we analyze these models to understand the importance of features?

Linear Regression: Stock Market

Apple Inc. NASDAQ: AAPL - Dec 20, 7:59 PM EST

116.93 USD +0.29 (0.25%)

After-hours: 116.96 +0.03%

1 d	ay	5 day	1 month	3 month	1 year	5 year	max
140 120					m	10	
100	M			~~~~	M	m	~~~~
80 60 🥒	/*	"hy	~~~~	ym			
40 201	12	2013	201	14	2015	2016	
Open High Low	116.74 117.50 116.68			Mkt cap P/E ratio Div yield	0 14.13		

Linear Regression: Weather

Hour	Weathe	r	Temp.	Precip.	Wind
10pm	()	Mostly Clear	41°F	0 in	NW - 5 mph
12am	()	Mostly Clear	39°F	0 in	NW - 3 mph
02am	()	Mostly Clear	39°F	0 in	NW - 3 mph
04am	()	Mostly Clear	37°F	0 in	NW - 3 mph
06am	()	Mostly Clear	36°F	0 in	NW - 3 mph
08am	*	Mostly Sunny	43°F	0 in	WNW - 3 mph
10am	*	Mostly Sunny	50°F	0 in	W - 2 mph
12pm	*	Mostly Sunny	55°F	0 in	SW - 2 mph
02pm	*	Mostly Sunny	57°F	0 in	S - 3 mph
04pm	*	Mostly Sunny	57°F	0 in	S - 3 mph
06pm	()	Mostly Clear	54°F	0 in	SSE - 3 mph
08pm	0	Mostly Clear	50°F	0 in	S - 3 mph
10pm	()	Partly Cloudy	46°F	0 in	S - 4 mph

Linear Classifiers

- What if the response variable is categorical or discrete?
- What are strategies for selecting the best features and dealing with noise?

Linear Classifiers: Spam Filtering

Osman Khan to Carlos

show details Jan 7 (6 days ago) 5 Reply 🔻

sounds good +ok

Carlos Guestrin wrote: Let's try to chat on Friday a little to coordinate and more on Sunday in person?

Carlos

Welcome to New Media Installation: Art that Learns

Carlos Guestrin to 10615-announce, Osman, Michel show details 3:15 PM (8 hours ago)

Hi everyone,

Welcome to New Media Installation:Art that Learns

The class will start tomorrow. ***Make sure you attend the first class, even if you are on the Wait List.*** The classes are held in Doherty Hall C316, and will be Tue, Thu 01:30-4:20 PM.

By now, you should be subscribed to our course mailing list: 10615-announce@cs.cmu.edu. You can contact the instructors by emailing: 10615-instructors@cs.cmu.edu

Natural LoseWeight SuperFood Endorsed by Oprah Winfrey, Free Trial 1 bottle,

pay only \$5.95 for shipping mfw rlk Spam | X

.

📩 Jaquelyn Halley to nherrlein, bcc: thehorney, bcc: ang show details 9:52 PM (1 hour ago) 🦘 Reply 🔻

=== Natural WeightL0SS Solution ===

Vital Acai is a natural WeightLOSS product that Enables people to lose wieght and cleansing their bodies faster than most other products on the market.

Here are some of the benefits of Vital Acai that You might not be aware of. These benefits have helped people who have been using Vital Acai daily to Achieve goals and reach new heights in there dieting that they never thought they could.

* Rapid WeightL0SS * Increased metabolism - BurnFat & calories easily! * Better Mood and Attitude * More Self Confidence * Cleanse and Detoxify Your Body * Much More Energy * BetterSexLife



spam VS not spam

Linear Classifiers: Weather Prediction

Hour	Weathe	r	Temp.	Precip.	Wind
10pm	٢	Mostly Clear	41°F	0 in	NW - 5 mph
12am	٢	Mostly Clear	39°F	0 in	NW - 3 mph
02am	٢	Mostly Clear	39°F	0 in	NW - 3 mph
04am	٢	Mostly Clear	37°F	0 in	NW - 3 mph
06am	٢	Mostly Clear	36°F	0 in	NW - 3 mph
08am	*	Mostly Sunny	43°F	0 in	WNW - 3 mph
10am	*	Mostly Sunny	50°F	0 in	W - 2 mph
12pm	*	Mostly Sunny	55°F	0 in	SW - 2 mph
02pm	*	Mostly Sunny	57°F	0 in	S - 3 mph
04pm	*	Mostly Sunny	57°F	0 in	S - 3 mph
06pm	٢	Mostly Clear	54°F	0 in	SSE - 3 mph
08pm	٢	Mostly Clear	50°F	0 in	S - 3 mph
10pm	٢	Partly Cloudy	46°F	0 in	S - 4 mph

Learning Theory

- How can we gauge the accuracy of a hypothesis on unseen data?
- How do we quantify our ability to generalize as a function of the amount of training data and the hypothesis space?
- How do we find the best hypothesis?

Occam's Razor Principle

- William of Occam: Monk living in the 14th century
- Principle of parsimony:
 "One should not increase, beyond what is necessary, the number of entities required to explain anything"
- When many solutions are available for a given problem, we should select simplest one

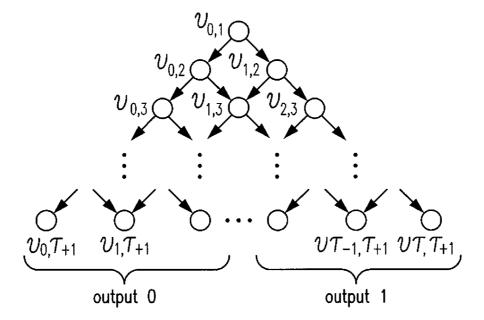
But what does simplest really mean?

Validation

- How do we objectively measure performance of ML algorithms?
- How do we select the best algorithms and parameter values?
- Probably the most important topic most abused and neglected

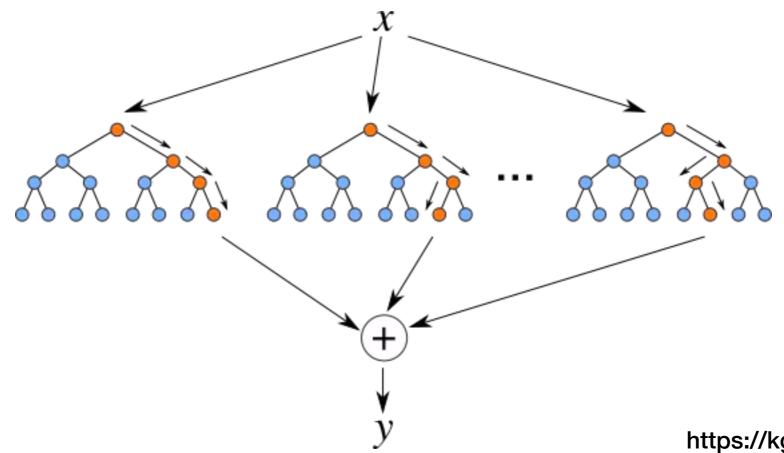
Boosting, Trees, & Additive Models

- Can we achieve good performance by combining many primitive models?
- Can we build a strong learning from many weak learners?



Ensembles & Random Forests

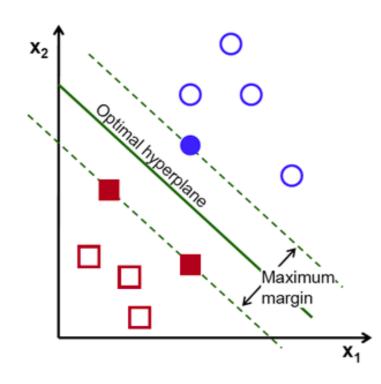
- One of the most popular methods around
- Combining trees in a special way to get powerful classifier



https://kgpdag.wordpress.com/

Support Vector Machines

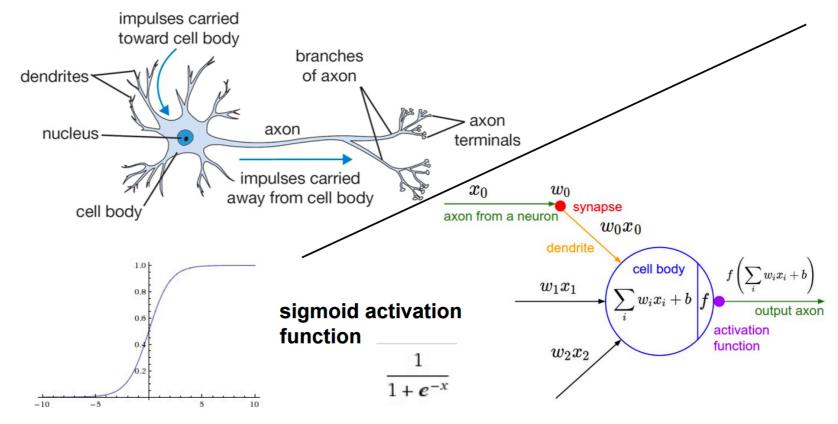
- Widely used classifier
- How can we implement non-linear classifiers by automatically transforming the data?



http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

Neural Networks

- Can we use biology as an inspiration for classification?
- Connect virtual neurons in "natural" architectures and train to make decisions

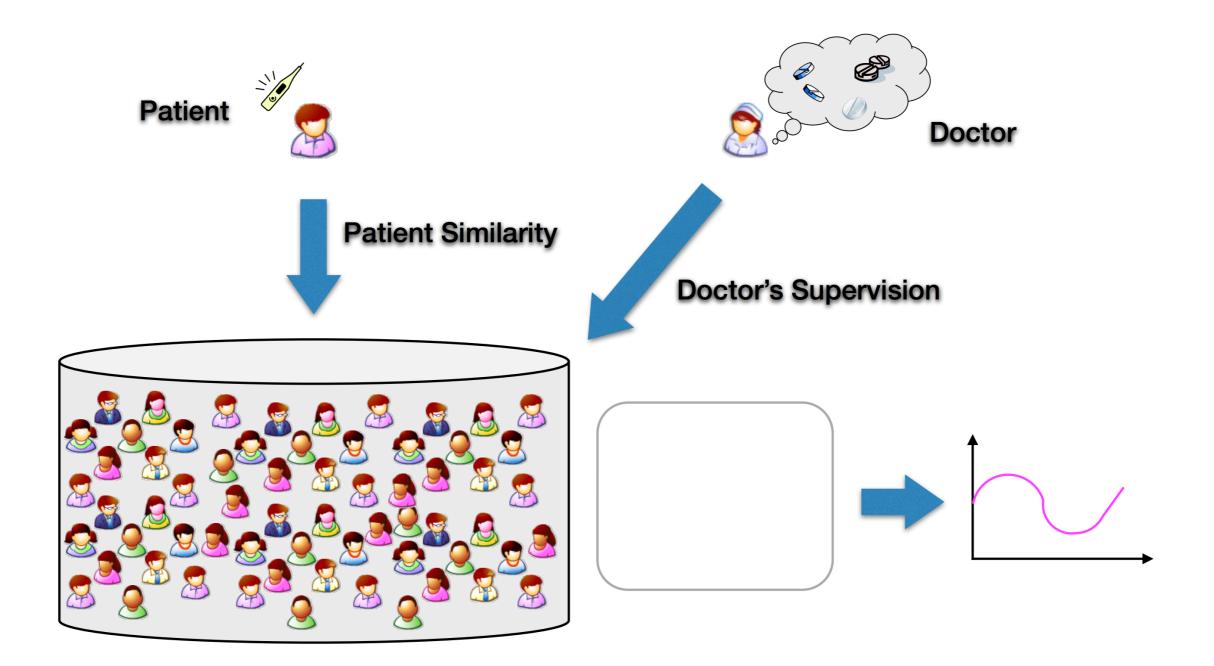


http://vision.stanford.edu/teaching/cs231n/slides/lecture5.pdf

Prototype Methods

- What if we don't have an underlying model of how the data is shaped?
- Can we use the relationships between data points to develop good classifiers?

Prototype Methods: kNN



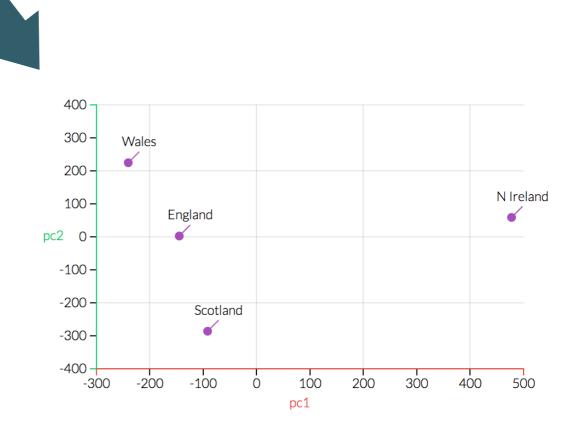
http://engr.uconn.edu/~fwang/tutorials/CIKM14_Tutorial.pdf

Unsupervised Learning

- What happens when we don't know the outcome or have classes?
- How to explore data to look for structure and patterns?

Unsupervised Learning: Visualization

	England	N Ireland	Scotland	Wales
Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	<mark>1</mark> 102	674	957	<mark>1</mark> 137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	<mark>137</mark> 4	1506	1572	<mark>12</mark> 56
Sugars	156	139	147	175



http://setosa.io/ev/principal-component-analysis/

Unsupervised Learning: Clustering

clusty race	ges wikipedia blogs jobs more » Search advanced preferences
clusters sources sites All Results (238) remix Car (28) Race cars (7) Photos, Races Scheduled (5) Game (4) Track (3) Nascar (2) Equipment And Safety (2) Other Topics (7) Photos (22) Game (14) Definition (13) Team (18) Classification Of Human (2) Statement, Evolved (2) Other Topics (4) Weekend (8) Ethnicity And Race (7) Race for the Cure (8) Race Information (8) more all clusters 	Cluster Human contains 8 documents. Custer Human contains 8 documents. Celessification of human beings) - Wikipedia, the free 는 역 속 & The term race or racial group usually refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics. The most widely used human racial categories are based on visible tradit (sepecide) with an an and a rediter controversial for scientific as well as social and polical reasons History - Modern debates - Political and en.wikipedia. the free encyclopedia 한 속 & General. Racing competitions The Race (vaching race), or La course du millenaire, an on-ules round-the-world sailing event; Race (biology), classification of force and fauns; Race (classification of human binds) the functions of race; as well as specific ways of grouping races, vary by clure and over theiring Nace and ethicity in the functed State Census, official definitions of "race" used by the US Census Bureau; Race and genetics, notion of forcial classifications based on genetics. Historical definitions of race, Race (bearing), the inner and outer rings of a rolling-element bearing. RACE in molecular biology "Rapid General - Sumames - Television - Music - Literature - Velos games en.wikipedia.org/wikiPace - (cache) - Lve, Ask 2. <u>Publications I Human Rights Watch</u> ® q @ The use of fortur, unlawki/lenation, secret prisons, unfair trials, Risks to Migrants, Refugees, and Asylum Seekers in Egypt and Israel In the run-up to the Beijing Olympics in August 2008, www.hww.org/backgrounder/usa/race - [cache] - Ask 4. <u>Amazon.com; Race; The Reality Of Human Differences; Vincent Sarich, Optical State, Berland - (cache) - Lve, 4. A APA Statement on Biological Aspects of Race ® q @ @ APA Statement on Biological Aspects of Race ® q @ @ APA Statement on Biological Aspects of Race ® q @ @ APA Statement on Biological Aspects of Race ® q @ @ APA Statement on Biological Aspects of Race ® q @ @ APA Statement on Biological Aspects of Race ® q @ @ APA Stateme</u>

Unsupervised Learning: Topic Models

Personal Finance: (money, 0.15), (retire, 0.10), (risk, 0.03) ...

Politics: (President Obama, 0.10), (congress, 0.08), (government, 0.07), ...

Parceling Out a Nest Egg, Without Emptying It

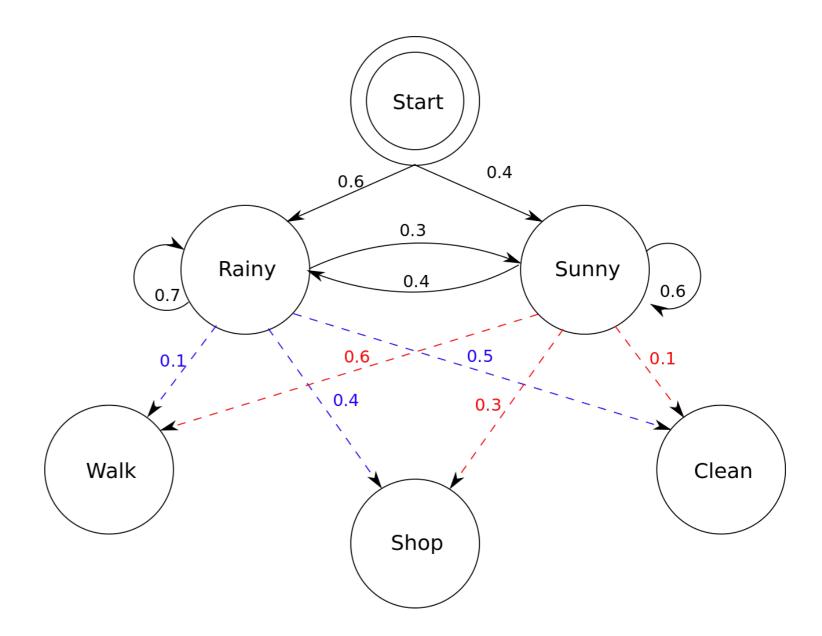
What clients often forget are fixed costs — homes, cars, insurance — that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65, the retirement age established for <u>Social Security</u> in 1935, when the average <u>life expectancy</u> was 61. Today the average is over 80 for men and women with a college degree.

So the \$5.12 million gift exemption — created in a compromise between President Obama and Congress in 2010 — presents the well-off with a decision laden with short- and longterm consequences. How much should they give heirs now — and thus avoid giving the government in estate taxes later — while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?

Graphical Models

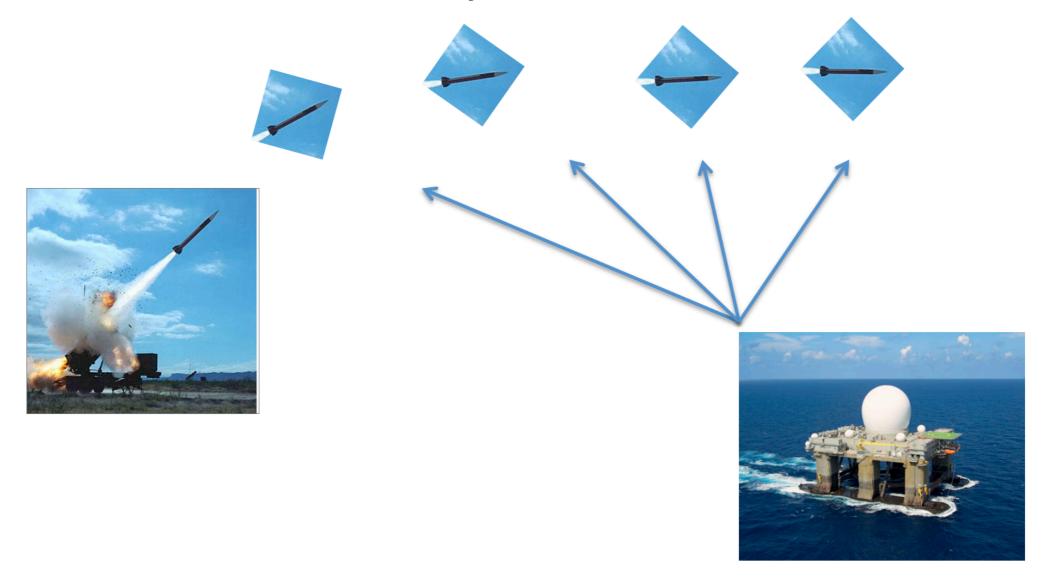
- Marriage between graph theory and probability theory
- Great for modeling sequential data (e.g., time series, speech processing)



https://en.wikipedia.org/wiki/Hidden_Markov_model

Graphical Models: Tracking

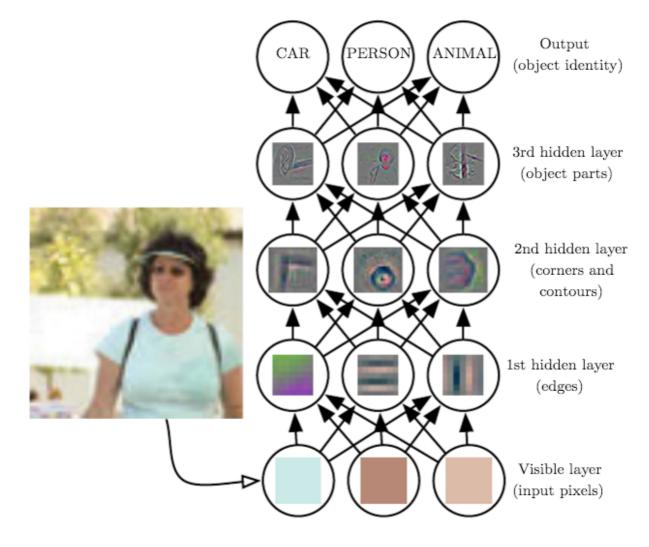
Observe noisy measurements of missile location



Where is the missile now? Where will it be in 1 minute?

Deep Learning

- Form of representation
 learning
- Aimed at learning feature
 hierarchies
- Features from higher levels of the hierarchy are formed by lower level features
- Each hidden layer allows for more complex features of input



http://www.deeplearningbook.org/contents/intro.html

Recommendation Systems

How to build a system that provides or suggests items to the end users?

iPython Setup

Jupyter [iPython] Notebook

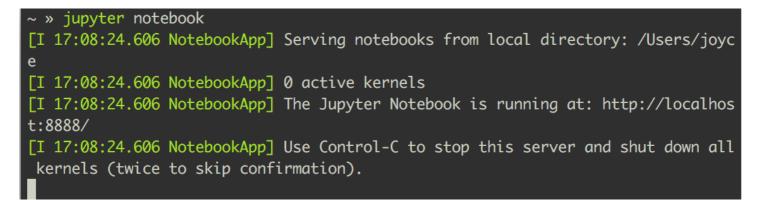
- Interactive computational environment which save output in a nice notebook format
 - Combine code execution, rich text, math, plots, and may other things
 - Supports markdown, LaTeX, HTML, etc
 - Popular in Data Science and can be easily shared with others
- More information: <u>http://jupyter.org/</u>

Jupyter Notebook Setup

- Suggestion: Anaconda, an open source data science platform powered by Python: <u>https://www.continuum.io/</u> <u>downloads</u>
 - Contains Windows, OS X, Linux installations
 - Use either Python 2.7 or Python 3.5 (Note: class will use 2.7 syntax primarily)

Jupyter Notebook Setup (2)

Once installed, to start, just open a terminal and run jupyter notebook



 A browser should open with jupyter running and you can import the .ipynb notebook from today's activity

💭 jup	byter			Data-Analysis-and-Machine-Learning-Projects/	Logout			
Files	Running	Clusters	Con	Example Machine Learning Notebook.ipynb at master · rhiever/Data-Analysis-and-Machine- Learning-Projects · GitHub				
Select iter	ns to perform a	ctions on the	m.		Upload New - 2			
	→	534-Machine	Learni	ng-S17 / ipynb-notebooks				
۵								
	iPython Basics.ipynb							