
SQL Queries
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Today and Next Lecture
1. Basic Single Table Queries

1. Select-From-Where Query

2. Useful Operators

3. Exercise: Company Database

2. Multi-table Queries

1. Join

2. Aliasing

CS 377 [Spring 2017] - Ho

SQL Query

Basic form is called a mapping or a SELECT-FROM-
WHERE block

SELECT <attribute list>  
FROM <table list> 
WHERE <condition on the tables>

CS 377 [Spring 2017] - Ho

SQL Query <—> Relational Algebra

SELECT <attribute list>  
FROM <table list>  
WHERE <condition on the tables> 
 
 
 
 
 
 

conditions of the form attr1 op constant/attr2

cartesian product of
relations is formed

⇡<attribute list>�<condition>(R1

⇥R
2

⇥ · · ·⇥Rn)

Does not remove
duplicates as SELECT

in relational algebra

CS 377 [Spring 2017] - Ho

Example: Product Database

Name Category Price Manufacter
iPad Tablet $399.00 Apple

Surface Tablet $299.00 Microsoft
Kindle eReader $79.00 Amazon

Macbook Air Laptop $999.99 Apple

PRODUCT

CS 377 [Spring 2017] - Ho

Simple SQL Query: * SELECTOR

• Selects all the values of the selected tuples for all the
attributes

• Example: 
SELECT *  
FROM Product;  
 
 
 
 

Name Category Price Manufacter
iPad Tablet $399.00 Apple

Surface Tablet $299.00 Microsoft
Kindle eReader $79.00 Amazon

Macbook Air Laptop $999.99 Apple

�(Product)

CS 377 [Spring 2017] - Ho

Selection Query Using *

SELECT *  
FROM Product 
WHERE Category = ‘Tablet’; 
 
 
 
 
 
 
 

Name Category Price Manufacter

iPad Tablet $399.00 Apple

Surface Tablet $299.00 Microsoft

�
Category=‘Tablet’

(Product)

CS 377 [Spring 2017] - Ho

Projection Query

SELECT Name, Category  
FROM Product;  
 
 
 
 
 
 
 

Name Category
iPad Tablet

Surface Tablet
Kindle eReader

Macbook Air Laptop

⇡
Name,Category

(Product)

CS 377 [Spring 2017] - Ho

Select-Project Query

SELECT Name, Category  
FROM Product 
WHERE Manufactor = ‘Apple’  
 
 
 
 
 
 
 

Name Category

iPad Tablet

Macbook Air Laptop

CS 377 [Spring 2017] - Ho

SQL Details

• SQL commands are case insensitive

• SELECT = select = Select

• Values are case sensitive

• Apple =/= apple

• Single quotes should be used for constants

• ‘Apple’ instead of “Apple”

CS 377 [Spring 2017] - Ho

Exercise: Company Database

• Retrieve the birthdate and address of the employee
whose name is ‘John B. Smith”

• List the SSN, last name, and department number of all
employees

• List the department number and name of all departments

• List the projects under department number 5

CS 377 [Spring 2017] - Ho

DISTINCT: Eliminate Duplicates
• SQL outputs duplicate values by default

• Relation is a multi-set (bag) of tuples vs a set of
tuples

• Favored for database efficiency

• Syntax:  
SELECT DISTINCT <attr list> 
FROM <table>; 
 

Removes duplicate values

CS 377 [Spring 2017] - Ho

Example Query: DISTINCT

• SELECT Category  
FROM Product;

• SELECT DISTINCT Category 
FROM Product;

Category
Tablet
Tablet

eReader
Laptop

Category
Tablet

eReader
Laptop

CS 377 [Spring 2017] - Ho

SQL Details: WHERE Conditions

SELECT <attribute list>  
FROM <table list> 
WHERE <condition on the tables>

• Attribute names of the relation(s) used in the FROM
clause

• Comparison operators: =, <>, <, >, <=, >=

• Arithmetic operations: +, -, *, /

What can go in here?

CS 377 [Spring 2017] - Ho

SQL Details: WHERE Conditions

• Logical operators to combine conditions: AND, OR, NOT

• Operations on strings (e.g., concatenation)

• Membership test

• Pattern matching

CS 377 [Spring 2017] - Ho

IN: Member of Set Test

• Tests whether a value is contained in a set

• True if attribute value is a member of the set of values

• False otherwise

• Syntax: 
SELECT <attr list>  
FROM <table>  
WHERE attr IN (set of values);

CS 377 [Spring 2017] - Ho

Example Queries: IN
• Find the name and prices of products made by Amazon or

Microsoft: 
SELECT name, price 
FROM Product  
WHERE Manufacter IN (‘Amazon’, ‘Microsoft’);

• Find the name of products whose made by Amazon or
Microsoft and are tablets:  
SELECT name  
FROM Product  
WHERE (Manufacter, Category) IN ((‘Amazon’,
‘Tablet’), (‘Microsoft’, ‘Tablet’));

CS 377 [Spring 2017] - Ho

LIKE: Simple String Pattern Matching
• Syntax:  

SELECT *  
FROM Products  
WHERE Name LIKE ‘%Air’;

• Supports 2 wildcard characters

• Underscore (_) matches exactly one character  
(equivalent to ? in the UNIX shell)

• Percent (%) matches 0 or more characters  
(equivalent to * in the UNIX shell)

Substring comparison for
partial strings

CS 377 [Spring 2017] - Ho

Example Queries: LIKE

• Find names of products whose company start with ‘A’:  
SELECT name  
FROM Product 
WHERE Company LIKE ’A%’;

• Find the name and price of products with the word Air in
them: 
SELECT name, price  
FROM Product 
WHERE name LIKE ‘%Air%;

CS 377 [Spring 2017] - Ho

SQL: IS NULL

• Test if an attribute contains the NULL value

• Syntax: 
attr IS NULL

• Example: Find employees that have NULL value in the
salary attribute 
 
SELECT *  
FROM employee  
WHERE salary IS NULL

CS 377 [Spring 2017] - Ho

SQL: NOT IN and IS NOT NULL

• Tests whether a value is not contained in a set or not a
null value respectively

• Syntax looks similar to the IN and IS NULL operators:  
attr NOT IN (set of values)  
attr IS NOT NULL

CS 377 [Spring 2017] - Ho

SQL: Three-Value Logic
TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

AND

TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

OR

TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

NOT

CS 377 [Spring 2017] - Ho

SQL: ORDER BY

• Sort the tuples in a query based on the values of some
attributes

• Default order is in ascending order of the values (ASC)

• Syntax: 
SELECT <attribute list>  
FROM <table list>  
WHERE <condition on the tables> 
ORDER BY <attribute-list> ASC | DESC;

sorting by multiple
columns is just separated

with a comma

CS 377 [Spring 2017] - Ho

Example Query: ORDER BY

• Sort employees by their salary value in descending order 
SELECT fname, lname, salary  
FROM employee  
ORDER BY salary DESC;

• Sort employees by their salary figures and within the
same salary figure, by their last name  
SELECT fname, lname, salary  
FROM employee  
ORDER BY salary, lname;

CS 377 [Spring 2017] - Ho

SQL: LIMIT
• Limit the output to be only the specified number of tuples

• Useful if your table has many relations and you just want to
sanity check your work

• Can be used with ORDER BY to get a maximum or
minimum value

• Syntax:  
SELECT <attribute list> 
FROM <table list> 
WHERE <condition on the tables> 
LIMIT <number of tuples>;

CS 377 [Spring 2017] - Ho

Exercise: Company Database (2)

• What are the first and last names of employees who live
in Houston?

• What are the SSNs of the top 5 employees who worked
the most hours on project number 30? List them in
descending order

• Which department number(s) are ProductX, ProductY,
and ProductZ controlled by?

CS 377 [Spring 2017] - Ho

Multi-table Queries

CS 377 [Spring 2017] - Ho

Recap: SQL Query

SELECT <attribute list>  
FROM <table list>  
WHERE <condition on the tables> 
 
 
 
 
 

⇡<attribute list>�<condition>(R1

⇥R
2

⇥ · · ·⇥Rn)

CS 377 [Spring 2017] - Ho

Example Query: Cartesian Product

SELECT ssn, lname, dno, dnumber, dname  
FROM employee, department;

 

ssn lname dno dnumber dname
111-12-2345 Kirk 5 5 Research
111-12-2345 Kirk 5 4 Administration
111-12-2345 Kirk 5 1 Headquarters
222-23-2222 McCoy 4 5 Research
222-23-2222 McCoy 4 4 Administration
222-23-2222 McCoy 4 1 Headquarters

… … … … …
134-52-2340 Scott 5 5 Research
134-52-2340 Scott 5 4 Administration
134-52-2340 Scott 5 1 Headquarters

CS 377 [Spring 2017] - Ho

SQL: Join Operation
• Relational algebra expression

• Cartesian product followed by a selection operation

• SQL command

• FROM clause specifies Cartesian product operation

• WHERE clause specifies condition of the selection
operation

R
1

./
condition

R
2

= �
condition

(R
1

⇥R
2

)

CS 377 [Spring 2017] - Ho

Example Query: Join

SELECT ssn, lname, dno, dnumber, dname  
FROM employee, department  
WHERE dno = dnumber;

 

ssn lname dno dnumber dname
111-12-2345 Kirk 5 5 Research
222-23-2222 McCoy 4 4 Administration
134-23-2345 Sulu 4 4 Administration
234-13-3840 Chapel 1 1 Headquarters
134-52-2340 Scott 5 5 Research

CS 377 [Spring 2017] - Ho

SQL: Join Part II

• Several equivalent ways to write a basic join

• Method 1 is to just use Cartesian Product on the FROM
clause

• Method 2 syntax: 
SELECT <attribute list>  
FROM <table1>  
JOIN <table2> ON <join condition>  
WHERE <condition on the tables>

CS 377 [Spring 2017] - Ho

Example Query: Join Part II

SELECT ssn, lname, dno, dnumber, dname  
FROM employee, department  
WHERE dno = dnumber;

SELECT ssn, lname, dno, dnumber, dname  
FROM employee  
JOIN department ON dno = dnumber;  

CS 377 [Spring 2017] - Ho

Example Query: Join in RA

Query: Find the name and address of employees working in
the ‘Research’ department

RA expression:

RD = �
Dname=‘Research’

(DEPARTMENT)

RE = RD ./
Dnumber = Dno

EMPLOYEE

Answer = ⇡
fname,lname,Address

(RE)

CS 377 [Spring 2017] - Ho

Example Query: Join in SQL
Q: Find the name and address of employees working in the
‘Research’ department

• SQL expression 1 
SELECT fname, lname, address 
FROM employee, department 
WHERE dname=‘Research’ AND dno = dnumber;

• SQL expression 2 
SELECT fname, lname, address 
FROM employee 
JOIN department ON dno = dnumber  
WHERE dname=‘Research’;

join condition

selection condition

CS 377 [Spring 2017] - Ho

Exercises: Company Database (3)

• Find the name of employees in the ‘Research’
department who earn over $30,000

• Find the name of employees who work on the project
‘ProductX’

• For the projects located in ‘Stafford’, find the name of the
project, the name of the controlling department, the last
name of the department’s manager, his address, and
birthdate

CS 377 [Spring 2017] - Ho

SQL: Ambiguity

What happens if we wanted a list of employees with the
name of their dependents and the projects the employee
works on? 
 
SELECT essn, pno, dep_name  
FROM Project, Dependent  
WHERE essn = essn; 
 

Ambiguous attribute names: the same name for
two (or more) attributes in different relations

CS 377 [Spring 2017] - Ho

SQL: Qualifying Attribute Names

• Ambiguous attributed names that appear in the same
query need to be made explicit (otherwise cannot tell
which relation it is from)

• Qualify (prefix) the attribute name with the source relation
name

• Can be done in SELECT or WHERE clause

• SQL syntax: <relation>.<attr>

CS 377 [Spring 2017] - Ho

Example Query: Qualifying Attribute Names

Find project numbers of projects worked on by employees
who have a daughter named ‘Alice’ 
 
SELECT pno  
FROM works_on, dependent  
WHERE works_on.essn = dependent.essn  
 AND name = ‘Alice’;

CS 377 [Spring 2017] - Ho

SQL: Ambiguity Take 2

What if we wanted a list of each employees first name, last
name, and their manager’s first name and last name?  
 
SELECT fname, lname, fname, lname  
FROM employee, employee  
WHERE superssn = ssn;

Ambiguous attribute names that won’t be solved
by qualifying their relation

CS 377 [Spring 2017] - Ho

SQL: Aliasing

• Need to use the same relation multiple times in a
SELECT command and every attribute name of that
relation will be ambiguous

• Use an alias or identifier that follows a relation name in
the FROM clause of a SELECT command

CS 377 [Spring 2017] - Ho

SQL: Aliasing Syntax

• SQL Syntax: 
SELECT <alias1>.<attr1>, <alias2>.<attr2>  
FROM <relation1> <alias1>, <relation2> <alias 2>  
WHERE <alias1>.<A> = <alias2>.A;

• No comma between alias and relation name!

• Refer to the relation using the given alias in other parts of
query

CS 377 [Spring 2017] - Ho

Example Query: Aliasing

List each employees first name, last name, and their
manager’s first name and last name 
 
SELECT e.fname, e.lname, m.fname, m.lname  
FROM employee e, employee m  
WHERE e.superssn = m.ssn;

e and m are called aliases or tuple variables
for employee relation

CS 377 [Spring 2017] - Ho

SQL: Arithmetic Operations

• Any arithmetic expression (that makes sense) can be
used in the SELECT clause

• Example: Show the effect of giving all employees who
work on the ‘ProductX’ project a 10% raise 
 
SELECT fname, lname, 1.1*salary  
FROM employee, works_on, project  
WHERE ssn = essn  
 AND pno = pnumber 
 AND pname = ‘ProductX’

CS 377 [Spring 2017] - Ho

Exercises: Company Database (4)

• What are the name of the departments that are located in
Houston?

• Find the name of the managers who are in charge of the
departments located in Houston

• What are the names of the children whose parents work
on ProductX?

CS 377 [Spring 2017] - Ho

Nested Queries

CS 377 [Spring 2017] - Ho

Review: Basic SQL Retrieval Query

A SQL query can consist of several clauses, but only
SELECT and FROM are mandatory 
 
SELECT <attribute list>  
FROM <table list>  
[WHERE <condition on the tables (join or selection)>] 
[ORDER BY <attribute list>] 
[LIMIT <number of tuples>]

CS 377 [Spring 2017] - Ho

Subquery

• Subquery: A parenthesized SELECT-FROM-WHERE
statement which results in a relation of tuples

• Syntax: 
(SELECT-command)

• Usage

• Inside WHERE clause (nested query)

• Inside FROM clause (temporal relation)

CS 377 [Spring 2017] - Ho

Nested Query

• Nested query is when a subquery is specified within the
WHERE clause of another query, called the outer query

• Syntax: 
SELECT …  
FROM … 
WHERE … (SELECT … 
 FROM …  
 WHERE …)

Nested Query

CS 377 [Spring 2017] - Ho

Nested Query Forms

• Forms of nested query:

• Set membership: IN and NOT IN

• Set comparison:  
compareOp ANY or compareOp ALL

• Test for empty relation: EXIST

• In theory, nesting can be arbitrarily deep but in practice
the number of levels is limited

CS 377 [Spring 2017] - Ho

Example Query: Nested Query
Retrieve the name and address of all employees who work for
the ‘Research’ department

• Soln #1: SELECT fname, lname 
 FROM employee, department 
 WHERE dno = dnumber 
 AND dname = ‘Research’;

• Soln #2: SELECT fname, lname 
 FROM EMPLOYEE 
 WHERE dno IN (SELECT dnumber 
 FROM department 
 WHERE dname = ‘Research’)

CS 377 [Spring 2017] - Ho

Example Query: Nested Query (2)

Find fname, lname of employees that do not have any
dependents

SELECT fname, lname  
FROM employee  
WHERE ssn NOT IN (SELECT essn 
 FROM dependent);

CS 377 [Spring 2017] - Ho

Correlated Nested Queries
• Correlated: inner query (query in the WHERE clause) uses one

or more attributes from relation(s) specified in the outer query

• Uncorrelated: inner query is a stand-alone query that can be
executed independently from the outer query

• Example Syntax: 
SELECT …  
FROM R1  
WHERE attr1 IN (SELECT attr2  
 FROM R2 
 WHERE R2.attr3 = R1.attr4)

CS 377 [Spring 2017] - Ho

Example Query: Correlated Nested Query

Retrieve the name of each employee who has a dependent
with the same name as the employee

SELECT e.fname, e.lname  
FROM employee AS e  
WHERE e.ssn IN (SELECT essn 
 FROM dependent  
 WHERE essn = e.ssn  
 AND e.fname = name);

CS 377 [Spring 2017] - Ho

Correlated Nested Query Execution

• FOR (each tuple X in the outer query) DO { 
 Execute inner query using attribute value of tuple X 
}

• Example: 
SELECT fname, lname, salary, uno  
FROM employee a  
WHERE salary >= ALL (SELECT salary 
 FROM employee a  
 WHERE b.dno = a.dno)

CS 377 [Spring 2017] - Ho

Correlated Nested Query Execution (2)

• Outer tuple a =  
WHERE 50,000 >= ALL (SELECT salary FROM employee
b where b.dno = 4)  
=> FALSE

FName LName DNo Salary
John Smith 4 50,000

James Bond 4 80,000
Jane Brown 3 60,000

Jennifer Wallace 5 30,000
James Borg 1 55,000
Joyce English 5 25,000
Alicia Wong 4 70,000

John Smith 4 50,000

CS 377 [Spring 2017] - Ho

Correlated Nested Query Execution (2)

• Outer tuple a =  
WHERE 80,000 >= ALL (SELECT salary FROM employee
b where b.dno = 4)  
=> TRUE (select tuple)

FName LName DNo Salary
John Smith 4 50,000

James Bond 4 80,000
Jane Brown 3 60,000

Jennifer Wallace 5 30,000
James Borg 1 55,000
Joyce English 5 25,000
Alicia Wong 4 70,000

James Bond 4 80,000

CS 377 [Spring 2017] - Ho

Correlated Nested Query Execution (2)

SELECT fname, lname, salary, uno  
FROM employee a  
WHERE salary >= ALL (SELECT salary FROM
employee a WHERE b.dno = a.dno)

FName LName DNo Salary
James Bond 4 80,000
Jane Brown 3 60,000

Jennifer Wallace 5 30,000
James Borg 1 55,000

CS 377 [Spring 2017] - Ho

Correlated Nested Query Scope

Scoping rules defines where a name is visible

• Each nesting level constitutes a new inner scope

• Names of relations and their attributes in outer query
are visible in the inner query but not the converse

• Attribute name specified inside an inner query is
associated with nearest relation

CS 377 [Spring 2017] - Ho

Example: Scoping Nested Queries

SELECT <attribute list from R1 and/or R2> 
FROM R1, R2  
WHERE <conditions from R1 and/or R2> AND  
 (SELECT <attribute list from R1, R2, R3 and/or R4> 
 FROM R3, R4  
 WHERE <conditions from R1, R2, R3, and/or R4>)

• Attributes of R1 and R2 are visible in the inner query

• Attributes of R3 and R4 are not visible in the outer
query

CS 377 [Spring 2017] - Ho

Example: Scoping Nested Queries (2)
SELECT <attribute list from R1 and/or R2> 
FROM R1, R2  
WHERE <conditions from R1 and/or R2> AND 
 (SELECT x 
 FROM R3, R4 
 WHERE <conditions from R1, R2, R3, and/or R4>)

• If R3 or R4 contains the attribute name x, then x refers to
that attribute in R3 or R4

• If R3 and R4 does not contain the attribute name x, then
x in the inner query refers to the attribute in R1 or R2

CS 377 [Spring 2017] - Ho

SQL Query: EXISTS

• Checks whether the result of a correlated nested query is
empty (contains no tuples) or not

• Example: Retrieve the names of employees who have no
dependents 
 
SELECT fname, lname  
FROM employee  
WHERE NOT EXISTS (SELECT *  
 FROM dependent  
 WHERE ssn = essn);

CS 377 [Spring 2017] - Ho

Exercises: Company Database (5)

• Find the fname, lname of the employee(s) that earn the
highest salary in his/her department

• Find the fname, lname of the female employee that earn
the highest salary (among the females) in her department

• Find fname, lname of employees that do not have any
dependent

• Find fname, lname of employees that do not work on any
project controlled by the Research department

CS 377 [Spring 2017] - Ho

SQL Query: Aggregate Functions

• COUNT, SUM, MAX, MIN, AVG can be used in the
SELECT clause

• Example: Find the sum, maximum, minimum, and
average salary among all employees in the Research
department 
 
SELECT SUM(salary), MAX(salary)  
 MIN(salary), AVG(salary)  
FROM employee, department  
WHERE dno = dnumber AND dname = ‘Research’

CS 377 [Spring 2017] - Ho

SQL Query: Aggregate Functions (2)
• Name given to the selected aggregate function attribute is the

same as the function call

• SELECT MAX(salary), MIN(salary), AVG(salary)  
FROM employee; 

• Rename selected attributes with AS alias clause inside the
SELECT clause

• SELECT MAX(salary) AS max, MIN(salary) AS min,
AVG(salary) AS average  
FROM employee;

max(salary) min(salary) avg(salary)

CS 377 [Spring 2017] - Ho

SQL Example: Aggregate Function

Retrieve the names of all employees who have two or more
dependents

SELECT lname, fname  
FROM employee  
WHERE (SELECT COUNT (*)  
 FROM dependent  
 WHERE ssn = essn) >= 2;  

CS 377 [Spring 2017] - Ho

SQL Query: GROUP BY
• Apply aggregate functions to subgroups of tuples in a relation

• Corresponds to grouping and aggregate function in RA

• Grouping attributes: attributes used to group the tuples

• Function is applied to each subgroup independently

• Syntax:  
SELECT <attribute list> 
FROM <table list> 
WHERE <condition on the tables> 
GROUP BY <grouping attributes>

CS 377 [Spring 2017] - Ho

GROUP BY Execution

A query with GROUP BY clause is processed as follows:

1. Select the tuples that satisfies the WHERE condition

2. Selected tuples from (1) are grouped based on their
value in the grouping attributes

3. One or more set functions is applied to the group

CS 377 [Spring 2017] - Ho

SQL Example: GROUP BY

For each department, retrieve the department number, the
number of employees in the department, and their average
salary

SELECT dno, count(*), avg(salary)  
FROM employee  
GROUP BY dno

CS 377 [Spring 2017] - Ho

SQL Query: GROUP BY details

• What happens if we do not include certain grouping
attributes in the SELECT clause?

• What happens if we include an attribute in the SELECT
clause that is not in the group by attribute list?

CS 377 [Spring 2017] - Ho

SQL Query: GROUP BY details

• What happens if we do not include certain grouping
attributes in the SELECT clause?

Ans: The query still executes but you have no idea what
the result means anymore

• What happens if we include an attribute in the SELECT
clause that is not in the group by attribute list?

CS 377 [Spring 2017] - Ho

SQL Query: GROUP BY details
• What happens if we do not include certain grouping

attributes in the SELECT clause?

Ans: The query still executes but you have no idea what
the result means anymore

• What happens if we include an attribute in the SELECT
clause that is not in the group by attribute list? 
 
Ans: In theory, this should not be allowed as you can not
produce a single value for non-grouping attributes.
However, some implementations returns one of the tuples.

CS 377 [Spring 2017] - Ho

SQL Query: HAVING

• HAVING clause specifies a selection condition on groups
(rather than individual tuples)

• Filters out groups that do not satisfy the group condition

• Syntax: 
SELECT <attribute list>  
FROM <table list>  
WHERE <condition on the tables>  
GROUP BY <grouping attributes> 
HAVING <group condition>

CS 377 [Spring 2017] - Ho

SQL Query: HAVING Details

• If a SQL query uses HAVING clause, then there MUST
be a GROUP BY clause

• Group condition is a condition on a set of tuples

• Can’t use non-grouping attribute inside the HAVING
clause

• Most common form of group condition is:
SetFunction(<attr>) RelationalOperator <value>

CS 377 [Spring 2017] - Ho

SQL Query: HAVING Process Order

1. Select tuples that satisfy the WHERE condition

2. Selected tuples from (1) are grouped based on their
value in the grouping attributes

3. Filter groups so only those satisfying the condition are
left

4. Set functions in the SELECT clause are applied to these
groups

CS 377 [Spring 2017] - Ho

SQL Example: HAVING

For each project on which more than two employees work,
retrieve the project number, project name, and the number
of employees who work on that project

SELECT pnumber, pname, COUNT(*)  
FROM project, works_on  
WHERE pnumber = pno  
GROUP BY pnumber, pname 
HAVING COUNT(*) > 2;  

CS 377 [Spring 2017] - Ho

SQL Example: HAVING (2)

For each department with at least 2 employees, find the
department name, and the number of employees in that
department that earns greater than $40K

SELECT dname, COUNT(ssn)  
FROM department, employee  
WHERE dnumber = dno  
 AND salary > 40000  
GROUP BY dname 
HAVING COUNT(ssn) > 2;  
 Is this right? What does it return?

CS 377 [Spring 2017] - Ho

SQL Example: HAVING (2)
• Previous query only counts the number of departments

that have at least 2 employees that earn more then $40K.

• SELECT dname, COUNT(ssn) 
FROM employee, department 
WHERE dno = dnumber 
 AND dno IN (SELECT dno 
 FROM employee  
 GROUP BY dno 
 HAVING COUNT(ssn) >= 2) 
 AND salary > 40000 
GROUP BY dname

CS 377 [Spring 2017] - Ho

Summary of SQL Queries

SELECT [DISTINCT] <attribute list>  
FROM <table list>  
[WHERE <condition on the tables>]  
[GROUP BY <grouping attributes>] 
[HAVING <group condition>]  
[ORDER BY <attribute list> ASC | DESC]  
[LIMIT <number of tuples>]

This has every possible clause of a SQL command included

CS 377 [Spring 2017] - Ho

Exercises: Company Database (6)

• What are the SSN of the employees who work on at least
2 projects?

• What is the name of the project where the employees
have worked the highest number of hours (total)?

• Which department has the highest number of
dependents?

• What department(s) has no projects?

CS 377 [Spring 2017] - Ho

MySQL Workbench
• Open source, integrated development environment for

MySQL database system

• SQL Editor

• Data modeling

• Data administration + performance monitoring

• Works on Windows, Linux, Mac OS X

• https://www.mysql.com/products/workbench/

https://www.mysql.com/products/workbench/

CS 377 [Spring 2017] - Ho

MySQL Workbench DEMO

CS 377 [Spring 2017] - Ho

SQL Queries: Recap
• Basic query form

• Useful operators:

• *, DISTINCT, IN, LIKE, ORDER BY, LIMIT, IS NULL

• Multi-table queries

• Join

• Aliasing and qualification

• Nested queries

• Additional operators and commands

• Set operations, GROUP BY, HAVING

