
SQL Introduction
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Recap: Last Two Weeks

CS 377 [Spring 2017] - Ho

Recap: Last Two Weeks
Requirement analysis

Conceptual design

Logical design

Physical dependence

Database design
implementation

Requirement specification

Conceptual data model
(ER Model)

Representation data model 
(Relational Model)

Physical data model
Data definition / Manipulation (SQL)

CS 377 [Spring 2017] - Ho

Today’s Lecture

1. SQL

1. Introduction

2. Database Creation

3. Example: Company Database

CS 377 [Spring 2017] - Ho

SQL Introduction

• SQL stands for Structured Query Language

• Standard language for querying and manipulating data

• Most widely used database language and is the de facto
standard

• Very high-level programming language

• Based on relational algebra (or relational calculus)

CS 377 [Spring 2017] - Ho

SQL: Not Just for Querying

• Data definition language (define conceptual model of
database)

• Data manipulation language (insert, update, delete data
into conceptual model of database)

• View definition language (define views or external
schemas to support logical data independence)

CS 377 [Spring 2017] - Ho

SQL History

• One of the first commercial languages for Codd’s
relational model

• Originally developed by IBM

• Many SQL standards: SQL-92, SQL:1999, SQL:2011

• Vendors support different subsets

CS 377 [Spring 2017] - Ho

SQL Usage
• Stand-alone: user enters SQL commands via a command

line or in a GUI

• Embedded in a host language: SQL commands are
embedded (written inside) an “ordinary” program in a high
level language (e.g., Java, C++, C, etc.)

• Library-based: SQL commands are made available
through library functions (e.g., Java, Python)

• Web-based: various languages with extensions allow
webpages to access database server

CS 377 [Spring 2017] - Ho

SQL vs Relational Model
• SQL relation (table) is a multi-set (bag) of tuples; it is not a

set of tuples (i.e., tuples may appear more than once)

• Bags (rather than sets, which are easier to handle) is
favored because of database efficiency

• Duplicate elimination is costly (requires time and
memory), so it is only best to be used when necessary

• SQL relations can be constrained to sets by specifying
PRIMARY KEY or UNIQUE attributes, or using the
DISTINCT option in a query

CS 377 [Spring 2017] - Ho

SQL DBMS
• MySQL is the most popular, freely available database management

system

• Common choice for many web applications and well-known
websites including Google, Facebook, Wikipedia, and YouTube

• SQLite is a very powerful, embedded relational database
management system which is fast and efficient but does not support
user management

• PostgreSQL is the most advanced, SQL-compliant and open-source
objective RDBMS with complete support for reliable transactions
but not as efficient as MySQL 

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-
postgresql-a-comparison-of-relational-database-management-systems

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems

CS 377 [Spring 2017] - Ho

Data Definition

• Create a database

• Create new relations (tables) in a database

• Define conditions on attributes in the relations

• Alter the structure of (existing) relations

• Delete relations

CS 377 [Spring 2017] - Ho

CREATE SCHEMA: Creating a Database
• A database schema is used to group together database tables

• A database schema also contains other constructs (such as
indices)

• Example: The Company database schema (see relational
model slides)

• Syntax: CREATE SCHEMA schema_name
AUTHORIZATION db_user;

• Typically executed by DBA who will grant authorities to
database user who then owns schema

CS 377 [Spring 2017] - Ho

MySQL: CREATE SCHEMA

• MySQL version of create schema  
CREATE DATABASE database_name;

• Database is created by the root user

• Authorization is granted separately using the grant
command  
GRANT permission ON database.table TO
‘user’@‘host’;

CS 377 [Spring 2017] - Ho

CREATE TABLE: Create a Relation
• Create a new relation by giving it a name and specifying each

of its attributes and their data types

• Relation created will be initially empty

• Syntax:  
CREATE TABLE relation_name 
( 
 attr_name1 type1 [attr_constraint1], 
 attr_name2 type2 [attr_constraint2], 
 … 
 attr_namen typen [attr_constraintn],  
);

CS 377 [Spring 2017] - Ho

Data Types in SQL: Numeric Types
• TINYINT (1 byte), SMALLINT (2 bytes), MEDIUMINT (3

bytes), INTEGER or INT (4 bytes), BIGINT (8 bytes) are
different representations of integers

• DECIMAL(i,j) or DEC(i,j) or NUMERIC(i,j) are fixed point
numbers with i decimal digits precision (accurate and do not
have round off errors)

• FLOAT (8 byte) or REAL (4 byte) are single precision floating
point numbers with roundoff errors

• DOUBLE PRECISION are double precision floating point
numbers with roundoff errors

CS 377 [Spring 2017] - Ho

Data Types in SQL: Strings
• Character Strings

• CHARACTER(n) or CHAR(n) are fixed length character strings

• VARCHAR(n) or CHAR VARYING(n) or CHARACTER
VARYING(n) are variable length character strings with
maximum number of characters in string = n

• Bit String

• BIT(n) is fixed length bit string

• BIT VARYING(n) is variable length bit string

CS 377 [Spring 2017] - Ho

Data Types in SQL: Boolean & Date
• BOOLEAN is boolean data attribute

• Due to NULL value, SQL uses three value logic to evaluate
boolean expressions. If either x or y is NULL, some logical
comparisons evaluate to UNKNOWN

• DATE is a calendar date and should be specified as ‘YYYY-
MM-DD’

• TIME is the time of the day and specified as ‘HH:MM:SS’

• TIMESTAMP is DATE + TIME and specified as  
‘YYYY-MM-DD HH:MM:SS’

CS 377 [Spring 2017] - Ho

Specifying Constraints

• Attribute constraints

• Not null

• Attribute domain

• Default values

• Key attributes

• Referential integrity constraint (foreign keys)

CS 377 [Spring 2017] - Ho

Attribute Constraints
• NOT NULL: attribute cannot be assigned a NULL value  

Example: CREATE TABLE text 
 (ssn CHAR(9) NOT NULL, …);

• DEFAULT: specify a default value of an attribute  
Example: CREATE TABLE text 
 (ssn CHAR(9) NOT NULL, 
 salary DECIMAL(6,2) DEFAULT 50000, …);

• CHECK: check if the value of an attribute is within specified range  
Example: CREATE TABLE text 
 (ssn CHAR(9) NOT NULL, 
 dno INTEGER CHECK (dno > 0 and dno < 10), …);

CS 377 [Spring 2017] - Ho

Key Constraints
• PRIMARY attribute specifies the primary key constraint

• Syntax:  
CONSTRAINT [constraint_name] PRIMARY
KEY(attribute-list)

• UNIQUE constraint can be used to specify candidate
keys

• Syntax:  
CONSTRAINT [constraint_name] UNIQUE(attribute-
list)

CS 377 [Spring 2017] - Ho

Example: Key Constraint

CREATE TABLE test1 
(ssn CHAR(9),  
 salary DECIMAL(10,2),  
 CONSTRAINT test1PK PRIMARY KEY(ssn));

CREATE TABLE test2 
(pno INTEGER, 
 pname CHAR(20),  
 CONSTRAINT test2PK PRIMARY KEY(pno),  
 CONSTRAINT test2PK UNIQUE(pname));

CS 377 [Spring 2017] - Ho

Referential Constraint

• FOREIGN KEY is used to identify tuples in another
relation and such that the referenced tuples must exist to
maintain integrity

• Each key constraint may be (and probably should be)
identified by a constraint name

• Syntax: 
CONSTRAINT [constraint_name] FOREIGN KEY
(attribute-list) REFERENCES relation(attribute-list)

CS 377 [Spring 2017] - Ho

Example: Referential Constraint

CREATE TABLE test1 
(ssn CHAR(9),  
 salary DECIMAL(10,2),  
 CONSTRAINT test1PK PRIMARY KEY(ssn));

CREATE TABLE test3 
(essn CHAR(9),  
 pno INTEGER, 
 CONSTRAINT test3FK  
 FOREIGN KEY(essn)  
 REFERENCES test1(ssn));

CS 377 [Spring 2017] - Ho

ALTER TABLE: Modify Existing Relations

• Add attributes

• Remove attributes

• Add constraints

• Remove constraints

You can not rename or update attributes in SQL!

CS 377 [Spring 2017] - Ho

ALTER TABLE: Add Attributes
• Used to add an attribute to one of the base relations

• New attributes will have NULLs in the tuples of the relation
right after the command is executed —> NOT NULL
constraint is not allowed for such an attribute

• Syntax:  
ALTER TABLE relation_name ADD attribute_name
type

• Example:  
ALTER TABLE EMPLOYEE ADD JOB VARCHAR(12);

CS 377 [Spring 2017] - Ho

ALTER TABLE: Remove Attribute
• Syntax:  

ALTER TABLE table_name DROP [COLUMN]
attr_name {RESTRICTED | CASCADE};

• RESTRICTED: only the attribute table_name.attr_name is
dropped. However, if the attribute is part of a foreign key
of another relation, it cannot be dropped

• CASCADE: the attribute table_name.attr_name is
dropped and if the attribute table_name.attr_name is part
of a foreign key in some other relation, that attribute will
also be dropped.

CS 377 [Spring 2017] - Ho

ALTER TABLE: Add/Remove Constraints
• Add a constraint to a table: if the constraint is violated by some

existing tuple in the relation, the new constraint is NOT recorded

• Syntax: 
ALTER TABLE table_name ADD CONSTRAINT
constraint_name constraint_def;

• Removing an existing constraint: this can only be done if you have
given it a name at the time of definition

• Syntax: 
ALTER TABLE table_name DROP CONSTRAINT
constraint_name;  

CS 377 [Spring 2017] - Ho

DROP TABLE: Remove a Relation

• Used to remove a relation, all its contents, and its
definition

• Relation can no longer be used in queries, updates, or
any other commands since its description no longer
exists

• Syntax: 
DROP TABLE table_name;  
DROP TABLE table_name cascade constraints;

CS 377 [Spring 2017] - Ho

Example: Company Database Schema

http://www.mathcs.emory.edu/~cheung/Courses/377/Syllabus/3-Relation/rel-db-design2.html

http://www.mathcs.emory.edu/~cheung/Courses/377/Syllabus/3-Relation/rel-db-design2.html

CS 377 [Spring 2017] - Ho

Example: Company Database (1)

CREATE TABLE Employee 
(Fname VARCHAR(15) NOT NULL, 
 Minit CHAR,  
 Lname VARCHAR(15) NOT NULL, 
 Ssn CHAR(9) NOT NULL, 
 Bdate DATE,  
 Address VARCHAR(30),  
 Sex CHAR,  
 Salary DECIMAL(10,2),  
 Super_ssn CHAR(9),  
 Dno INT NOT NULL, 
 CONSTRAINT EmpPK PRIMARY KEY (Ssn),  
 CONSTRAINT EmpSuperFK FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(SSN),  
 CONSTRAINT EmpDeptFK FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber));

CS 377 [Spring 2017] - Ho

Example: Company Database (2)

CREATE TABLE Department  
(Dname VARCHAR(15) NOT NULL,  
 Dnumber INT NOT NULL, 
 Mgr_ssn CHAR(9) NOT NULL,  
 Mgr_start_date DATE, 
 CONSTRAINT DeptPK PRIMARY KEY (Dnumber),  
 CONSTRAINT DeptNameSK UNIQUE(Dname),  
 CONSTRAINT DeptMgrFK FOREIGN KEY (Mgr_ssn)  
 REFERENCES EMPLOYEE(Ssn));

CS 377 [Spring 2017] - Ho

Example: Company Database (3)

CREATE TABLE Dept_Locations  
(Dnumber INT NOT NULL,  
 Dlocation VARCHAR(15) NOT NULL,  
 CONSTRAINT DeptLocPK  
 PRIMARY KEY (Dnumber, Dlocation),  
 CONSTRAINT DeptLocFK FOREIGN KEY (Dnumber)  
 REFERENCES Department(Dnumber));

CS 377 [Spring 2017] - Ho

Example: Company Database (4)

CREATE TABLE Project 
(Pname VARCHAR(15) NOT NULL,  
 Pnumber INT NOT NULL, 
 Plocation VARCHAR(15), 
 Dnum INT, 
 CONSTRAINT ProjectPK PRIMARY KEY (Pnumber),  
 CONSTRAINT ProjectSK UNIQUE(Pname),  
 CONSTRAINT ProjDeptFK FOREIGN KEY (Dnum)  
 REFERENCES Department(Dnumber));

CS 377 [Spring 2017] - Ho

Example: Company Database (5)

CREATE TABLE Works_On 
(Essn CHAR(15) NOT NULL, 
 Pno INT NOT NULL, 
 Hours DECIMAL(3,1) NOT NULL, 
 CONSTRAINT WorksOnPK PRIMARY KEY (Essn, Pno),  
 CONSTRAINT WorksEmpFK FOREIGN KEY (Essn)  
 REFERENCES Employee(Ssn),  
 CONSTRAINT WorksProjFK FOREIGN KEY (Pno)  
 REFERENCES Project(Pnumber));

CS 377 [Spring 2017] - Ho

Example: Company Database (6)

CREATE TABLE Dependent 
(Essn CHAR(9) NOT NULL, 
 Dep_name VARCHAR(15) NOT NULL, 
 Sex CHAR, 
 Bdate DATE, 
 Relationship VARCHAR(8),  
 CONSTRAINT DepPK PRIMARY KEY (Essn, Dep_name),  
 CONSTRAINT DepEmpFK FOREIGN KEY (Essn)  
 REFERENCES Employee(Ssn));

CS 377 [Spring 2017] - Ho

Drop Tables with Care

https://xkcd.com/327/

https://xkcd.com/327/

CS 377 [Spring 2017] - Ho

“Circular” Integrity Constraints
works_on(essn, pno, …)

dependent(essn, …)

employee(ssn, …, dno, …)

project(pnumber, …, dnum)

department(dnumber, …, mgrssn,…)

dept_loc(dnumber, …)

PROBLEM: Cannot define a referential integrity constraint
when the referenced attribute does not exist!

CS 377 [Spring 2017] - Ho

“Circular” Integrity Constraints: Solution

Solution: use ALTER TABLE … ADD CONSTRAINT command
after creating the table without referential constraints  
 
CREATE TABLE emp1 
(ssn CHAR(9), 
 dno INT 
 CONSTRAINT empPK PRIMARY KEY (ssn));  
 
CREATE TABLE dept1  
(dnumber INT, 
 mgrssn CHAR(9)  
 CONSTRAINT deptPK PRIMARY KEY (dnumber));

CS 377 [Spring 2017] - Ho

“Circular” Integrity Constraints: Solution (2)

ALTER TABLE emp1 ADD CONSTRAINT empFK 
 FOREIGN KEY (dno) REFERENCES dept1(dnumber);  
 
ALTER TABLE dept1 ADD CONSTRAINT deptFK 
 FOREIGN KEY (mgrssn) REFERENCES emp1(ssn);

It should work, but what about when I insert a tuple? 
e.g., INSERT INTO emp1 VALUES(‘44444444’, 12)  

Chicken & egg problem all over again!

CS 377 [Spring 2017] - Ho

“Circular” Integrity Constraints: Solution Part II

Solution: use DEFERRED constraints which delays the
checking of a constraint until the commit command is issued  
 
ALTER TABLE emp1 DROP CONSTRAINT empFK; 
 
ALTER TABLE emp1 ADD CONSTRAINT empFK  
 FOREIGN KEY (dno) REFERENCES dept1(dnumber) 
 INITIALLY DEFERRED DEFERRABLE; 
 
INSERT INTO emp1 VALUES (‘444444444’, 12);  
INSERT INTO dept1 VALUES (12, ‘444444444’); 
COMMIT;

CS 377 [Spring 2017] - Ho

“Circular” Constraints in MySQL

• All constraints are enforced immediately so there are no
deferred constraints

• This solution can not be used in MySQL

• Only solution is to drop the foreign key and avoid having
the circular referential constraint

CS 377 [Spring 2017] - Ho

SQL Modifications/Updates

• A modification command does not return a result but it
changes the database

• There are 3 kinds of modifications

• INSERT tuple(s)

• DELETE tuple(s)

• UPDATE the value(s) of existing tuples

CS 377 [Spring 2017] - Ho

SQL Modification: INSERT

• Add one more more tuples to an existing relation

• Two forms of INSERT:

• Literal values (constant or known values)

• Result from a SELECT command

CS 377 [Spring 2017] - Ho

SQL Modification: INSERT (2)

Inserting a tuple using literal/constant values 
Syntax: 
INSERT INTO <table name>[(<attr names>)]  
VALUES (<list of values>);

• Complete tuple: omitting [(<attr names>)] means you
must specify all attribute values in the exact order
defined in relation

• Partial tuple: specify a subset of the attribute values in
the same order as the list of attributes [(<attr names>)]

CS 377 [Spring 2017] - Ho

SQL Modification: INSERT (3)

Inserting a tuple using SELECT command 
 
Syntax: 
INSERT INTO <table name>[(<attr names>)] (<SELECT
subquery>)

• Multiple tuples may be added dependent on the
SELECT subquery relation

CS 377 [Spring 2017] - Ho

SQL Example: INSERT

• Complete tuple: 
 
INSERT INTO employee VALUES (‘Joyce’, ‘C’, ‘Ho’,
‘111223333’, ’1985-02-05’, ‘400 Dowman Drive,
Atlanta, GA’, ‘F’, ‘150000’, ‘987654321’, 5);

• Partial tuple:  
 
INSERT INTO employee(fname, lname, ssn) VALUES
(‘Joyce’, ‘Ho’, ‘111223333’);

CS 377 [Spring 2017] - Ho

SQL Example: INSERT w/ SELECT
Suppose we want a new table that has the name, number of
employees, and total salaries for each department. We first create the
table then load it with the information from the database.

CREATE TABLE dept_info 
(dept_name VARCHAR(10), 
 no_of_emps INT, 
 tot_salary INT);

INSERT INTO dept_info 
 (SELECT dname, count(*), sum(salary) 
 FROM department, employee  
 WHERE dnumber = dno 
 GROUPY BY dname);

CS 377 [Spring 2017] - Ho

MySQL: Bulk Import
• All respectable RDBMS provide utilities to import data

from text files

• Syntax for uploading data will vary based on vendor

• MySQL allows the LOAD DATA INFILE  
(http://dev.mysql.com/doc/refman/5.7/en/load-data.html)

• For a pipe-delimited file (| separates each column):  
LOAD DATA LOCAL INFILE <filename> 
{REPLACE | IGNORE} INTO TABLE <table name>  
FIELDS TERMINATED BY ‘|’;

http://dev.mysql.com/doc/refman/5.7/en/load-data.html

CS 377 [Spring 2017] - Ho

SQL Modification: DELETE
• Remove tuples from a relation

• Syntax: 
DELETE FROM <relation> 
WHERE <condition>;

• Be careful! All tuples that satisfy the condition clause are deleted

• Tuples are deleted from only one table at a time unless
CASCADE is specified on a referential integrity constraint

• What happens if we don’t specify a WHERE clause? 

CS 377 [Spring 2017] - Ho

SQL Example: DELETE

Delete all employees with the last name Brown

DELETE FROM employee  
WHERE lname = ‘Brown’;

CS 377 [Spring 2017] - Ho

SQL Modification: UPDATE

• Modify/change certain attributes in certain tuples of a
relation

• Syntax: 
UPDATE <relation> 
SET <list of attribute assignments>  
WHERE <condition>;

• UPDATE command modifies tuples in the same relation

CS 377 [Spring 2017] - Ho

SQL Example: UPDATE

Change the location and controlling department number of
project 10 to ‘Bellaire’ and 5, respectively.

UPDATE project 
SET plocation = ‘Bellaire’, dnum = 5  
WHERE pnumber = 10;

CS 377 [Spring 2017] - Ho

SQL Example: UPDATE (2)
Give all employees in the ‘Research’ department a 10% raise

UPDATE employee  
SET salary = salary * 1.1  
WHERE dno IN (SELECT dnumber 
 FROM department 
 WHERE dname = ‘Research’);

• Reference to salary attribute on the right of = refers to the
salary value before modification

• Reference to salary attribute on the left of = refers to salary
value after modification

CS 377 [Spring 2017] - Ho

SQL Introduction: Recap

• Introduction

• Data Definition

• Create Database

• Create Table

• SQL Modification /

