
Final Review
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Final Logistics

• May 3rd, 3:00 - 5:30 PM

• 8 single-sided handwritten cheat sheets

• Comprehensive covering everything up to current class

• Focus slightly more on the latter part of the course

• Should still study the first half material 
 DISCLAIMER: Concepts/topics not covered in this
review does not mean it will not appear on the test!

CS 377 [Spring 2017] - Ho

My Office Hours

• 4/24 (Mon): 1:30 PM - 3:30 PM

• 4/26 (Wed): 9:30 AM - 12 PM; 3:30 PM - 5:00 PM

• 4/27 (Thu): 9:30 AM - 12 PM

• 5/1 (Mon): 1:30 PM - 3:30 PM; 4:00 PM - 5:00 PM

• 5/2 (Tue): 9:30 AM - 11:00 AM

CS 377 [Spring 2017] - Ho

Piazza Poll Results

CS 377 [Spring 2017] - Ho

Database Design & Normal Forms

CS 377 [Spring 2017] - Ho

Normalization & Functional Dependencies

• Normal form: set of properties that relations must satisfy

• Relations exhibit less anomalies

• Successively higher degrees of stringency

• Functional dependencies: X —> Y

• Constraint between two sets of attributes

• “Good” FDs are keys

CS 377 [Spring 2017] - Ho

Normalization Steps

• Find all keys of a relation: heuristic #1 or #2

• Find which FDs violate the normal form

• Break the relation into two or more relations

• Use closure set of FD

• Follow lossless decomposition lemmas

• Repeat FD violation step

CS 377 [Spring 2017] - Ho

Database Normalization: Summary
Normal Form Test Normalization (Remedy)

1NF
Relation should have no multi-
valued attributes or nested
relations

Form new relation for each
multivalued attribute or nested
relation

2NF

For relations where primary key
contains multiple attributes, no
nonkey attribute should be
functionally dependent on a part of
the primary key

Decompose and set up a new
relation for each partial key with its
dependent attributes using lossless
decomposition

3NF
Relation should not have a nonkey
attribute functionally determined
by another nonkey attribute

Decompose and set up a relation
that includes the nonkey
attribute(s) that functionally
determine(s) other nonkey
attributes

BCNF
Relation should not have an
attribute functionally determined
by non-key attribute(s)

Decompose and set up a relation
using the closure of the non-key
attribute(s)

CS 377 [Spring 2017] - Ho

Data Storage

CS 377 [Spring 2017] - Ho

Memory Hierarchy

CPU cache

Main Memory

Flash Storage

Magnetic Hard Disk Drive

access
speed capacity

price

Magnetic Tape

CS 377 [Spring 2017] - Ho

Data Store Overview

Memory DBMS

blocks

Records 
(tuples)

Blocks  
(pages)

Files

Disk

CS 377 [Spring 2017] - Ho

File: Average Access Times

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

External Sort Merge Algorithm

• Sort r records, stored in b file
blocks with a total memory space
of M blocks (relation is larger than
memory)

• Total cost:

Figure 12.4 from Database System Concepts book

2br(dlogM�1(br/M)e+ 1)

CS 377 [Spring 2017] - Ho

Indexing: Hashing & B+-Tree

CS 377 [Spring 2017] - Ho

Indexes
• Data structures that organize records via trees or hashing

• Speed up search for a subset of records based on
values in a certain field (search key)

• Any subset of the fields of the relation can be the
search field

• Search key need not be the same as the key!

• Contains a collection of data entries (each entry with
sufficient information to locate the records)

Hash Index

• Hash function, h, distributes all
search-key values to a
collection of buckets

• Each bucket contains a primary
page plus overflow pages

• Buckets contain data entries

• Entire bucket has to be
searched sequentially

Extendible Hashing Structure
Main idea:

• Directory of pointers to the
buckets

• Double the number of
buckets by splitting just the
bucket that overflowed

• Directory is much smaller
than file, so doubling it is
cheaper

CS 377 [Spring 2017] - Ho

Exercise: Extendible Hashing

Insert the following keys into an empty extendible hashing
structure where each bucket can hold up to 2 records and
you want to use the highest-bits (leftmost d bits)

• 2 [0010], 10 [1010], 7 [0111], 3 [0011], 5 [0101], 15
[1111]

Brandt Califieri Crick	 Einstein El Said	 Gold Ka6 Kim	 Mozart Singh	 Srinivasan Wu	

Internal nodes

Root node

Leaf nodes

10101  Srinivasan Comp. Sci. 	65000	
12121  Wu 	 	 Finance	 	90000	
15151 Mozart 	 Music 	 	40000	
22222 Einstein 	 Physics	 	95000	
32343 El Said	 	 History	 	80000	
33456 Gold 	 	 Physics	 	87000	
45565 Ka6 	 	 Comp. Sci. 	75000	
58583 Califieri 	 History	 	60000	
76543 Singh	 	 Finance	 	80000	
76766 Crick	 	 Biology	 	72000	
83821 Brandt	 	 Comp. Sci. 	92000	
98345 Kim 	 	 Elec. Eng. 	80000	
	

Einstein Gold	

 Mozart	

Srinivasan 	

B+-Tree

• Dynamic, multi-level tree
data structure

• Adjusted to be height-
balanced (all leaf nodes
are at same depth)

• Supports efficient equality
and range search

• Widely used in DBMS
Figure from Database System Concepts book

CS 377 [Spring 2017] - Ho

Exercise: B+-Tree

• Insert 17

• Insert 35

• Delete 7

• Delete 14

CS 377 [Spring 2017] - Ho

Index Structures
• Hash index

• Good for equality search

• In expectation: O(1) I/Os and CPU performance for
search and insert

• B+ tree index

• Good for range and equality search

• I/O cost is height of tree for search, insert, and delete

CS 377 [Spring 2017] - Ho

Query Processing & Optimization

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

Basic Steps in Query Processing

• Parse and translate:
convert to RA query

• Optimize RA query based
on the different possible
plans

• Evaluate the execution
plan to obtain the query
results

Figure 12.1 from Database System Concepts book

CS 377 [Spring 2017] - Ho

Query Optimization Heuristics
Main heuristic: Favor operations that reduce the size of intermediate
results first

• Break conjunctive SELECT and move select operations as far
down tree as permitted

• Rearrange leaf nodes so leaf nodes with most restrictive select
operations are executed first

• Combine cartesian product operation with a subsequent selection
operation into join operation

• Break down and move lists of projection attributes down the tree
as far as possible

CS 377 [Spring 2017] - Ho

Exercise: RA Query Transformation

Given three relations: 
Emp(eid, did, sal, hobby)  
Dept(did, dname, floor, phone)  
Finance(did, budget, sales, expenses)

Query: Find the name of the department(s) and the
associated budget for employees that make at least 59K,
work on the first floor, and have a hobby of yodeling

• What is the initial RA query tree?

CS 377 [Spring 2017] - Ho

Exercise: RA Query Transformation

What if the database had: 50K employees, 5K
departments, salaries range from 10K-60K, 2 floors, 200
different hobbies

• What is the “optimal” relational algebra query?

CS 377 [Spring 2017] - Ho

Cost-based Query Optimization
Estimate and compare the costs of executing a query using
different execution strategies and choose the strategy with the
lowest cost estimate

• Disk I/O cost

• Storage cost

• Computation cost

• Memory usage cost

• Communication cost (distributed databases)

CS 377 [Spring 2017] - Ho

SELECT Algorithms

• Linear search: selection attribute is not ordered and no
index on attribute

• Binary search: selection attribute is ordered but no index

• Index search: selection attribute has an index (primary or
secondary) that can possibly be used on the query

CS 377 [Spring 2017] - Ho

Search Type Details Cost

Linear

Binary

Primary index candidate key

Primary index nonkey

Primary index comparison

Secondary index candidate key

Secondary index nonkey

Secondary index comparison

SELECT Algorithms: Cost

dlog2 bre+ dSC(att, r)/fre � 1

br

HTi + 1

HTi + 1

HTi + dSC(att, r)/fre

HTi + SC(att, r)

HTi + dc/fre

HTi + (LBic)/nr + c

CS 377 [Spring 2017] - Ho

Exercise: SELECT

Suppose we have the following table:  
Emp(eid, sal, age, did)

Number of tuples: 20K (emp)  
Number of blocks: 100 (emp)  
Height of B+-tree: 4 
 
Consider the query “Find all employees with age > 30”. Let
the number of qualifying tuples be N, for what values of N
is sequential scan cheaper than using a B+-tree index?

CS 377 [Spring 2017] - Ho

JOIN Algorithms
• Nested loop join: brute force algorithm and can be used with any join

condition

• Nested-block join: somewhat brute force except join one block at a
time together

• Indexed nested loop join: index is available on inner loop’s join
attribute to compute the join

• Sort-merge join: sort relations and join, only used for equijoin and
natural join

• Hash-join: hash the relations and only join tuples in same bucket,
only used for equijoin and natural join

CS 377 [Spring 2017] - Ho

Type Details Cost

Nested loop

Nested block

Indexed nested loop

Sort merge join

Hash join no recursive partitioning

Hash join recursive partitioning

JOIN Algorithms Cost

nRbS + bR

bRbS + bR

if both fit in memory: bR + bS

bR + nRc

sort cost + bR + bS

3bR + 3bS

2(bR + bS)dlogM�1(bS)� 1e
+ bR + bS

CS 377 [Spring 2017] - Ho

Exercise: JOIN

Suppose we have the following tables:  
Emp(eid, sal, age, did)  
Dept(did, pid, budget, status)

Number of tuples: 20K (emp); 5K (dept) 
Number of blocks: 100 (emp); 125 (dept)

 
 

Consider the query joining emp and department on did,
what is the optimal query assuming M = 20 and no

indices? Does this change if there is a hash index on did
for emp? What if we already have sorted emp by did?

CS 377 [Spring 2017] - Ho

Transaction Management

CS 377 [Spring 2017] - Ho

Transaction: Management
• Recovery (Atomicity & Durability)

• Ensures database is fault tolerant, and not corrupted by
software, system or media

• 24x7 access to critical data

• Concurrency control (Isolation)

• Provide correct and highly available data access in the
presence of access by many users

• Rely on application program for consistency

CS 377 [Spring 2017] - Ho

Transaction: ACID

Atomicity:
Transactions

are all or
nothing

Consistency:
Only valid

data is saved

Isolation:
Transactions
do not affect
each other

Durability:
Written data

will not be lost

CS 377 [Spring 2017] - Ho

Recovery: System Log

Idea: Keep a system log and perform recovering when
necessary

• Separate and non-volatile (stable) storage that is
periodically backed up

• Each transaction is assigned a unique transaction ID to
different themselves

Write ahead logging (WAL): all modifications are written to
a log before they are applied to database

CS 377 [Spring 2017] - Ho

Logging

• Undo logging: undo operations for uncommitted
transactions to go back to original state of database

• Write data — add [write, T, X, old_value], after
successful write to log, update X with new value

• Redo logging: save disk I/Os by deferring data changes
or do the changes for committed transaction

• Write data — add [write, T, X, new_value], after
successful write to log, update X with new value

CS 377 [Spring 2017] - Ho

Schedule

• A schedule S of n transactions T1, T2, …, Tn is an
ordering of the operations of the transactions

• For each transaction Ti, the operations in Ti in S must
appear in the same order in which they occur in Ti

• Operations from other transactions Tj can be
interleaved with operations of Ti in S

• Want serializable schedules — equivalent to serial
schedule

CS 377 [Spring 2017] - Ho

Schedules: “Good” vs “Bad”

Serial Schedule:

T1

T2

R(A)
 R(B)
W(A)
 W(B)

R(A)
 R(B)
W(A)
 W(B)

T1

T2

R(A)
 R(B)
W(A)
 W(B)

R(A)
 R(B)
W(A)
 W(B)

T1

T2

R(A)
 R(B)
W(A)
 W(B)

R(A)
 R(B)
W(A)
 W(B)

X

Interleaved Schedules:

CS 377 [Spring 2017] - Ho

Conflict

• Pairs of consecutive actions such that if their order is
interchanged, the behavior of at least one of the
transactions can change

• Involve the same database element

• At least one write

• Three types of conflict: read-write conflicts (RW), write-
read conflicts (WR), write-write conflicts (WW)

CS 377 [Spring 2017] - Ho

Serializability Definitions

• S1, S2 are conflict equivalent schedules if S1 can be
transformed into S2 by a series of swaps on non-
conflicting actions

• Every pair of conflicting actions of two TXNs are
ordered the same way

• A schedule is conflict serializable if it is conflict
equivalent to some serial schedule

• Maintains consistency & isolation!

CS 377 [Spring 2017] - Ho

Precedence (Serialization) Graph

• Graph with directed edges

• Nodes are transactions in S

• Edge is created from Ti to Tj if one of the operations in
Ti appears before a conflicting operation in Tj

• Schedule is serializable if and only if precedence graph
has no cycles!

Exercise: Serializability

• Draw the
precedence graph

• Is this schedule
serializable?

Time	
Strict	2PL	

0	locks	

#	Locks	
the	TXN	
has	

Lock	
Acquisi:on	

Lock	Release	
On	TXN	commit!	

Strict 2PL
• Each time you want to read/write

an object, obtain a lock to secure
permission to read/write object

• Only release locks at commit /
abort time —> transaction that
writes will block all other readers
until the transaction commits or
aborts

• Transactions remain isolated and
follow serializable schedules Deadlock may still occur

CS 377 [Spring 2017] - Ho

Big Data Systems

Parallel & Distributed DBs

• Data partitioned across
multiple disks

• Allows parallel I/O for better
speed-up

• Queries can be run in parallel
with each other

CS 377 [Spring 2017] - Ho

Parallel Architectures

Figure 17.8 (Database System Concepts)

P

P
M

P

P

P

M M M
P
P
P
P
P

P
P
P
P
P

P
P
P
P
P

(a) shared memory

P

P

P
P

(c) shared nothing (d) hierarchical

PM

P

P

P

P

(b) shared disk

PM

PM

PM

M

M

M

MP

M

M

CS 377 [Spring 2017] - Ho

Parallel/Distributed DBMS Issues

• How to distribute the data

• How to optimize the cost of queries

• Data transmission + local processing

• How to perform concurrency control

• How to make system resilient to failures and achieve
atomicity & durability

CS 377 [Spring 2017] - Ho

MapReduce

• Initially developed by Jeffrey Dean & Sanjay Ghemawat at
Google [2004]

• Open source implementation: Apache Hadoop

• High-level programming model and implementation for
large-scale parallel data processing

• Designed to simplify the task of writing parallel programs

CS 377 [Spring 2017] - Ho

MapReduce: Program

https://erlerobotics.gitbooks.io/erle-robotics-python-gitbook-free/content/
caches,_message_queues,_and_map-reduce/mapreduce.jpg

https://erlerobotics.gitbooks.io/erle-robotics-python-gitbook-free/content/caches,_message_queues,_and_map-reduce/mapreduce.jpg
https://erlerobotics.gitbooks.io/erle-robotics-python-gitbook-free/content/caches,_message_queues,_and_map-reduce/mapreduce.jpg

CS 377 [Spring 2017] - Ho

NoSQL

CS 377 [Spring 2017] - Ho

CAP Theorem

“Of three properties of shared-data systems — data
Consistency, system Availability, and tolerance to network
Partitions — only two can be achieved at any given moment in
time” — Brewer, 1999

• Consistency: all nodes see the same data at the same time

• Availability: guarantee that every request receives a
response about whether it was successful or failed

• Partition tolerance: system continues to operate despite
arbitrary message loss or failure of part of the system

CS 377 [Spring 2017] - Ho

ACID vs BASE

https://www.linkedin.com/pulse/rdbms-follows-acid-property-nosql-databases-base-does

https://www.linkedin.com/pulse/rdbms-follows-acid-property-nosql-databases-base-does

NoSQL Categories

• Key-value stores

• Column-based families or wide
column systems

• Document stores

• Graph databases

https://www.netsolutionsindia.com/blog/5-things-you-must-consider-adopt-nosql-databases-mongodb/

https://www.netsolutionsindia.com/blog/5-things-you-must-consider-adopt-nosql-databases-mongodb/

CS 377 [Spring 2017] - Ho

NoSQL Use Cases & Challenges

• When should I think of using NoSQL database?

• What are the advantages of using NoSQL?

• What are the disadvantages of using NoSQL?

CS 377 [Spring 2017] - Ho

Quiz Questions

CS 377 [Spring 2017] - Ho

Quiz Questions

• What is metadata and why is it important?

• Ans: Information about the data — allows us to
achieve physical data independence

• What is the result of a relational algebra operation?

• Ans: Relation

CS 377 [Spring 2017] - Ho

Quiz Questions

• What is a correlated nested query?

• Ans: Inner query (query in WHERE clause) which uses
one or more attributes from relation(s) specified in the
outer query

• Why should we care about normal forms?

• Ans: Normal forms help us avoid bad properties called
anomalies (insert, update, delete)

CS 377 [Spring 2017] - Ho

Quiz Questions

• Give an example query on companyDB where you would
prefer hash index over B+-tree and the reverse

• Ans: Prefer hash index for equality searches (WHERE
attribute = constant) while B+-tree for range searches
(WHERE attribute < constant1 AND attribute >
constant2)

