
NoSQL Introduction
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Recap: Data Never Sleeps

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

CS 377 [Spring 2017] - Ho

Web 2.0

Lorenzo Alberton Talk, “NoSQL Databases: Why, what and when”

CS 377 [Spring 2017] - Ho

Growth of Unstructured Data

CS 377 [Spring 2017] - Ho

Meeting Demands

CS 377 [Spring 2017] - Ho

RDBMS Scaling: Add Hardware

• Large servers are highly
complex, proprietary,
and disproportionately
expensive

• Physical limitations of
systems: only so much
power can be added

http://www.qbit.gr/news.php?n_id=933&screen=3

http://www.qbit.gr/news.php?n_id=933&screen=3

CS 377 [Spring 2017] - Ho

NoSQL: Motivation

• Users do both updates and reads and scaling
transactions to parallel or distributed DBMS is hard

• Large servers are too expensive with maximum capacity

• Load can increase rapidly with web traffic and
unpredictability

• Google and Amazon developed their own alternative
approaches, BigTable and DynamoDB respectively

CS 377 [Spring 2017] - Ho

NoSQL: New Hipster

CS 377 [Spring 2017] - Ho

NoSQL: New Hipster

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

CS 377 [Spring 2017] - Ho

NoSQL: Job Market

https://blogs.the451group.com/information_management/2015/10/01/nosql-linkedin-skills-index-september-2015/

https://blogs.the451group.com/information_management/2015/10/01/nosql-linkedin-skills-index-september-2015/

CS 377 [Spring 2017] - Ho

What is NoSQL?

• “Not only SQL”

• Scalable by partitioning (sharding) and replication

• Distributed, fault-tolerant architecture

• Flexible schema — no fixed schema or structure

• Not a replacement for RDMBS but compliments it

CS 377 [Spring 2017] - Ho

NoSQL: Scaling

• Easier, linear approach to scale

• Auto-sharding spreads data
across servers without
application impact

• Distributed query support

• Better handling of traffic spikes

http://www.qbit.gr/news.php?n_id=933&screen=3

http://www.qbit.gr/news.php?n_id=933&screen=3

CS 377 [Spring 2017] - Ho

Review: ACID

Atomicity:
Transactions

are all or
nothing

Consistency:
Only valid

data is saved

Isolation:
Transactions
do not affect
each other

Durability:
Written data

will not be lost

But, pitfalls of DBMS with regards to latency, partition
tolerance, and high availability!

CS 377 [Spring 2017] - Ho

DBMS Evolution

http://www.benstopford.com/2012/07/28/thoughts-on-big-data-technologies-part-1/

http://www.benstopford.com/2012/07/28/thoughts-on-big-data-technologies-part-1/

CS 377 [Spring 2017] - Ho

“Imaginary” Evolution of NoSQL

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/

CS 377 [Spring 2017] - Ho

End of RDBMS

CS 377 [Spring 2017] - Ho

CAP Theorem

“Of three properties of shared-data systems — data
Consistency, system Availability, and tolerance to network
Partitions — only two can be achieved at any given moment in
time” — Brewer, 1999

• Consistency: all nodes see the same data at the same time

• Availability: guarantee that every request receives a
response about whether it was successful or failed

• Partition tolerance: system continues to operate despite
arbitrary message loss or failure of part of the system

CS 377 [Spring 2017] - Ho

NoSQL Systems and CAP

http://blog.nahurst.com/visual-guide-to-nosql-systems

http://blog.nahurst.com/visual-guide-to-nosql-systems

CS 377 [Spring 2017] - Ho

Changing pH of Transactions

ACID —> BASE

CS 377 [Spring 2017] - Ho

NoSQL Paradigm: BASE

• Basically Available: replication and sharing to reduce
likelihood of data unavailability and use partitioning of the
data to make any remaining failures partial

• Soft state: allow data to be inconsistent, which means
that the state of system may change over time even
without input

• Eventually consistent: at some future point in time, the
data assumes a consistent state and not immediate like
ACID

CS 377 [Spring 2017] - Ho

NoSQL: Categories

• Four groups:

• Key-value stores

• Column-based families or wide column systems

• Document stores

• Graph databases

• Categories can be subject to change in the future

Debate about whether it is NoSQL

CS 377 [Spring 2017] - Ho

NoSQL: Categories

http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL

http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL

CS 377 [Spring 2017] - Ho

Key-Value Store

• Simplest NoSQL databases
— collection of key, value
pairs

• Queries are limited to query
by key

• Example: Riak, Redis,
Voldermort, DynamoDB,
MemcacheDB

https://upload.wikimedia.org/wikipedia/commons/5/5b/KeyValue.PNG

https://upload.wikimedia.org/wikipedia/commons/5/5b/KeyValue.PNG

CS 377 [Spring 2017] - Ho

Key-Value Store: Voldemort
• Distributed data store used by

LinkedIn for high-scalability
storage

• Named after fictional Harry
Potter villain

• Addresses two usage patterns

• Read-write store

• Read-only store http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-
london-2012/22-Voldemort_RO_Store_Usage_at

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/22-Voldemort_RO_Store_Usage_at
http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/22-Voldemort_RO_Store_Usage_at

CS 377 [Spring 2017] - Ho

Voldemort vs MySQL: Read Only

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/25-
Voldemort_RO_Store_Performance_TP

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/25-Voldemort_RO_Store_Performance_TP
http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/25-Voldemort_RO_Store_Performance_TP

CS 377 [Spring 2017] - Ho

Column-Based Families

• Data is stored in a big table except you store columns of
data together instead of rows

• Access control, disk and memory accounting performed
on column families

• Example: HBase, Cassandra, Hypertable

CS 377 [Spring 2017] - Ho

Example: Column-Based

https://dzone.com/articles/bigtable-model-cassandra-and

https://dzone.com/articles/bigtable-model-cassandra-and

CS 377 [Spring 2017] - Ho

Comparison: 95% Read - 5% Write

http://vldb.org/pvldb/vol5/p1724_tilmannrabl_vldb2012.pdf

Read latencyThroughput

Write latency

http://vldb.org/pvldb/vol5/p1724_tilmannrabl_vldb2012.pdf

CS 377 [Spring 2017] - Ho

Document Databases

• Collections of similar
documents

• Each document can
resemble a complex model

• Examples: MongoDB,
CouchDB

https://gigaom.com/wp-content/uploads/sites/1/2011/07/unql-1.jpg

https://gigaom.com/wp-content/uploads/sites/1/2011/07/unql-1.jpg

CS 377 [Spring 2017] - Ho

Relational vs Non-relational DB

https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/

https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/

CS 377 [Spring 2017] - Ho

JavaScript Object Notation (JSON)

• Simple, text-based way to
store and transmit data

• Alternative data model for
semi-structured data

• Compact and easy to read

• Maps easily to data
structures used by most
programming languages

http://natishalom.typepad.com/.a/6a00d835457b7453ef0133f2872d36970b-pi

http://natishalom.typepad.com/.a/6a00d835457b7453ef0133f2872d36970b-pi

CS 377 [Spring 2017] - Ho

JSON

• Typically used in web applications to send data from
server to browser

• Built on two key structures

• Object is a sequence of fields (name, value pairs)

• Array of values

CS 377 [Spring 2017] - Ho

JSON

http://interactive-matter.eu/blog/2010/08/14/ajson-handle-json-with-arduino/

http://interactive-matter.eu/blog/2010/08/14/ajson-handle-json-with-arduino/

CS 377 [Spring 2017] - Ho

Document Database: MongoDB

• Open-source NoSQL database released in 2009

• Database contains zero or more collections

• Collection can have zero or more documents

• Documents can have multiple fields

• Documents need not have the same fields

CS 377 [Spring 2017] - Ho

Modern Web Stack

https://www.dealfuel.com/seller/mean-stack-tutorial/

https://www.dealfuel.com/seller/mean-stack-tutorial/

CS 377 [Spring 2017] - Ho

MongoDB: Document

https://docs.mongodb.com/v3.2/core/data-modeling-introduction/

https://docs.mongodb.com/v3.2/core/data-modeling-introduction/

CS 377 [Spring 2017] - Ho

MongoDB: Collection

CS 377 [Spring 2017] - Ho

MongoDB vs RDBMS

• Collection vs table

• Document vs row

• Field vs column

• Schema-less vs
Schema-oriented

http://s3.amazonaws.com/info-mongodb-com/_com_assets/media/sql-v-mongodb-1.png

http://s3.amazonaws.com/info-mongodb-com/_com_assets/media/sql-v-mongodb-1.png

CS 377 [Spring 2017] - Ho

Example: Facebook++

• Users can create posts and add pictures, videos and
music to them

• Other users can comment on posts and give points
(likes) to rate posts

• Landing page has a feed of posts that users can share
and interact with

• How would you design this in SQL?

CS 377 [Spring 2017] - Ho

Example: Facebook++ in SQL

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-nosql-vs-sql

What happens when I need to display a single post
and all the information related to it?

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-nosql-vs-sql

CS 377 [Spring 2017] - Ho

Facebook++: MongoDB “schema”

post = { 
 “author”: “Joyce Ho”,  
 “title”: “Everybody should take CS 377”,  
 “images”: [“http://smileyface.png",  
 http://exclamationpt.png"], 
 “comments”:[ 
 {“Alice”: “Your class is too much work!”}, 
 {“Bob”: “ACID is not as cool as you think”}  
]  
}

http://smileyface.png
http://exclamationpt.png

CS 377 [Spring 2017] - Ho

Example: Insert Documents

db.inventory.insertMany([
 { item: "journal", qty: 25, size: { h: 14, w: 21, uom: "cm" },
status: "A" },
 { item: "notebook", qty: 50, size: { h: 8.5, w: 11, uom: "in" },
status: "A" },
 { item: "paper", qty: 100, size: { h: 8.5, w: 11, uom: "in" },
status: "D" },
 { item: "planner", qty: 75, size: { h: 22.85, w: 30, uom: "cm" },
status: "D" },
 { item: "postcard", qty: 45, size: { h: 10, w: 15.25, uom: "cm" },
status: "A" }
]);

https://docs.mongodb.com/manual/tutorial/query-documents/

https://docs.mongodb.com/manual/tutorial/query-documents/

CS 377 [Spring 2017] - Ho

MongoDB: Query

Query SQL Mongo

Select all
documents SELECT * FROM inventory db.inventory.find({})

Equality
condition

SELECT * FROM inventory
WHERE status = “D”

db.inventory.find( 
 {status: “D”} 
)

Or condition
SELECT * FROM inventory
WHERE status = "A" OR qty
< 30

db.inventory.find( 
 { $or: [{ status: "A" }, 
 { qty: { $lt: 30 } }  
] } 
)

https://docs.mongodb.com/manual/tutorial/query-documents/

https://docs.mongodb.com/manual/tutorial/query-documents/

CS 377 [Spring 2017] - Ho

MongoDB: Benefits

• Embedded objects brought back in the same query as
the parent object

• No need to join 8 tables to retrieve content for a single
post

• Document model matches your domain well, it can be
much easier to comprehend than figuring out nasty joins

• Keeps functionality that works well in RDBMS such as
ad-hoc queries and indexes

CS 377 [Spring 2017] - Ho

MongoDB: Aggregation

• Aggregation framework provides SQL-like aggregation
functionality

• Documents from a collection pass through aggregation
pipeline which transforms objects as they pass through

• Output documents based on calculations performed
on input documents

CS 377 [Spring 2017] - Ho

MongoDB: Aggregation

https://docs.mongodb.com/manual/aggregation/

https://docs.mongodb.com/manual/aggregation/

CS 377 [Spring 2017] - Ho

MongoDB: Functionality

• Map reduce functionality to perform complex aggregator
functions given a collection of key, value pairs

• Indexes to match the query conditions and return the
results using only the index (B-tree index)

CS 377 [Spring 2017] - Ho

MongoDB: Pitfalls

• Query can only access a single collection

• Joins of documents are not supported

• Long running multi-row transactions are not distributed
well

• Atomicity is only provided for operations on a single
document

• Group together items that need to be updated together

CS 377 [Spring 2017] - Ho

Graph Database

• Collection of vertices
(nodes) and edges
(relations) and their
properties

• Example: AllegroGraph,
VertexDB, Neo4j

http://www.apcjones.com/talks/2014-03-26_Neo4j_London/images/neo4j_browser.png

http://www.apcjones.com/talks/2014-03-26_Neo4j_London/images/neo4j_browser.png

CS 377 [Spring 2017] - Ho

RDBMS vs Native Graph Database

http://www.slideshare.net/maxdemarzi/graph-database-use-cases

http://www.slideshare.net/maxdemarzi/graph-database-use-cases

CS 377 [Spring 2017] - Ho

Focus of Different Categories

https://techietrack.wordpress.com/2015/02/06/nosql-database-types/

https://techietrack.wordpress.com/2015/02/06/nosql-database-types/

CS 377 [Spring 2017] - Ho

Popularity of Different Categories

http://web.cs.iastate.edu/~sugamsha/articles/
Classification%20and%20Comparison%20of%20Leading%20NoSQL%20Big%20Data%20Models

%2009%2022%202014.pdf1

http://web.cs.iastate.edu/~sugamsha/articles/Classification%20and%20Comparison%20of%20Leading%20NoSQL%20Big%20Data%20Models%2009%2022%202014.pdf1
http://web.cs.iastate.edu/~sugamsha/articles/Classification%20and%20Comparison%20of%20Leading%20NoSQL%20Big%20Data%20Models%2009%2022%202014.pdf1
http://web.cs.iastate.edu/~sugamsha/articles/Classification%20and%20Comparison%20of%20Leading%20NoSQL%20Big%20Data%20Models%2009%2022%202014.pdf1

CS 377 [Spring 2017] - Ho

NoSQL Performance Test

https://www.arangodb.com/wp-content/uploads/2015/09/chart_v2071.png

https://www.arangodb.com/wp-content/uploads/2015/09/chart_v2071.png

CS 377 [Spring 2017] - Ho

NoSQL: Comparison

https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/

https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/

CS 377 [Spring 2017] - Ho

NoSQL vs SQL

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-nosql-vs-sql

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-nosql-vs-sql

CS 377 [Spring 2017] - Ho

NoSQL: Use Cases
• Bigness: big data, big number of users, big number of

computers, …

• Massive write performance: high volume to fit on a single
node

• Fast key-value access: lower latency

• Flexible schema & datatypes: complex objects can be
easily stored without a lot of mapping

• No single point of failure
http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

CS 377 [Spring 2017] - Ho

NoSQL: Use Cases
• Generally available parallel computing

• Easier maintainability, administration, and operations

• Programmer ease of use: accessing data is intuitive for
developers

• Right data model for the right problem: graph problem
should be solved via a graph database

• Distributed systems support: designed to operate in
distributed scenarios

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

CS 377 [Spring 2017] - Ho

NoSQL Challenges
• Lack of maturity — numerous solutions still in their beta

stage

• Lack of commercial support for enterprise users — many
are still open source projects

• Lack of support for data analysis and business intelligence

• Maintenance efforts and skills are required

• Experts are hard to find (although becoming more
prevalent these days)

CS 377 [Spring 2017] - Ho

Jumping on NoSQL Bandwagon?

• Data model and query support

• Do you want/need the power of something like SQL?

• Do you want/need fixed or flexible schemas

• Scale

• Do you want/need massive scalability?

• Are you willing to sacrifice replica consistency?

CS 377 [Spring 2017] - Ho

Jumping on NoSQL Bandwagon?

• Agility and growth

• Are you building a service that could grow
exponentially?

• Are you optimizing for quick, simple coding or
maintainability?

CS 377 [Spring 2017] - Ho

NoSQL: Recap

• Motivation for NoSQL

• CAP theorem

• ACID vs BASE

• NoSQL categories

• Use cases and challenges

