Big Data Systems

CS 377: Database Systems

Review: Course Material to Date

Database

overview
(1 +2)

File storage
(19)

Conceptual data

model — ER

model (3)

SQL application
programming
— JDBC / PHP
(18)

Indexes

(20 + 21)

Representational
data model —
Relational model

(4)

Database design
— normal forms
(14 +17)

Query
processing &
optimization

(22 + 23)

CS 377 [Spring 2017] - Ho

Relational query
languages — RA &
RC (5 + 6)

SQL — Data definition
& manipulation,
queries, & views (7-13)

Transaction
management
(24+25)

Review: What Has Been Covered

What | hope you’ve learned...

-+ Design a database
(Requirements -> ER diagram -> Relational model ->
Database normalization)

-+ Querying a database
(Relational algebra, calculus, SQL queries)

- Writing applications to use databases
(JDBC & SQL)

CS 377 [Spring 2017] - Ho

Review: What Has Been Covered

What | hope you've learned (at a high level)...

- Why some queries run faster on some systems
compared to others

- How to think about optimizing your performance
(Indexes, SQL Processing & optimization)

- How to achieve ACID
(Logs & Locks)

CS 377 [Spring 2017] - Ho

Review: “"Peeking” Under the Hooo

- Most aspects of traditional G CmD D Eog

RDBMS is understood

+ Learned enough to be - L |
“dangerous” '

>
Q.
.
=
O
»
O
Q
D
f_|-
.
n
O
Q)
»
-
D
O,
O
Q
D
Q.

Up IN Courses or on your own

statistical data

Review: Centralized Database

Data is located in one place (one server)
- All functions performed by the server
- Query processing

- Transaction management,
concurrency control

What if | have 100 TB of data”

Data Never Sleeps

Users MAKE - PASSENGERS = USERS LIKE
TAKE

RIDES POSTS

CALLS @ — TWEETS |
—— USERS VIEW @ _ USERS UPLOAD ——
VIDEOS HOURS

yd OF NEW VIDEO
D
USERS LIKE —

SNAPS ~—— B | = ~ PHOTOS

USERS SWIPE —— @ - @

TIMES IMAGES

USERS PIN —

- USERS
DOWNLOAD

SUBSCRIBERS
VIDEQS — RECEVES ' JERS CAST STREAM

VOTES
UNIQUE VISITORS —

HOURS OF VIDEQO -

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

CS 377 [Spring 2017] - Ho

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

Goal of Today’s Lecture

- High-level overview of dealing with “big data”
- What is big data”?
- What are different technologies | can use?

- Not meant to be detailed examination of all aspects of
systems covered

CS 377 [Spring 2017] - Ho

4 \'’s of Big Data

It's estimated that

2.5 QUINTILLION BYTES

[2.3 TRILLION GIGABYTES]
of data are created each day

40 ZETTABYTES

[43 TRILLION GIGABYTES]

of data will be created by
2020, an increase of 300
times from 2005

The
FOUR V’s
of Big
Data

From traffic patterns and music downloads to web
history and medical records, data is recorded,
stored, and analyzed to enable the technology
and services that the world relies on every day.
But what exactly is big data, and how can these
massive amounts of data be used?

2020
Mgy, n

6 BILLION
PEOPLE

have cell
phones

Most companies in the
U.S. have at least

100 TERABYTES

[100,000 GIGABYTES]
of data stored

WORLD POPULATION: 7 BILLION As a leader in the sector, IBM data scientists
break big data into four dimensions: Velume,

Velocity, Variety and Veracity

Modern cars have close to

The New York Stock Exchange Depending on the industry and organization, big

captures 1[]0 SENSURS data encompasses information from multiple
1 TB OF TRADE \ . (that monitor items such as internal and external sources such as transactions,

fuel level and tire pressure social media, enterprise content, sensors and
INFURMATION (mobile devices. Companies can leverage data to

during each trading session adapt their products and services to better meet

customer needs, optimize operations and
infrastructure, and find new sources of revenue.

Velocity

ANALYSIS OF
STREAMING DATA

By 2015

4.4 MILLION ITJOBS

will be created globally to support big data,
with 1.9 million in the United States

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

—almost 2.5 connections
per person on earth

T

As of 2011, the global size of
data in healthcare was

By 2014, it's anticipated
there will be

estimated to be 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[161 BILLION GIGABYTES] HEALTH MONITORS

=

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

You

30 BILLION w P
PIECES OF CONTENT ‘ =
are shared on Facebook

every month

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

L 4
»

¥

nﬁ%" »
£

1IN 3 BUSINESS
LEADERS

don’t trust the information
they use to make decisions

Poor data quality costs the US
economy around

$3.1 TRILLION A YEAR
i

21% OF
RESPONDENTS

W

in one survey were unsure of
how much of their data was
inaccurate

Veracity

UNCERTAINTY
OF DATA

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

CS 377 [Spring 2017] - Ho

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

Parallel & Distributed DBs: Motivation

- Single, monolithic DBMS is impractical and expensive
- Improve performance

+ Increased availability & reliability

- Potentially lower cost of ownership

- Easler, more economical system expansion

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Overview

Parallel DBMS

- Data partitioned across
multiple disks

- Allows parallel /O for better
speed-up

- Queries can be run in parallel
with each other

Parallel & Distributed DBs: Overview

—ach processor can work
iIndependently on its own Paralel DEWS
nartition

Individual relational
operations (e.g., sort, join,
aggregation) can be
executed in parallel

- Concurrency control takes
care of conflicts

Scale-Up vs Scale-Out

Terminology to measure performance

Speed-up: using more processors, how much faster will
the task run (assuming same problem size)?

Scale-up: using more processors, does performance
remain the same as we increase problem size”

Scale-out: using a larger number of servers, does
performance improve?

CS 377 [Spring 2017] - Ho

|deal Scenarios

Speed-up Scale-up

linear speedup

T linear scaleup

Is
TL

sublinear scaleup

sublinear speedup

speed ——

resources ——- problem size ——

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Issues

- How to distribute the data
- How to optimize the cost of queries

- Data transmission + local processing
- How to perform concurrency control

- How to make system resilient to failures and achieve
atomicity & durabllity

CS 377 [Spring 2017] - Ho

Parallel vs Distributed

- Parallel DBMS: - Distributed DBMS

- Nodes are physically - Nodes can be far away

close to each other
- Nodes connected via

- Nodes connected via public network
high-speed LAN
- Communication cost
- Communication cost IS and problems shouldn’t
small be ignored

CS 377 [Spring 2017] - Ho

Parallel Architectures

P M P
M
P M P
T e M-{ P =
P 48 M| P 48
P 48 M| P 8
(a) shared memory (b) shared disk
M P
8 P M P P P
Vi 8 P M P M P M
8 1 PO P = P——3
D 8 T P s o e
8 P = P = P —O

(c) shared nothing (d) hierarchical
Figure 17.8 (Database System Concepts)

CS 377 [Spring 2017] - Ho

Shared Memory

- Nodes share RAM + disk

- 10-100+ processors

- Easy to use and program

=g |9 D |9 |

-
RS

- EXpensive to scale — last remaining

- . a) shared memor
cash cow in the hardware industry @) Y

Shared Disk

- Nodes share same disk

- Easy fault tolerance & consistency

+ Hard to scale past a certain point
— existing deployments typically

have fewer than 10 machines

—xample: Oracle servers use this
oaradigm quite a bit

S EOEEE

=S| [(D] |9 |

000

(b) shared disk

Shared Nothing

- Each instance has its own CPU, M P
memory, and disk - P M
M P
+ Easy to increase capacity 8 ? N
M P
ard to ensure consistency 8 8

-+ Most scalable architecture but (c) shared nothing
difficult to administer & tune

Distributed Databases

Data spread over multiple
machine

site A site C

- Network interconnects the
machines

communication
via network

- Similar to shared nothing
architecture but larger
communication cost

site B

How to Distribute the Data”?

- Replication: system maintains
Mmultiple copies of data

-+ (PRO) Improves availability,
parallelism, and reduced
data transfer

+ (CON) Increased cost of
updates, complexity of
concurrency control

How to Distribute the Data”?

-ragmentation: relation

fragments stored at
distinct sites

-+ Combination of both
replication &
fragmentation

IS partitioned into several _

2003 -- 2004

nN —

o (NN
o iy
E M
: OB S O 4
N

o

O

o

]

007

Wi

5
=
@

J:

Fragmentation Strategies

- Horizontal partition: each tuple is assigned to one or
more fragments

- Vertical partition: relation is split into smaller schemas
each with a common candidate key to ensure lossless

join

CS 377 [Spring 2017] - Ho

Horizontal Partition

List Range Hash
Partitioning Partitioning Partitioning
East Sales Region January and
New Yore. 9ot —= 5= | February rTH
Virginia I_ l
West Sales Region March and h2
galifomia |_/ April h3
regon ! I
Hawaii / e h4
Central Sales ion May and
linois] Ju:¥e —a |
Texas I_ —
Missouri S L
July and
August
—

https://docs.oracle.com/cd/B28359 01/server.111/b32024/partition.htm

CS 377 [Spring 2017] - Ho

https://docs.oracle.com/cd/B28359_01/server.111/b32024/partition.htm

Example: Horizontal Partition

branch _name account_number balance
Hillside A-305 500
Hillside A-226 336
Hillside A-155 62

account 1= Obranch_name="“Hillside” (accoun t)

branch _name |account_number balance
Valleyview A-177 205
Valleyview A-402 10000
Valleyview A-408 1123
Valleyview A-639 750

accoun zL2 = Gbranch_name:“Valleyview” (accoun t)
http://www.db-book.com/

CS 377 [Spring 2017] - Ho

http://www.db-book.com/

Example: Vertical Partition

branch _name customer _name tuple_id
Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5
Valleyview Kahn 6
Valleyview Green 7
dep osi t1 = Hbranch_name, customer_name, tuple_id (empl oy ee—in fo)
account_number balance tuple_id
A-305 500 1
A-226 336 2
A-177 205 3
A-402 10000 4
A-155 62 5
A-408 1123 6
A-639 750 7

deposit,= I account_number, balance, tuple_id

CS 377 [Spring 2017] - Ho

(employee_info)

http://www.db-book.com/

http://www.db-book.com/

Example: Replication & Fragmentation

Figure 25.1
Data distribution and replication
among distributed databases.

EMPLOYEES All

EMPLOYEES San Francisco PROJECTS Al

and Los Angeles WORKS_ON All EMPLOYEES New York
PROJECTS San Francisco Chicago PROJECTS All
WORKS_ON San Francisco (Headquarters) WORKS_ON New York

employees l employees

San Francisco New York
Communications
Network
Los Angeles Atlanta

EMPLOYEES Los Angeles EMPLOYEES Atlanta
PROJECTS Los Angeles and PROJECTS Atlanta

San Francisco WORKS_ON Atlanta
WORKS_ON Los Angeles employees

employees

CS 377 [Spring 2017] - Ho

Figure 25.1 from FoDS book

Query Processing

- Single, centralized system — primary criterion for cost is
just number of disk accesses

Distributed system
- Cost of data transmission over network

Potential gain in performance from having several sites
Orocess parts of the query

CS 377 [Spring 2017] - Ho

Review: Centralized DB Query

Given two relations R(A, B) and S(B,C) with no indexes,
how do we compute the following”?

+ Selection: g4-123(R)
Linear search: scan file R and search for records A=123
« Group by: aFsum(n) ()

Sort/hash for aggregation and apply sum

CS 377 [Spring 2017] - Ho

Review: Centralized DB Query

Given two relations R(A, B) and S(B,C) with no indexes,
how do we compute the following”?

- Join: RS

 Nested block join

» Hash join by creating hash index on B for
smaller relation

+ Sort-merge join: sort on B for both relations

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the

following”?

- Selection: ga—123(R)

Relatively straightforward — each

machine scans its own

nartition

and applies the condition

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following”?

- Selection: aFsum(p) ()

For hash and range partitions, relatively easy —
complication occurs for round robin which needs to
aggregate same values together

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following”?

Selection: aFsum(n)(R)

SELECT /*+ parallel(c,2) */ cust_last_name,count(*)
FROM customers c

GROUP BY cust last name

ORDER BY 2 desc

r— Process Group Swilches from Scan to Sort j

Parallel Paraliel Parallel
Process #1 Process #3 Process #1

CUSTOMER
TABLE

Query
Coordinator

Paraliel Parallel
Process #2 Process #4

Parallel
Process #2

1

e Scan < O GIOUP BY =t O Order BY w—e

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following”?

- Selection: aFsum(p) ()

For hash and range partitions, relatively easy —
complication occurs for round robin which needs to
aggregate same values together

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

- Join; RS

- Strategy 1: Transfer both R and S into one central
location and join (very expensive from sending)

- Strategy 2: Perform local join by just sending the
joining column of one relation, S, to where the other
one is located, R (minimizes data transmission)

CS 377 [Spring 2017] - Ho

Example: Distributed Join

Node 1 Node 2 Node
S2
R o vF%2 v83
\ 4

R1 ST R2 S2 R3 S3

1 2 4 7 5 4 2 3 8 06 6 7

3 2 4 9 / 6 2 9 9 © 6 9
3

R1 S2 R2’ S R2"+R3 S3
1 2 2 3 5 4 4 7 ; g 6 7
3 2 2 4 9 9 6 6 9

Node 1 Node 2 Node 3

CS 377 [Spring 2017] - Ho

Example: Distributed Join (2)

1 2 3 7 6 7
1 2 9 7 6 9
3 2 3 8 6 7
3 2 9

Node 1 Node 2 Node 3

T

combine tuples for final output

CS 377 [Spring 2017] - Ho

Distributed Iransactions & Recovery

- Dealing with multiple copies of data items — how to
maintain consistency amongst the copies”

- Failure of individual sites — what to do when one site falls
and then rejoins the system later?

- Faillure of communication issues

- Distributed commit — what to do If some nodes fall
during commit process?

- Distributed deadlock

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Properties

-+ Advantages - Disadvantages
- Data sharing - May increase
processing overhead
- Reliability and
availability - Harder to ensure ACID

guarantees

mproved query

Orocessing speed - More database design
ISSUes

CS 377 [Spring 2017] - Ho

What if I'm looking to manipulate diverse data”
For example, what if | want to extract links from
webpages and aggregate them by target
document? Should | do this all in SQL?

CS 377 [Spring 2017] - Ho

‘MQGJQ@
maplhediuce

MapReduce

- Initially developed by Jeffrey Dean & Sanjay Ghemawat at
Google [2004]

- Open source implementation: Apache Hadoop

igh-level programming model and implementation for
arge-scale parallel data processing

+ Designed to simplity the task of writing parallel programs

CS 377 [Spring 2017] - Ho

MapReduce: Overview

- Read partitioned data

- Map: extract something you care about from each record
- Group by key: sort and shuffle (done by the system)

+ Reduce: aggregate, summarize, filter, or transform

- Write the result

Outline stays the same, map and reduce should be
tailored to the problem

CS 377 [Spring 2017] - Ho

MapReduce: Map Step

Input Intermediate
key-value pairs key-value pairs

Ry
A = @
AN =, @5

AT @/v/

http://www.mmds.org/#book

CS 377 [Spring 2017] - Ho

http://www.mmds.org/#book

MapReduce: Reduce Step

Output

Intermediate Key-value groups key-value pairs
key-value pairs

D[] ST TESC
S sz Ol =>oC
o

M @E O

http://www.mmds.org/#book

CS 377 [Spring 2017] - Ho

http://www.mmds.org/#book

Example: Word Counting

We have a huge text
document (~ 1 million words)

Task: Count the number of
times each distinct word
appears in the file

Call me Ishmael. Some years ago-never mind how long
precisely--having little or no money in my purse, and
nothing particular to interest me on shore, | thought |
would sail about a little and see the watery part of the
world. It is a way | have of driving off the spleen and
regulating the circulation. Whenever | find myself growing
gnm about the mouth; whenever it is a damp, drizzly
November in my soul; whenever | find myself involuntarily
pausing before coffin warehouses, and bringing up the
rear of every funeral | meet; and especially whenever my
hypos get such an upper hand of me, that it requires a
strong moral principle to prevent me from deliberately
stepping into the street, and methodically knocking
people's hats off--then, | account it high time to get to sea
as soon as | can. This is my substitute for pistol and ball.
With a philosophical flourish Cato throws himself upon his
sword; | quietly take to the ship. There is nothing
surprising in this. If they but knew it, almost all men in
their degree, some time or other, cherish very nearly the
same feelings towards the ocean with me.

Example: Word Counting

- Traditional DBMS

- Load document words into a table

- SQL query:
SELECT count(*)
FROM document
GROUP BY word

CS 377 [Spring 2017] - Ho

Example: Word Counting (MapReduce)

Provided by the Provided by the
programmer programmer

MAP:

Read input and
produces a set of
key-value pairs

Reduce:
Collect all values
belonging to the

key and output

Group by key:
Collect all pairs
with same key

The crew of the space
shuttle Endeavor recently (The, 1) (Crer 1)

returned to Earth (crew, 1) (crew, 1)

reads

ambassadors, harbingers o crew, 2
exploration. Scientists at (the 1) (the 1) (Spacel 1)
SR are Saying ; ' : (the, 3)
(shuttle, 1)

(recently, 1)

\

recent assembly of the (space, 1) (the, 1)
Dextre bot is the first step in (ShUtt'E 1) (the 1)

man/mache partnlership. (Endeavor, 1) (ShUtt'E, 1)
"The work we're doing now

— the robotics we're doing (recently, 1) (recently, 1)
-- is what we're going to

Only sequential

Big document (key, value) (key, value) (key, value)

http://www.mmds.org/#book

CS 377 [Spring 2017] - Ho

http://www.mmds.org/#book

MapReduce: DB Standpoint

MapReduce: A major step backwards

By David DeWitt on January 17,2008 4:20 PM | Permalink | Comments (44) | TrackBacks (1)
[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research efforts, and we'll begin here with our views on MapReduce. This is a good time to discuss it, since the
recent trade press has been filled with news of the revolution of so-called "cloud computing." This paradigm entails harnessing large numbers of (low-end) processors working in parallel to solve a computing

problem. In effect, this suggests constructing a data center by lining up a large number of "jelly beans" rather than utilizing a much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few select universities to teach students how to program such clusters using a software tool called
MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have spread about how it represents a paradigm shift in the development of scalable, data-intensive applications.
MapReduce may be a good idea for writing certain types of general-purpose computations, but to the database communityj, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive applications

2. A sub-optimal implementation, in that it uses brute force instead of indexing

3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

5. Incompatible with all of the tools DBMS users have come to depend on

https://homes.cs.washington.edu/~billhowe/mapreduce a major step backwards.html

CS 377 [Spring 2017] - Ho

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

MapReduce: Fighting Back

COMMUNICATIONS

OF THE

ACM

Home / Magazine Archive / January 2010 (Vol. 53, No. 1) / MapReduce: A Flexible Data Processing Tool / Full Text

HOME | CURRENTISSUE | NEWS BLOGS | OPINION | RESEARCH PRACTIC

CONTRIBUTED ARTICLES

MapReduce: A Flexible Data Processing Tool

By Jeffrey Dean, Sanjay Ghemawat

Communications of the ACM, Vol. 53 No. 1, Pages 72-77
10.1145/1629175.1629198

Comments (3)

vewas: B [0 @ B SHARE: = & @ o & B

Mapreduce is a programming model for processing and

generating large data sets.* Users specify a map function that
processes a key/value pair to generate a set of intermediate
key/value pairs and a reduce function that merges all
intermediate values associated with the same intermediate key.
We built a system around this programming model in 2003 to
simplify construction of the inverted index for handling searches
at Google.com. Since then, more than 10,000 distinct programs
have been implemented using MapReduce at Google, including
algorithms for large-scale graph processing, text processing,
machine learning, and statistical machine translation. the
Hadoop open source implementation of MapReduce has been
used extensively outside of Google by a number of

organizations.'*>!!

https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext

CS 377 [Spring 2017] - Ho

https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext

Friends or Foes?

CONTRIBUTED ARTICLES

MapReduce and Parallel DBMSs: Friends or Foes?

By Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paulson, Andrew Pavlo, Alexander Rasin
Communications of the ACM, Vol. 53 No. 1, Pages 64-71
10.1145/1629175.1629197

Comments (4) User Name

V'EWASED@@ SHAREB@@G”@J Password

» Forgot Password?
» Create an ACM Web Account

SIGN IN for Full Access

The MapReduce” (MR) paradigm has been hailed as a
revolutionary new platform for large-scale, massively parallel SIGN IN

data access.'® Some proponents claim the extreme scalability of
MR will relegate relational database management systems

(DBMS) to the status of legacy technology. At least one ARTICLE CONTENTS:
enterprise, Facebook, has implemented a large data warehouse

Introduction
System USing MR teChn()lOgy rather than a DBMS.14 Parallel Database Systems

Here, we argue that using MR systems to perform tasks that are Mapping Parallel DEMSs onto

best suited for DBMSs yields less than satisfactory results,'” AETRLEED

concluding that MR is more like an extract-transform-load (ETL)
system than a DBMS, as it quickly loads and processes large
amounts of data in an ad hoc manner. As such, it complements
DBMS technology rather than competes with it. We also discuss the differences in the architectural decisions

of MR systems and database systems and provide insight into how the systems should complement one Conclusion
another. Acknowledgment

Possible Applications
DBMs "Sweet Spot"
Architectural Differences

Learning from Each Other

https://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext
CS 377 [Spring 2017] - Ho

https://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext

Parallel DBMS vs MapReduce

Parallel DBMS
- Relational data model and schema
- Declarative query language (SQL)
-+ Easily combine operators into complex queries
- Query optimization, indexing, and physical tuning

-+ Streams data from one operator to next without
blocking

CS 377 [Spring 2017] - Ho

Parallel DBMS vs MapReduce

MapReduce
- Data model is file with key-value pairs
- Pre-loading data is not necessary before processing
- Easy to write user-defined operators
- Easily add nodes to the cluster

+ Arguably more scalable, but also needs more nodes

CS 377 [Spring 2017] - Ho

Similarities

- DBMS can do whatever MapReduce can

-+ User-defined functions provides equivalent functionality
of a Map operation

- SQL aggregates can be used with user-defined
functions to achieve Reduce functionality

- GROUP BY operation in SQL is equivalent to Reshuffle
INn MapReduce

CS 377 [Spring 2017] - Ho

Application Classes for MR

- Extract-transform-load (ETL) task and “read once” data
set

- Complex analytics
+ Semi-structured data
- Quick-and-dirty analyses

- Limited budget operations

CS 377 [Spring 2017] - Ho

DBMS for the Win

- Repetitive record parsing
- Less compression

- Less pipeline

- Weak scheduling

- No column-oriented storage

CS 377 [Spring 2017] - Ho

MapReduce Ecosystem

Many extensions to address limitations

- Capabilities to write directed acyclic graphs of
MapReduce jobs (e.q., PIG by Yahoo!)

- Declarative languages (e.qg., Hive by Facebook or SQL/
Tenzing by Google)

- Increased integration of DBMS with MapReduce

CS 377 [Spring 2017] - Ho

Spark: MapReduce Replacement

.Spc:rr‘l’zZ

Tagline: Lightning-fast cluster

computing
Logistic Regression Performance
Run programs up to 100x o .
faster than MapReduce in /
memory or 10x faster on disk £
@_LLllmmm
Easy to use with support for " Numberofierati

Java, Scala, Python, and R

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

Big Data Systems: Recap

- Big Data (4 V’s)

- Parallel/Distributed DBMS
- Different architectures
- Data distribution

- Query processing

- MapReduce

CS 377 [Spring 2017] - Ho

