
Big Data Systems
CS 377: Database Systems
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Review: Course Material to Date
Database  
overview  
(1 + 2)

Conceptual data 
model — ER 

model (3)

Representational 
data model — 

Relational model 
(4)

Relational query 
languages — RA & 

RC (5 + 6)

SQL — Data definition 
& manipulation, 

queries, & views (7-13)  

SQL application 
programming 

 — JDBC / PHP  
(18)

Database design 
— normal forms 

(14 + 17)

File storage 
(19)

Indexes 
(20 + 21)

Query 
processing & 
optimization 

(22 + 23)

Transaction 
management 

(24+25)
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Review: What Has Been Covered
Database  
overview  
(1 + 2)

Conceptual data 
model — ER 

model (3)

Representational 
data model — 

Relational model 
(4)

Relational query 
languages — RA & 

RC (5 + 6)

SQL — Data definition 
& manipulation, 

queries, & views (7-11)  

SQL application 
programming 

 — JDBC / PHP  
(12 & 22)

Database design 
— normal forms 

(14 + 15)

File storage 
(16)

Indexes 
(17 + 18)

Query 
processing & 
optimization 

(19 + 20)

Transaction 
management 

(21)

What I hope you’ve learned… 

• Design a database 
(Requirements -> ER diagram -> Relational model -> 
Database normalization) 

• Querying a database 
(Relational algebra, calculus, SQL queries) 

• Writing applications to use databases 
(JDBC & SQL)
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Review: What Has Been Covered
Database  
overview  
(1 + 2)

Conceptual data 
model — ER 

model (3)

Representational 
data model — 

Relational model 
(4)

Relational query 
languages — RA & 

RC (5 + 6)

SQL — Data definition 
& manipulation, 

queries, & views (7-11)  

SQL application 
programming 

 — JDBC / PHP  
(12 & 22)

Database design 
— normal forms 

(14 + 15)

File storage 
(16)

Indexes 
(17 + 18)

Query 
processing & 
optimization 

(19 + 20)

Transaction 
management 

(21)

What I hope you’ve learned (at a high level)… 

• Why some queries run faster on some systems 
compared to others 

• How to think about optimizing your performance 
(Indexes, SQL Processing & optimization) 

• How to achieve ACID 
(Logs & Locks)



naive users
(tellers, agents, 

web users)
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storage manager

disk storage
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statistical datadata
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application
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application
interfaces

application
program

object code

compiler and
linker

buffer manager file manager authorization
and integrity

 manager

transaction
manager

DML compiler 
and organizer

query evaluation
engine

DML queries DDL interpreter

application
programs

query
tools

administration
tools

sophisticated
users

(analysts)
database

administrators

use write use use

Review: “Peeking” Under the Hood

• Most aspects of traditional 
RDBMS is understood 

• Learned enough to be 
“dangerous” 

• Additional details can be picked 
up in courses or on your own



Review: Centralized Database

• Data is located in one place (one server) 

• All functions performed by the server 

• Query processing 

• Transaction management, 
concurrency control 

• … What if I have 100 TB of data?
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Data Never Sleeps

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/
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Goal of Today’s Lecture

• High-level overview of dealing with “big data” 

• What is big data? 

• What are different technologies I can use? 

• Not meant to be detailed examination of all aspects of 
systems covered
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4 V’s of Big Data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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Parallel & Distributed DBs: Motivation

• Single, monolithic DBMS is impractical and expensive 

• Improve performance 

• Increased availability & reliability 

• Potentially lower cost of ownership 

• Easier, more economical system expansion



Parallel & Distributed DBs: Overview

• Data partitioned across 
multiple disks 

• Allows parallel I/O for better 
speed-up 

• Queries can be run in parallel 
with each other



Parallel & Distributed DBs: Overview

• Each processor can work 
independently on its own 
partition 

• Individual relational 
operations (e.g., sort, join, 
aggregation) can be 
executed in parallel 

• Concurrency control takes 
care of conflicts
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Scale-Up vs Scale-Out

• Terminology to measure performance 

• Speed-up: using more processors, how much faster will 
the task run (assuming same problem size)? 

• Scale-up: using more processors, does performance 
remain the same as we increase problem size? 

• Scale-out: using a larger number of servers, does 
performance improve?
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Ideal Scenarios

linear speedup

sublinear speedup

resources

sp
ee

d

linear scaleup

sublinear scaleup

problem size

TS
TL

Scale-upSpeed-up
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Parallel & Distributed DBs: Issues

• How to distribute the data 

• How to optimize the cost of queries 

• Data transmission + local processing 

• How to perform concurrency control 

• How to make system resilient to failures and achieve 
atomicity & durability
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Parallel vs Distributed

• Parallel DBMS: 

• Nodes are physically 
close to each other 

• Nodes connected via 
high-speed LAN 

• Communication cost is 
small 

• Distributed DBMS 

• Nodes can be far away 

• Nodes connected via 
public network 

• Communication cost 
and problems shouldn’t 
be ignored
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Parallel Architectures

Figure 17.8 (Database System Concepts)
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(a) shared memory

Shared Memory

• Nodes share RAM + disk 

• 10-100+ processors 

• Easy to use and program 

• Expensive to scale — last remaining 
cash cow in the hardware industry
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Shared Disk

• Nodes share same disk 

• Easy fault tolerance & consistency 

• Hard to scale past a certain point 
— existing deployments typically 
have fewer than 10 machines 

• Example: Oracle servers use this 
paradigm quite a bit
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Shared Nothing

• Each instance has its own CPU, 
memory, and disk 

• Easy to increase capacity 

• Hard to ensure consistency 

• Most scalable architecture but 
difficult to administer & tune



site A site C

site B

communication
via network

network

Distributed Databases

• Data spread over multiple 
machine 

• Network interconnects the 
machines 

• Similar to shared nothing 
architecture but larger 
communication cost



How to Distribute the Data?

• Replication: system maintains 
multiple copies of data 

• (PRO) Improves availability, 
parallelism, and reduced 
data transfer 

• (CON) Increased cost of 
updates, complexity of 
concurrency control



How to Distribute the Data?

• Fragmentation: relation 
is partitioned into several 
fragments stored at 
distinct sites 

• Combination of both 
replication & 
fragmentation
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Fragmentation Strategies

• Horizontal partition: each tuple is assigned to one or 
more fragments 

• Vertical partition: relation is split into smaller schemas 
each with a common candidate key to ensure lossless 
join



CS 377 [Spring 2017] - Ho

Horizontal Partition

https://docs.oracle.com/cd/B28359_01/server.111/b32024/partition.htm

https://docs.oracle.com/cd/B28359_01/server.111/b32024/partition.htm
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Example: Horizontal Partition

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=�Hillside��(account )

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=�Valleyview��(account )
http://www.db-book.com/

http://www.db-book.com/
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Example: Vertical Partition

http://www.db-book.com/

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info )

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info )

http://www.db-book.com/
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Example: Replication & Fragmentation

Figure 25.1 from FoDS book
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Query Processing

• Single, centralized system — primary criterion for cost is 
just number of disk accesses 

• Distributed system 

• Cost of data transmission over network 

• Potential gain in performance from having several sites 
process parts of the query
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Review: Centralized DB Query

Given two relations R(A, B) and S(B,C) with no indexes, 
how do we compute the following? 

• Selection:  

• Group by:  

�A=123(R)

AFSUM(B)(R)

Linear search: scan file R and search for records A=123

Sort/hash for aggregation and apply sum
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Review: Centralized DB Query

Given two relations R(A, B) and S(B,C) with no indexes, 
how do we compute the following? 

• Join: R ⇤ S

• Nested block join 
• Hash join by creating hash index on B for 

smaller relation  
• Sort-merge join: sort on B for both relations
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Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal 
partitioning and no indexes, how do we compute the 
following? 

• Selection:  �A=123(R)

Relatively straightforward — each 
machine scans its own partition 

and applies the condition
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Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal 
partitioning and no indexes, how do we compute the 
following? 

• Selection:  

For hash and range partitions, relatively easy — 
complication occurs for round robin which needs to 

aggregate same values together

AFSUM(B)(R)
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Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal 
partitioning and no indexes, how do we compute the 
following? 

• Selection:  AFSUM(B)(R)
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Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal 
partitioning and no indexes, how do we compute the 
following? 

• Selection:  

For hash and range partitions, relatively easy — 
complication occurs for round robin which needs to 

aggregate same values together

AFSUM(B)(R)
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Parallel & Distributed DBs: Query

• Join: 

• Strategy 1: Transfer both R and S into one central 
location and join (very expensive from sending) 

• Strategy 2: Perform local join by just sending the 
joining column of one relation, S, to where the other 
one is located, R (minimizes data transmission)  

R ⇤ S
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Example: Distributed Join

A B
1 2
3 2

B C
4 7
4 9

Node 1

R1 S1
A B
5 4
7 6

B C
2 3
2 9

Node 2

R2 S2
A B
8 6
9 6

B C
6 7
6 9

Node 3

R3 S3

A B
1 2
3 2

B C
2 3
2 9

Node 1

R1 S2
A B
5 4

B C
4 7
4 9

Node 2

R2’ S1
A B
7 6
8 6
9 6

B C
6 7
6 9

Node 3

R2’ + R3 S3

R1 S2
S1 R2 S3
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Example: Distributed Join (2)
A B C
1 2 3
1 2 9
3 2 3
3 2 9

Node 1

A B C
5 4 7
5 4 9

Node 2

A B C
7 6 7
7 6 9
8 6 7
… … …

Node 3

combine tuples for final output
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Distributed Transactions & Recovery
• Dealing with multiple copies of data items — how to 

maintain consistency amongst the copies? 

• Failure of individual sites — what to do when one site fails 
and then rejoins the system later? 

• Failure of communication issues 

• Distributed commit — what to do if some nodes fail 
during commit process? 

• Distributed deadlock
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Parallel & Distributed DBs: Properties

• Advantages 

• Data sharing 

• Reliability and 
availability 

• Improved query 
processing speed 

• Disadvantages 

• May increase 
processing overhead 

• Harder to ensure ACID 
guarantees 

• More database design 
issues 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What if I’m looking to manipulate diverse data? 
For example, what if I want to extract links from 

webpages and aggregate them by target 
document? Should I do this all in SQL?
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MapReduce

• Initially developed by Jeffrey Dean & Sanjay Ghemawat at 
Google [2004] 

• Open source implementation: Apache Hadoop 

• High-level programming model and implementation for 
large-scale parallel data processing 

• Designed to simplify the task of writing parallel programs
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MapReduce: Overview

• Read partitioned data 

• Map: extract something you care about from each record 

• Group by key: sort and shuffle (done by the system) 

• Reduce: aggregate, summarize, filter, or transform 

• Write the result 
Outline stays the same, map and reduce should be 

tailored to the problem
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MapReduce: Map Step

v"k"

k" v"

k" v"

map$
v"k"

v"k"

…$

k" v"
map$

Input 
key-value pairs 

Intermediate 
key-value pairs 

…$

k" v"

http://www.mmds.org/#book

http://www.mmds.org/#book
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MapReduce: Reduce Step

k" v"

…"

k" v"

k" v"

k" v"

Intermediate 
key-value pairs 

Group"
by"key"

reduce"

reduce"

k" v"

k" v"

k" v"

…"

k" v"

…"

k" v"

k" v" v"

v" v"

Key-value groups 
Output  
key-value pairs 

http://www.mmds.org/#book

http://www.mmds.org/#book


Example: Word Counting

• We have a huge text 
document (~ 1 million words) 

• Task: Count the number of 
times each distinct word 
appears in the file
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Example: Word Counting

• Traditional DBMS 

• Load document words into a table 

• SQL query: 
SELECT count(*)  
FROM document 
GROUP BY word
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Example: Word Counting (MapReduce)

The crew of the space 
shuttle Endeavor recently 
re turned to Ear th as 
ambassadors, harbingers of 
a new era o f space 
exploration. Scientists at 
NASA are saying that the 
recent assembly of the 
Dextre bot is the first step in 
a long-term space-based 
man/mache partnership. 
'"The work we're doing now 
-- the robotics we're doing 
-- is what we're going to 
need …………………….. 

Big document 

(The,&1)&
(crew,&1)&
(of,&1)&
(the,&1)&

(space,&1)&
(shuttle,&1)&

(Endeavor,&1)&
(recently,&1)&

….&

(crew,&1)&
(crew,&1)&
(space,&1)&
(the,&1)&
(the,&1)&
(the,&1)&

(shuttle,&1)&
(recently,&1)&

…&

(crew,&2)&
(space,&1)&
(the,&3)&

(shuttle,&1)&
(recently,&1)&

…&

MAP:%
Read&input&and&
produces&a&set&of&
key@value&pairs%

Group%by%key:%
Collect&all&pairs&
with&same&key%

Reduce:%
Collect&all&values&
belonging&to&the&
key&and&output%

(key, value) 

Provided by the 
programmer 

Provided by the 
programmer 

(key, value) (key, value) 

Se
qu

en
tia

lly
&re

ad
&th

e&
da

ta
&

O
nl
y%
%&&
se
qu

en
tia

l&&
&&r
ea

ds
&

http://www.mmds.org/#book

http://www.mmds.org/#book
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MapReduce: DB Standpoint

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
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MapReduce: Fighting Back

https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext

https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext
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Friends or Foes?

https://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext

https://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext
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Parallel DBMS vs MapReduce
Parallel DBMS 

• Relational data model and schema 

• Declarative query language (SQL) 

• Easily combine operators into complex queries 

• Query optimization, indexing, and physical tuning 

• Streams data from one operator to next without 
blocking
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Parallel DBMS vs MapReduce

MapReduce 

• Data model is file with key-value pairs 

• Pre-loading data is not necessary before processing 

• Easy to write user-defined operators 

• Easily add nodes to the cluster 

• Arguably more scalable, but also needs more nodes
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Similarities

• DBMS can do whatever MapReduce can 

• User-defined functions provides equivalent functionality 
of a Map operation 

• SQL aggregates can be used with user-defined 
functions to achieve Reduce functionality 

• GROUP BY operation in SQL is equivalent to Reshuffle 
in MapReduce
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Application Classes for MR

• Extract-transform-load (ETL) task and “read once” data 
set 

• Complex analytics 

• Semi-structured data 

• Quick-and-dirty analyses 

• Limited budget operations
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DBMS for the Win

• Repetitive record parsing 

• Less compression 

• Less pipeline 

• Weak scheduling 

• No column-oriented storage
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MapReduce Ecosystem

Many extensions to address limitations 

• Capabilities to write directed acyclic graphs of 
MapReduce jobs (e.g., PIG by Yahoo!) 

• Declarative languages (e.g., Hive by Facebook or SQL/
Tenzing by Google) 

• Increased integration of DBMS with MapReduce



Spark: MapReduce Replacement                    

• Tagline: Lightning-fast cluster 
computing 

• Run programs up to 100x 
faster than MapReduce in 
memory or 10x faster on disk 

• Easy to use with support for 
Java, Scala, Python, and R

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg
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Big Data Systems: Recap

• Big Data (4 V’s) 

• Parallel/Distributed DBMS 

• Different architectures 

• Data distribution 

• Query processing 

• MapReduce


