
Big Data Systems
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Review: Course Material to Date
Database
overview  
(1 + 2)

Conceptual data
model — ER

model (3)

Representational
data model —

Relational model
(4)

Relational query
languages — RA &

RC (5 + 6)

SQL — Data definition
& manipulation,

queries, & views (7-13)

SQL application
programming 

 — JDBC / PHP  
(18)

Database design
— normal forms

(14 + 17)

File storage 
(19)

Indexes 
(20 + 21)

Query
processing &
optimization 

(22 + 23)

Transaction
management 

(24+25)

CS 377 [Spring 2017] - Ho

Review: What Has Been Covered
Database
overview  
(1 + 2)

Conceptual data
model — ER

model (3)

Representational
data model —

Relational model
(4)

Relational query
languages — RA &

RC (5 + 6)

SQL — Data definition
& manipulation,

queries, & views (7-11)

SQL application
programming 

 — JDBC / PHP  
(12 & 22)

Database design
— normal forms

(14 + 15)

File storage 
(16)

Indexes 
(17 + 18)

Query
processing &
optimization 

(19 + 20)

Transaction
management 

(21)

What I hope you’ve learned…

• Design a database 
(Requirements -> ER diagram -> Relational model ->
Database normalization)

• Querying a database 
(Relational algebra, calculus, SQL queries)

• Writing applications to use databases 
(JDBC & SQL)

CS 377 [Spring 2017] - Ho

Review: What Has Been Covered
Database
overview  
(1 + 2)

Conceptual data
model — ER

model (3)

Representational
data model —

Relational model
(4)

Relational query
languages — RA &

RC (5 + 6)

SQL — Data definition
& manipulation,

queries, & views (7-11)

SQL application
programming 

 — JDBC / PHP  
(12 & 22)

Database design
— normal forms

(14 + 15)

File storage 
(16)

Indexes 
(17 + 18)

Query
processing &
optimization 

(19 + 20)

Transaction
management 

(21)

What I hope you’ve learned (at a high level)…

• Why some queries run faster on some systems
compared to others

• How to think about optimizing your performance 
(Indexes, SQL Processing & optimization)

• How to achieve ACID 
(Logs & Locks)

naive users
(tellers, agents,

web users)

query processor

storage manager

disk storage
indices

statistical datadata

data dictionary

application
programmers

application
interfaces

application
program

object code

compiler and
linker

buffer manager file manager authorization
and integrity

 manager

transaction
manager

DML compiler
and organizer

query evaluation
engine

DML queries DDL interpreter

application
programs

query
tools

administration
tools

sophisticated
users

(analysts)
database

administrators

use write use use

Review: “Peeking” Under the Hood

• Most aspects of traditional
RDBMS is understood

• Learned enough to be
“dangerous”

• Additional details can be picked
up in courses or on your own

Review: Centralized Database

• Data is located in one place (one server)

• All functions performed by the server

• Query processing

• Transaction management,
concurrency control

• … What if I have 100 TB of data?

CS 377 [Spring 2017] - Ho

Data Never Sleeps

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

CS 377 [Spring 2017] - Ho

Goal of Today’s Lecture

• High-level overview of dealing with “big data”

• What is big data?

• What are different technologies I can use?

• Not meant to be detailed examination of all aspects of
systems covered

CS 377 [Spring 2017] - Ho

4 V’s of Big Data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Motivation

• Single, monolithic DBMS is impractical and expensive

• Improve performance

• Increased availability & reliability

• Potentially lower cost of ownership

• Easier, more economical system expansion

Parallel & Distributed DBs: Overview

• Data partitioned across
multiple disks

• Allows parallel I/O for better
speed-up

• Queries can be run in parallel
with each other

Parallel & Distributed DBs: Overview

• Each processor can work
independently on its own
partition

• Individual relational
operations (e.g., sort, join,
aggregation) can be
executed in parallel

• Concurrency control takes
care of conflicts

CS 377 [Spring 2017] - Ho

Scale-Up vs Scale-Out

• Terminology to measure performance

• Speed-up: using more processors, how much faster will
the task run (assuming same problem size)?

• Scale-up: using more processors, does performance
remain the same as we increase problem size?

• Scale-out: using a larger number of servers, does
performance improve?

CS 377 [Spring 2017] - Ho

Ideal Scenarios

linear speedup

sublinear speedup

resources

sp
ee

d

linear scaleup

sublinear scaleup

problem size

TS
TL

Scale-upSpeed-up

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Issues

• How to distribute the data

• How to optimize the cost of queries

• Data transmission + local processing

• How to perform concurrency control

• How to make system resilient to failures and achieve
atomicity & durability

CS 377 [Spring 2017] - Ho

Parallel vs Distributed

• Parallel DBMS:

• Nodes are physically
close to each other

• Nodes connected via
high-speed LAN

• Communication cost is
small

• Distributed DBMS

• Nodes can be far away

• Nodes connected via
public network

• Communication cost
and problems shouldn’t
be ignored

CS 377 [Spring 2017] - Ho

Parallel Architectures

Figure 17.8 (Database System Concepts)

P

P
M

P

P

P

M M M
P
P
P
P
P

P
P
P
P
P

P
P
P
P
P

(a) shared memory

P

P

P
P

(c) shared nothing (d) hierarchical

PM

P

P

P

P

(b) shared disk

PM

PM

PM

M

M

M

MP

M

M

P

P
M

P

P

P

(a) shared memory

Shared Memory

• Nodes share RAM + disk

• 10-100+ processors

• Easy to use and program

• Expensive to scale — last remaining
cash cow in the hardware industry

PM

P

P

P

P

(b) shared disk

PM

PM

PM

M

Shared Disk

• Nodes share same disk

• Easy fault tolerance & consistency

• Hard to scale past a certain point
— existing deployments typically
have fewer than 10 machines

• Example: Oracle servers use this
paradigm quite a bit

P

P

P
P

(c) shared nothing (d) hierarchical

M

M

MP

M

M

Shared Nothing

• Each instance has its own CPU,
memory, and disk

• Easy to increase capacity

• Hard to ensure consistency

• Most scalable architecture but
difficult to administer & tune

site A site C

site B

communication
via network

network

Distributed Databases

• Data spread over multiple
machine

• Network interconnects the
machines

• Similar to shared nothing
architecture but larger
communication cost

How to Distribute the Data?

• Replication: system maintains
multiple copies of data

• (PRO) Improves availability,
parallelism, and reduced
data transfer

• (CON) Increased cost of
updates, complexity of
concurrency control

How to Distribute the Data?

• Fragmentation: relation
is partitioned into several
fragments stored at
distinct sites

• Combination of both
replication &
fragmentation

CS 377 [Spring 2017] - Ho

Fragmentation Strategies

• Horizontal partition: each tuple is assigned to one or
more fragments

• Vertical partition: relation is split into smaller schemas
each with a common candidate key to ensure lossless
join

CS 377 [Spring 2017] - Ho

Horizontal Partition

https://docs.oracle.com/cd/B28359_01/server.111/b32024/partition.htm

https://docs.oracle.com/cd/B28359_01/server.111/b32024/partition.htm

CS 377 [Spring 2017] - Ho

Example: Horizontal Partition

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=�Hillside��(account)

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=�Valleyview��(account)
http://www.db-book.com/

http://www.db-book.com/

CS 377 [Spring 2017] - Ho

Example: Vertical Partition

http://www.db-book.com/

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info)

http://www.db-book.com/

CS 377 [Spring 2017] - Ho

Example: Replication & Fragmentation

Figure 25.1 from FoDS book

CS 377 [Spring 2017] - Ho

Query Processing

• Single, centralized system — primary criterion for cost is
just number of disk accesses

• Distributed system

• Cost of data transmission over network

• Potential gain in performance from having several sites
process parts of the query

CS 377 [Spring 2017] - Ho

Review: Centralized DB Query

Given two relations R(A, B) and S(B,C) with no indexes,
how do we compute the following?

• Selection:

• Group by:

�A=123(R)

AFSUM(B)(R)

Linear search: scan file R and search for records A=123

Sort/hash for aggregation and apply sum

CS 377 [Spring 2017] - Ho

Review: Centralized DB Query

Given two relations R(A, B) and S(B,C) with no indexes,
how do we compute the following?

• Join: R ⇤ S

• Nested block join
• Hash join by creating hash index on B for

smaller relation
• Sort-merge join: sort on B for both relations

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following?

• Selection: �A=123(R)

Relatively straightforward — each
machine scans its own partition

and applies the condition

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following?

• Selection:

For hash and range partitions, relatively easy —
complication occurs for round robin which needs to

aggregate same values together

AFSUM(B)(R)

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following?

• Selection: AFSUM(B)(R)

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following?

• Selection:

For hash and range partitions, relatively easy —
complication occurs for round robin which needs to

aggregate same values together

AFSUM(B)(R)

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Query

• Join:

• Strategy 1: Transfer both R and S into one central
location and join (very expensive from sending)

• Strategy 2: Perform local join by just sending the
joining column of one relation, S, to where the other
one is located, R (minimizes data transmission)  

R ⇤ S

CS 377 [Spring 2017] - Ho

Example: Distributed Join

A B
1 2
3 2

B C
4 7
4 9

Node 1

R1 S1
A B
5 4
7 6

B C
2 3
2 9

Node 2

R2 S2
A B
8 6
9 6

B C
6 7
6 9

Node 3

R3 S3

A B
1 2
3 2

B C
2 3
2 9

Node 1

R1 S2
A B
5 4

B C
4 7
4 9

Node 2

R2’ S1
A B
7 6
8 6
9 6

B C
6 7
6 9

Node 3

R2’ + R3 S3

R1 S2
S1 R2 S3

CS 377 [Spring 2017] - Ho

Example: Distributed Join (2)
A B C
1 2 3
1 2 9
3 2 3
3 2 9

Node 1

A B C
5 4 7
5 4 9

Node 2

A B C
7 6 7
7 6 9
8 6 7
… … …

Node 3

combine tuples for final output

CS 377 [Spring 2017] - Ho

Distributed Transactions & Recovery
• Dealing with multiple copies of data items — how to

maintain consistency amongst the copies?

• Failure of individual sites — what to do when one site fails
and then rejoins the system later?

• Failure of communication issues

• Distributed commit — what to do if some nodes fail
during commit process?

• Distributed deadlock

CS 377 [Spring 2017] - Ho

Parallel & Distributed DBs: Properties

• Advantages

• Data sharing

• Reliability and
availability

• Improved query
processing speed

• Disadvantages

• May increase
processing overhead

• Harder to ensure ACID
guarantees

• More database design
issues 

CS 377 [Spring 2017] - Ho

What if I’m looking to manipulate diverse data?
For example, what if I want to extract links from

webpages and aggregate them by target
document? Should I do this all in SQL?

CS 377 [Spring 2017] - Ho

MapReduce

• Initially developed by Jeffrey Dean & Sanjay Ghemawat at
Google [2004]

• Open source implementation: Apache Hadoop

• High-level programming model and implementation for
large-scale parallel data processing

• Designed to simplify the task of writing parallel programs

CS 377 [Spring 2017] - Ho

MapReduce: Overview

• Read partitioned data

• Map: extract something you care about from each record

• Group by key: sort and shuffle (done by the system)

• Reduce: aggregate, summarize, filter, or transform

• Write the result
Outline stays the same, map and reduce should be

tailored to the problem

CS 377 [Spring 2017] - Ho

MapReduce: Map Step

v"k"

k" v"

k" v"

map$
v"k"

v"k"

…$

k" v"
map$

Input
key-value pairs

Intermediate
key-value pairs

…$

k" v"

http://www.mmds.org/#book

http://www.mmds.org/#book

CS 377 [Spring 2017] - Ho

MapReduce: Reduce Step

k" v"

…"

k" v"

k" v"

k" v"

Intermediate
key-value pairs

Group"
by"key"

reduce"

reduce"

k" v"

k" v"

k" v"

…"

k" v"

…"

k" v"

k" v" v"

v" v"

Key-value groups
Output
key-value pairs

http://www.mmds.org/#book

http://www.mmds.org/#book

Example: Word Counting

• We have a huge text
document (~ 1 million words)

• Task: Count the number of
times each distinct word
appears in the file

CS 377 [Spring 2017] - Ho

Example: Word Counting

• Traditional DBMS

• Load document words into a table

• SQL query: 
SELECT count(*)  
FROM document 
GROUP BY word

CS 377 [Spring 2017] - Ho

Example: Word Counting (MapReduce)

The crew of the space
shuttle Endeavor recently
re turned to Ear th as
ambassadors, harbingers of
a new era o f space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing
-- is what we're going to
need ……………………..

Big document

(The,&1)&
(crew,&1)&
(of,&1)&
(the,&1)&

(space,&1)&
(shuttle,&1)&

(Endeavor,&1)&
(recently,&1)&

….&

(crew,&1)&
(crew,&1)&
(space,&1)&
(the,&1)&
(the,&1)&
(the,&1)&

(shuttle,&1)&
(recently,&1)&

…&

(crew,&2)&
(space,&1)&
(the,&3)&

(shuttle,&1)&
(recently,&1)&

…&

MAP:%
Read&input&and&
produces&a&set&of&
key@value&pairs%

Group%by%key:%
Collect&all&pairs&
with&same&key%

Reduce:%
Collect&all&values&
belonging&to&the&
key&and&output%

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value) (key, value)

Se
qu

en
tia

lly
&re

ad
&th

e&
da

ta
&

O
nl
y%
%&&
se
qu

en
tia

l&&
&&r
ea

ds
&

http://www.mmds.org/#book

http://www.mmds.org/#book

CS 377 [Spring 2017] - Ho

MapReduce: DB Standpoint

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

CS 377 [Spring 2017] - Ho

MapReduce: Fighting Back

https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext

https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext

CS 377 [Spring 2017] - Ho

Friends or Foes?

https://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext

https://cacm.acm.org/magazines/2010/1/55743-mapreduce-and-parallel-dbmss-friends-or-foes/fulltext

CS 377 [Spring 2017] - Ho

Parallel DBMS vs MapReduce
Parallel DBMS

• Relational data model and schema

• Declarative query language (SQL)

• Easily combine operators into complex queries

• Query optimization, indexing, and physical tuning

• Streams data from one operator to next without
blocking

CS 377 [Spring 2017] - Ho

Parallel DBMS vs MapReduce

MapReduce

• Data model is file with key-value pairs

• Pre-loading data is not necessary before processing

• Easy to write user-defined operators

• Easily add nodes to the cluster

• Arguably more scalable, but also needs more nodes

CS 377 [Spring 2017] - Ho

Similarities

• DBMS can do whatever MapReduce can

• User-defined functions provides equivalent functionality
of a Map operation

• SQL aggregates can be used with user-defined
functions to achieve Reduce functionality

• GROUP BY operation in SQL is equivalent to Reshuffle
in MapReduce

CS 377 [Spring 2017] - Ho

Application Classes for MR

• Extract-transform-load (ETL) task and “read once” data
set

• Complex analytics

• Semi-structured data

• Quick-and-dirty analyses

• Limited budget operations

CS 377 [Spring 2017] - Ho

DBMS for the Win

• Repetitive record parsing

• Less compression

• Less pipeline

• Weak scheduling

• No column-oriented storage

CS 377 [Spring 2017] - Ho

MapReduce Ecosystem

Many extensions to address limitations

• Capabilities to write directed acyclic graphs of
MapReduce jobs (e.g., PIG by Yahoo!)

• Declarative languages (e.g., Hive by Facebook or SQL/
Tenzing by Google)

• Increased integration of DBMS with MapReduce

Spark: MapReduce Replacement

• Tagline: Lightning-fast cluster
computing

• Run programs up to 100x
faster than MapReduce in
memory or 10x faster on disk

• Easy to use with support for
Java, Scala, Python, and R

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

CS 377 [Spring 2017] - Ho

Big Data Systems: Recap

• Big Data (4 V’s)

• Parallel/Distributed DBMS

• Different architectures

• Data distribution

• Query processing

• MapReduce

