Transaction Management &
Concurrency Control

CS 377: Database Systems

Review: Database Properties

. Scalab”lty . Data Storgg.e, Iﬂdexmg &
query optimization

- Concurrency
> Today & next class
- Persistency

+ Security - Beyond scope of this class

-+ Data independence «— Metadata & SQL views

CS 377 [Spring 2017] - Ho

Review: Disk vs Main Memory

- Disk - Main memory (RAM)
- Slow — sequential - Fast
acCcess

- \Volatlle — data can
- Durable — once on be lost
disk, data is safe
-+ EXpensive
- Cheap

CS 377 [Spring 2017] - Ho

Memory Model

1. Local: Each process in a DBMS
nas its own local memory, where

it stores values that only it “sees” local Global
Main
2. Global: Each process can read/ MTF:*A‘\?\;IV) 1 2
write to/from shared data in main
memaory Disk 3

3. Disk: Global memory can be
read from / write to disk

How do we effectively utilize both to ensure certain
guarantees”

Transaction: Motivation

- ATM where a customer has some amount of money in
his checking account and wants to withdraw $25

READ(A);

CHECK(A > 25);

PAY(25);

A=A - D5 Database crash! WWhat happens”?
WRITE(A); What if wife also withdraws money

before the money

CS 377 [Spring 2017] - Ho

IS deducted?

Transaction: Motivation

Inconsistencies can occur when:
-+ System crashes, user aborts, ...
Interleaving actions of different user programs

-+ Want to provide the users an illusion of a single-user
system

- Why not just allow one user at a time”?

CS 377 [Spring 2017] - Ho

Transaction: Basic Definition

- A transaction (TXN) is a sequence of one or more
operations (reads or writes) which reflects a single real-
world transition

- XN is a collection of operations that form a single atomic
logical unit of execution

- [XNs must leave the database in a consistent state — |t
either happened completely or not at all

CS 377 [Spring 2017] - Ho

Transaction: eExample

° Tr a n Sfe r m O n ey amazon student College Student? Get 15

Hello. Sign in -\
Departments ~ Your Amazon.com Today's Deals Gift Cards & Registry Sell Help Account & Lists ~ Orders Try Prime ~ e Cart

— Current Total: $326.90 Your order qualifies for FREE Shipping
® Get a upon approval for the Savings: -$50.00 Choose this option at checkout. See details
Cost After $ 276.90

¥y Amazon Rewards Visa Card

Savings: o
9 Subtotal (3 items): $326.90
Shopplng Cart This order contains a gift
Price Quantity
Proceed to checkout
Assassin's Creed The Ezio Collection - PlayStation 4 by Ubisoft $29.99 K ¢
Video Game or
I"_S,ka o Sign in to turn on 1-Click ordering.
Eligible for FREE Shipping
. This is a gift Learn more
Delete Save for later Estimate your shipping and tax v
- i i 1 s
FlFAG17 PlayStation 4 by Electronic Arts $38.94 Customers Who Bought ltems in Your
Video Game Recent History Also Bought
In Stock
Eligible for FREE Shipping Mortal Kombat XL...
This is a gift Learn more Warner Home Video...
Delete Save for later FR Ay 324
PlayStation 4
. i R | See all buying options |
PlayStation 4 Slim 500GB Console - Uncharted 4 Bundle by SONY $257.97 U i —
“ IVidSeU iame Watch Dogs 2...
I n Stocl Ubisoft
Eligible for FREE Shipping AR 445
~ This is a gift Learn more PlayStation 4

Delete Save for later

- Register for a class
walitlist or signed up

| See all buying options |

Call of Duty: Infinite...
Activision

Transaction: Operations

- For purpose of class, assume only two operations
- READ(X) - retrieval

- WRITE(X) - insert, delete, update

- In reality — users can do much more and databases
have more to deal with

CS 377 [Spring 2017] - Ho

Transaction: ACID

Atomicity: Isolation:
Transactions Transactions
are all or do not affect

glejigligle Ll s se each other

CS 377 [Spring 2017] - Ho

Durability:
Written data
will not be lost

Transaction: ACID

- Atomicity: a transaction is an atomic unit of data
processing

- All actions in transaction happen or none happen

-+ Consistency: a database in a consistent state will remain
IN a consistent state after the transaction

-+ Any data written to the database must be valid
according to constraints, cascades, triggers, etc.

CS 377 [Spring 2017] - Ho

Transaction: ACID

Isolation: the execution of one transaction iIs Isolated from
other transactions

Execution of a transaction should not be interfered with
oy other transactions executing at same time

Durability: it a transaction commits, its effects must
oersist

-+ Changes should not be lost because of possible failure
occurring immediately after transaction

CS 377 [Spring 2017] - Ho

Transaction: ACID Challenges

- Need to handle failures (e.g., power outages, bad
network connection)

-+ Users may abort the program: need to “rolloack the
changes”

- Many users executing concurrently

- Maintain ACID with performance!

CS 377 [Spring 2017] - Ho

Transaction: Is ACID Good?

- Extremely important and
successful paradigm

- Many debates over ACID —
both historically and currently

- Many newer “NoSQL” DBMS
relax ACID (more on this later)

Transaction: Management

- Recovery (Atomicity & Durabillity)

+ Ensures database is fault tolerant, and not corrupted by
software, system or media

- 24X7 access to critical data
» Concurrency control (Isolation)

+ Provide correct and highly available data access in the
presence of access by many users

- Rely on application program for consistency

CS 377 [Spring 2017] - Ho

Transaction: Terminology

- Commit: successful completion of a transaction — operations

of transaction are guaranteed to be performed on the data in
the database

- Abort: unsuccesstul termination of a transaction —operations
of transaction are guaranteed to not be performed on the
data in the database

- Rollback: process of undoing updates made by operations of
a transaction

+ Redo: process of performing the updates made by the
operations of a transaction again

CS 377 [Spring 2017] - Ho

Transaction: SQL

“Ad-hoc” SQL: Each statement = one transaction

Multiple statements can be grouped together as a
transaction

Example: Transfer money between two accounts

START TRANSACTION
UPDATE Account SET amount = amount — 100
WHERE name = ‘Bob’
UPDATE Account SET amount = amount + 100
WHERE name = ‘Alice’

COMMIT

CS 377 [Spring 2017] - Ho

Transaction: SQL

- A new transaction starts with the BEGIN command (or
begins Implicitly when a statement is executed)

- Transaction stops with either COMMIT, ABORT,
ROLLBACK

- COMMIT means all changes are saved
- ABORT means all changes are undone

- ROLLBACK undoes transactions not already saved

CS 377 [Spring 2017] - Ho

Recovery

- Essential for reliable DBMS usage

- DBMS may experience crashes (e.g., power outages,
etc.)

- Individual TXNs may be aborted (e.q., by user)

- How to make sure TXNs are either durably stored in full
or not at all?

CS 377 [Spring 2017] - Ho

Recovery: Protection

INSERT INTO SmallProduct(hame, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99 Crash
or
DELETE Product Abort
WHERE price <=0.99

What goes wrong?

CS 377 [Spring 2017] - Ho

Recovery: Protection

D

START TRANSACTION
INSE

2T INTO SmallProduct(name, price)

SELECT pname, price

FROM Product
WHERE price <= 0.99

-

—- I E Product

WHERE price <=0.99

COMMIT OR ROLLBACK

Now we're okay — how do we achieve this”?

CS 377 [Spring 2017] - Ho

Recovery: System Log

|[dea: Keep a system log and perform recovering when
necessary

- Separate and non-volatile (stable) storage that is
periodically backed up

-+ Contains log records that contains information about
an operation performed by transaction

Each transaction is assigned a unique transaction ID to
different themselves

CS 377 [Spring 2017] - Ho

. 0g: Basic ldea

+ Record information for every update
+ Sequential writes to log
- Minimal information written to log
-+ Used by all modern systems
- Audit trail & efficiency reasons
- Alternative to logging is shadow paging: make copies of

pages and make changes to these copies — only on commit
are they made visible to others

CS 377 [Spring 2017] - Ho

Log: Memory Model

Local Global

Main Memory I_Og
(RAM)

Disk t

Assume log Is on stable disk storage — spans
both main memory and disk and every so often
will “flush” (write) to disk

CS 377 [Spring 2017] - Ho

Log: Why Bother”?

- Can’t we just write transaction to disk only once whole
transaction is completed”?

- With unlimited memory and time, this could work...
- What if there isn’t enough space for a full transaction?

- What if one transaction takes very long?

CS 377 [Spring 2017] - Ho

Write Ahead Logging (WAL)

- All modifications are written to a log before they are
applied to database

—ach update is logged before the corresponding data
Dage goes to storage —> atomicity

- Must write all log records for a TXN before commit —>
durabllity

CS 377 [Spring 2017] - Ho

WAL: Pictorially

T: R(A), W(A)

T >@ Log
@ Main Memory

o
A=0
Data on Disk Log on Disk

CS 377 [Spring 2017] - Ho

WAL: Pictorially

T:R(A), W(A) .

T > Log
@ Main Memory

o
A=0
Data on Disk Log on Disk

CS 377 [Spring 2017] - Ho

WAL: Pictorially

T:R(A), W(A) .

T > |
@ Main Memory

o
A=0
Data on Disk Log on Disk

CS 377 [Spring 2017] - Ho

WAL: Pictorially

T: R(A), W(A)

T =2
Main Memory

A: 021

A1 i
Data on Disk Log on Disk

CS 377 [Spring 2017] - Ho

First write to log on
disk, then update
data on disk

Undo Logging

|dea: undo operations for uncommitted transactions to go back
to original state of database

- New transaction begins — add [start, T] to the log

- Read data — do nothing

- Write data — add [write, T, X, old_value], after successful
write to log, update X with new value

- Complete transaction — add [commit, T] to log

- Abort transaction — add [abort, T] to log

CS 377 [Spring 2017] - Ho

Example: Undo Logging

T1: Read (A, t);

t<—tx2;

Write(A, 1); Main Memory

Read (B, 1);

t<—tx2; -
Write(B, t);

—

A=8 B=8

Data on Disk

Log on Disk

CS 377 [Spring 2017] - Ho

Example: Undo Logging

T1: Read (A, t);

t<— tx2; @

Write(A, t); Main Memory

Read (B, 1);

t<—tx2; -
Write(B, t);

<Start, T1>

—

A=8 B=8

Data on Disk

Log on Disk

CS 377 [Spring 2017] - Ho

Example: Undo Logging

T1: Read (A, t);

t<—tx2; @

Write(A, t); Main Memory
Read (B, 1);

t<— tx2;

Write(B, 1);

If crash occurs now, we
can check the log and
roll back to the last Data on Disk Log on Disk
known state and recover
A=8,B =238l

CS 377 [Spring 2017] - Ho

Example: Undo Logging

T1;

Read (A, 1);
t<— tXx?2;
Write(A, t);
Read (B, t);
t<— tXx?2;
Write(B, 1);

<Start, T1>

I E——
<Write, T1, A, 8>

F—
<Write, T1, B, 8>

A=8

Data on Disk

Log on Disk

CS 377 [Spring 2017] - Ho

Example: Undo Logging

T1: Read (A, t);
t<— tx2;
Write(A, 1);
Read (B, 1);
t<— tx2;
Write(B, t);

<Write, T1, B, 8>

. R
Data on Disk <Commit, T1>

CS 377 [Spring 2017] - Ho

Redo Logging

ldea: save disk I/Os by deferring data changes or do the
changes for committed transaction

- New transaction begins — add [start, T] to the log

- Read data — do nothing

- Write data — add [write, T, X, new_value], after successful
write to log, update X with new value

- Complete transaction — add [commit, T] to log

- Abort transaction — add [abort, T] to log

CS 377 [Spring 2017] - Ho

Checkpoints

Log grows infinitely — take checkpoints
to reduce amount of processing

Periodically

Do not accept new transactions and
wait for active ones to finish

Write “checkpoint” record to disk

Flush all log records and resume
transaction processing

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

L.ogging Summary

- WAL and recovery protocol are used to

-+ Undo actions of aborted transactions

-+ Restore the system to a consistent state after a crash
- Helps with atomicity and durability

- But only half the story ...

CS 377 [Spring 2017] - Ho

Concurrent Executions

Multiple transactions should be allowed to run
concurrently in the system

Increased processor and disk utilization — better
transaction throughput

Reduced average response time for transactions

But, interleaving transactions to ensure isolation and
handling system crashes are the hard part!

CS 377 [Spring 2017] - Ho

Example: Concurrent Executions

T1: START TRANSACTION
UPDATE Accounts

SET Amt = Amt + 100
NI 12: START TRANSACTION
VHERE Name = "Alice UPDATE Accounts
SET Amt = Amt * 1.06
UPDATE Accounts
SET Amt = Amt - 100 COMMIT
WHERE Name = ‘Bob’
COMMIT
Transaction 1: Bob Transaction 2: Bank pays
transfers money to Alice iNnterest for all accounts

CS 377 [Spring 2017] - Ho

Example: Serial Executions

Scenario 1:

T, |Alice+=100| Bob-=100

T, Alice *=1.06| Bob *=1.06
Tim;

Scenario 2:

T Alice += 100 | Bob -=100

T, Alice *=1.06| Bob *=1.06

Time
Either scenario could occur in DBMS

CS 377 [Spring 2017] - Ho

Example: Concurrent Executions

Scenario 3: Interleave TXNS

T, Alice += 100 Bob -= 100

T, |Alice *=1.06 Bob *=1.06

>
Time

s this okay”? Does the result look like what would
occur If we only ran in serial”?

CS 377 [Spring 2017] - Ho

Interleaving Transactions

- Why bother? Interleaving might lead to anomalous
outcomes

- Individual transactions might lbe slow — should other
users wait for this one transaction to finish?

-+ Disk access may be slow — let some TXNs use CPUs
while others access disk

his can lead to large differences in database
performance

CS 377 [Spring 2017] - Ho

Schedule

A schedule S of n transactions T+, To, ..., This an
ordering of the operations of the transactions

For each transaction Ti, the operations in T in S must
appear in the same order in which they occur in T;

- Operations from other transactions T; can be
interleaved with operations of TiIn S

-+ Schedule represents an actual or potential execution
sequence of the transactions

CS 377 [Spring 2017] - Ho

Example: Schedule

Initial DB state: A =25, B = 25

1: Read(A); 2. Read(A);
A <— A+100; A<— AXZ;
Write(A); Write(A);
Read(B); Read(B);
B<— B+ 100:; B<— BxZ2;
Write(B); Write(B);

CS 377 [Spring 2017] - Ho

Example: Serial Schedule A

T

To

Read(A);
A<—A+100; A=125
Write(A);

Read(B);
B<—B+100; B = 125
Write(B);

Read(A);
A<— AX2;
Write(A);
Read(B);
B<— Bx?2;
Write(B);

A =250

B =

CS 377 [Spring 2017] - Ho

250

Example: Serial Schedule B

T+ To
Read(A);
A<— AX2;
Write(A);
Read(B);
B<— Bx?2;
Write(B);
Read(A);
A<—A+100; A =150
Write(A);
Read(B);
B<—B+100; B =150
Write(B);

CS 377 [Spring 2017] - Ho

50

50

Example: Interleaved Schedule C

T+ To
Read(A);
A<—A+100; A =125
Write(A);
Read(A);
A<—Ax2; A=250
Write(A);
Read(B); Same result as
B<— B+100; B=125 if | ran T+ first
Write(B); then Ta!
Read(B);
B<—Bx2: B =250
Write(B);

CS 377 [Spring 2017] - Ho

Example: Interleaved Schedule D

T4 To
Read(A);
A<—A+100; A= 125
Write(A);
Read(A);
A<—Ax2;, A=250
Write(A);
Read(B);
B<— Bx2; B <+ 50
Write(B);
Read(B); Different than
B<—B+100; B =150 L L
Write(B): running in serial

not serializable

CS 377 [Spring 2017] - Ho

Serializability

- Want schedules that are "good” regardless of
Initial state
- [ransaction semantics
“Equivalent” to a serial schedule
- Only look at order of read and writes

Note: If each transaction preserves consistency, every
serializable schedule preserves consistency

CS 377 [Spring 2017] - Ho

Interleaving TXNs: What goes wrong?

- Various anomalies which break isolation / serializability

- Occur because of / with certain “conflicts” between
INterleaved transaction

- Note that conflicts can occur without causing anomalies

CS 377 [Spring 2017] - Ho

Schedules: “Good” vs “Bad’

Serial Schedule:

T, [RA)

W(A)

R(B)

W(B)

R(A)

x>

Interleaved Schedules:
Tl R(A) || W(A) R(B) W(B)
Tz R(A) || W(A) R(B) || W(B)
T1 R(A) || W(A) R(B) W(B)
T, RA) || wia) || rR@B) || w(B)

Want to develop ways to determine “good” vs

“bad” schedules

CS 377 [Spring 2017] - Ho

Conflict

Pairs of consecutive actions such that if their order is
iInterchanged, the lbehavior of at least one of the
transactions can change

Involve the same database element

- At least one write

- Three types of conflict: read-write conflicts (RW), write-
read conflicts (WR), write-write conflicts (WW)

CS 377 [Spring 2017] - Ho

Example: Read-Write Conflict

T

To

A =

“Unrepe
- 11 ge

A =

10

BEGIN
Read(A);

atable read”
ts different /
Inconsistent values!

20

Read(A);
COMMIT

BEGIN
Read(A);
A<— A*2;
Write(A);
COMMIT;

10
20

CS 377 [Spring 2017] - Ho

Example: Write-Read Conflict

CS 377 [Spring 2017] - Ho

T+ To
BEGIN
10 Read(A);
12 A<—A+72
Write(A);
BEGIN
Read(d); A =12
A<— A*2;
Write(d); A =24
COMMIT:
A “dirty read” (reading ungcommitted
data) means 12’s result is|based on
obsolete-/inconsistent value!

Example: Write-Write Conflict

T

BEGIN
A=10 Write(A);

Bi=20 Write(B);
COMMIT

Overwri
results in

To

BEGIN
Write(d); A =
WriteB); B — A
COMMIT;

INg uncommitted

2®0,
00

data

partially-lost update and

shedule

not equivalent to any serial sc

CS 377 [Spring 2017]

- Ho

Conflict: Example

Ty

R(A)

W(A)

T, W-R Conﬂic}\< R(A) || W(A)

W-W Conflict

R(B)

W(B)

CS 377 [Spring 2017] - Ho

>

Conflict: Example

All “conflicts”!

CS 377 [Spring 2017] - Ho

Serializability Definitions

-S4, So are conflict equivalent schedules if S can be
transformed into Sz by a series of swaps on Non-
conflicting actions

Every pair of conflicting actions of two TXNs are
ordered the same way

- A schedule is conflict serializable If it is conflict
equivalent to some serial schedule

Maintains consistency & isolation!

CS 377 [Spring 2017] - Ho

Schedules: “Good” vs “Bad’

Serial Schedule: Interleaved Schedules:
T, | RA) || WA) || R(B) || W(B) T, | RA) || WA R(B) || W(B)
T, R(A) || W(A) IR(B) W(B) T, R(A) || W(A)

—

x>

T, RA) || w(a) || R®) || w(B)

Conflict serializability provides us with a notion
of “good” vs “bad” schedules

CS 377 [Spring 2017] - Ho

Example: Not contflict serializable

T+ To

BEGIN

Read(A);

Write(A); |

BEGIN Conflict 1

Read(A);
Write(A);
Read(B);
Write(B);
COMMIT; Caonflict 2

Read(B);

Write(B);

COMMIT

Both conflicts will not happen in this order for a serial schedule!

CS 377 [Spring 2017] - Ho

Example: Serializable vs Conflict Serializable

- Equivalent to T4, To, T3, SO
serializable

+ Not conflict equivalent to T+, BEGIN
[3, T3 SO not conflict Write(A);
serializable COMMIT
Write(A)
- Conflict serializable => COMMIT
serializable but not the other BEGIN

Write(A);
|
way around! COMMIT

Precedence (Serialization) Graph

- Graph with directed edges
- Nodes are transactions in S

- Edge is created from Ti to T; if one of the operations in
Ti appears before a conflicting operation in T

-+ Schedule is serializable if and only if precedence graph
has no cycles!

CS 377 [Spring 2017] - Ho

Example: Precedence Graph

Serial Schedule;

T

T, NR(A W(A) \R(B

CS 377 [Spring 2017] - Ho

Example: Precedence Graph

Interleaved Schedule 1:

T
T,

R(A)

W(A)

CS 377 [Spring 2017] - Ho

Example: Precedence Graph

Interleaved Schedule 2:

Ty
1P

R(A)

W(A)

CS 377 [Spring 2017] - Ho

Example: Precedence Graph

IE To
Read(A);
A<— A+ 100;
Write(A);
Read(A);

A<— AXx2; —
Write(A); 11 Cam— :

2

Read(B);
B<— Bx2;
Write(B); A non-conflict serializable
Read(B); schedule has a cycle!
B<— B+ 100;
Write(B);

CS 377 [Spring 2017] - Ho

Exercise: Serializability

- Consider the schedule given in the table below of three
transactions T4, T2, and T3

time 12 t2 ty La s I t7 tg tg Lo L1
T R(A) W(A) R(C) W(C)

T, R(B) W(B)

T; | R(A) | W(A) R(B) | W(B) | R(C) | W(C)

Draw the precedence graph

IS this schedule serializable?

CS 377 [Spring 2017] - Ho

Concurrency

- Schedules that are conflict serializable means that we are
able to preserve isolation

How can we guarantee conlflict serializabllity in practice?

- What Is the standard paradigm for concurrent
programming’?

I E ‘ Mutex <=> Lock <=> Semaphore

CS 377 [Spring 2017] - Ho

Locks: Basic Idea

Each time you want to R/W an
object, obtain a lock to secure
permission to R/W object

BEGIN
- When completed, unlock

removes permissions from item |Vt denied since
Unlock(A)

| | commit haslock
Ensure transactions remain Read(A)
isolated and follow serializable Write(A)

Unlock(A)
COMMIT

schedules

Basic Locking

- Two lock modes: shared (read),
exclusive (write)

If a transaction wants to read Shared Exclusive
an object, it must first

request a shared lock on that
object Exclusive

Shared

f a transaction wants to modity
an object, it must first request Does this work?
an exclusive lock on that object

Example: Basic Locking Insufficient

A =
A=1
A=1
B =2
B =2

B
00
05

00
05

T+

Exclusive-Lock(A);
Read(A);
A<— A+ 5;
Write(A);
Unlock(A);

Exclusive-Lock(B);
Read(B);
B<— B+5;
Write(B);
Unlock(B)

To

Exclusive-Lock(A);
Read(A);

=100

A<— Ax2;
Write(A); —
Unlock(A);

Exclusive-Lock(B);

- 210
=100

Read(B);
B<— Bx?2;

Write(B); T

Unlock(B)

conflict-serializable

- 200

CS 377 [Spring 2017] - Ho

Two-Phase Locking (2PL)

- All lock requests precede all
unlock requests

Phase 1: obtain locks | —
acquisition
phase

release phase

Phase 2: release locks # locks held

- Guarantees conflict time
serializability

Does not prevent cascading aborts (where aborting one
transaction causes one or more other transactions to abort)

Example: Cascading Abort

T4 To
Exclusive-Lock(A);
Read(A);
A<— A+ 5;
Write(A);
Exclusive-Lock(B)
Unlock(A);
Exclusive-Lock(A);
Read(A);
: A<— AX2;
cannot obtain - Write(A);
: xclusive-Lock(B), >
lock on B until T+ Unlock(A);
unlocks Read(B);
B<— Bx2;
Write(B);
Unlock(B)
Read(B);
B<— B+5; :
write®); ~BUt what if we abort here”
Unlock(B)

CS 377 [Spring 2017] - Ho

Strict Two-Phase Locking (Strict 2PL)

+ Only release locks at i locke Lock

commit / abort time the TXN Acquisition\ Lock Release
has \\ On TXN commit!
: . AN
- A transaction that writes AN

O locks

will block all other readers
until the transaction Time K 5

. Strict 2PL
commits or aborts e

Strict 2PL: Properties

- Strict 2PL only allows conflict serializable schedules
- Maintains serializable
- Maintains isolation & consistency

- Used in many commercial DBMS systems

- Oracle is notable exception
What could go wrong?

CS 377 [Spring 2017] - Ho

Example: Strict PL

T4 requests shared
lock on A to read it

T
P

1 requests exclusive
lock on B to write

S(A)

R(A) X(B)| | waiting...

S(B)| | R(B) || X(A) |

Waiting...

T2 requests shared DEADLOCK!
lock on B to read it

T2 requests exclusive
lock on A to write

CS 377 [Spring 2017] - Ho

Deadlock

-+ Deadlock: Cycle of transactions waiting for locks to be
released by each other

-+ Two ways of dealing with deadlocks
+ Deadlock prevention

- Deadlock detection

CS 377 [Spring 2017] - Ho

Deadlock Protocols

-+ Deadlock prevention

- Rigorous locking protocol — acquire all locks in
advance

- Timeout — walts some amount of time then roll back
- Deadlock detection
- Construct waits-for graph (edge for any transaction

waiting for another transaction) and periodically check
for cycles

CS 377 [Spring 2017] - Ho

Transactions & Concurrency: Recap

+ ACID
- Logging
- WAL
+ Checkpoints
+ Conflict Serializable Schedules

+ Locking: Basic, 2PL, Strict 2PL

- Deadlock

CS 377 [Spring 2017] - Ho

