
Transaction Management &
Concurrency Control
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Review: Database Properties

• Scalability

• Concurrency

• Persistency

• Security

• Data independence Metadata & SQL views

Data storage, indexing &
query optimization

Beyond scope of this class

Today & next class

CS 377 [Spring 2017] - Ho

Review: Disk vs Main Memory

• Disk

• Slow — sequential
access

• Durable — once on
disk, data is safe

• Cheap

• Main memory (RAM)

• Fast

• Volatile — data can
be lost

• Expensive

•  

Local	 Global	

Main	
Memory	
(RAM)	

Disk	

1 2

3

Memory Model
1. Local: Each process in a DBMS

has its own local memory, where
it stores values that only it “sees”

2. Global: Each process can read/
write to/from shared data in main
memory

3. Disk: Global memory can be
read from / write to disk

How do we effectively utilize both to ensure certain
guarantees?

CS 377 [Spring 2017] - Ho

Transaction: Motivation

• ATM where a customer has some amount of money in
his checking account and wants to withdraw $25 
 
READ(A);  
CHECK(A > 25);  
PAY(25); 
A = A - 25;  
WRITE(A);

Database crash! What happens?
What if wife also withdraws money

before the money is deducted?

CS 377 [Spring 2017] - Ho

Transaction: Motivation

• Inconsistencies can occur when:

• System crashes, user aborts, …

• Interleaving actions of different user programs

• Want to provide the users an illusion of a single-user
system

• Why not just allow one user at a time?

CS 377 [Spring 2017] - Ho

Transaction: Basic Definition

• A transaction (TXN) is a sequence of one or more
operations (reads or writes) which reflects a single real-
world transition

• TXN is a collection of operations that form a single atomic
logical unit of execution

• TXNs must leave the database in a consistent state — it
either happened completely or not at all

Transaction: Example

• Transfer money
between accounts

• Purchase a group of
products

• Register for a class
(waitlist or signed up)

CS 377 [Spring 2017] - Ho

Transaction: Operations

• For purpose of class, assume only two operations

• READ(X) - retrieval

• WRITE(X) - insert, delete, update

• In reality — users can do much more and databases
have more to deal with

CS 377 [Spring 2017] - Ho

Transaction: ACID

Atomicity:
Transactions

are all or
nothing

Consistency:
Only valid

data is saved

Isolation:
Transactions
do not affect
each other

Durability:
Written data

will not be lost

CS 377 [Spring 2017] - Ho

Transaction: ACID

• Atomicity: a transaction is an atomic unit of data
processing

• All actions in transaction happen or none happen

• Consistency: a database in a consistent state will remain
in a consistent state after the transaction

• Any data written to the database must be valid
according to constraints, cascades, triggers, etc.

CS 377 [Spring 2017] - Ho

Transaction: ACID

• Isolation: the execution of one transaction is isolated from
other transactions

• Execution of a transaction should not be interfered with
by other transactions executing at same time

• Durability: if a transaction commits, its effects must
persist

• Changes should not be lost because of possible failure
occurring immediately after transaction

CS 377 [Spring 2017] - Ho

Transaction: ACID Challenges

• Need to handle failures (e.g., power outages, bad
network connection)

• Users may abort the program: need to “rollback the
changes”

• Many users executing concurrently

• Maintain ACID with performance!

Transaction: Is ACID Good?

• Extremely important and
successful paradigm

• Many debates over ACID —
both historically and currently

• Many newer “NoSQL” DBMS
relax ACID (more on this later)

CS 377 [Spring 2017] - Ho

Transaction: Management
• Recovery (Atomicity & Durability)

• Ensures database is fault tolerant, and not corrupted by
software, system or media

• 24x7 access to critical data

• Concurrency control (Isolation)

• Provide correct and highly available data access in the
presence of access by many users

• Rely on application program for consistency

CS 377 [Spring 2017] - Ho

Transaction: Terminology
• Commit: successful completion of a transaction — operations

of transaction are guaranteed to be performed on the data in
the database

• Abort: unsuccessful termination of a transaction —operations
of transaction are guaranteed to not be performed on the
data in the database

• Rollback: process of undoing updates made by operations of
a transaction

• Redo: process of performing the updates made by the
operations of a transaction again

CS 377 [Spring 2017] - Ho

Transaction: SQL

• “Ad-hoc” SQL: Each statement = one transaction

• Multiple statements can be grouped together as a
transaction

• Example: Transfer money between two accounts

START TRANSACTION
UPDATE Account SET amount = amount – 100
WHERE name = ‘Bob’
UPDATE Account SET amount = amount + 100
WHERE name = ‘Alice’

COMMIT

CS 377 [Spring 2017] - Ho

Transaction: SQL

• A new transaction starts with the BEGIN command (or
begins implicitly when a statement is executed)

• Transaction stops with either COMMIT, ABORT,
ROLLBACK

• COMMIT means all changes are saved

• ABORT means all changes are undone

• ROLLBACK undoes transactions not already saved

CS 377 [Spring 2017] - Ho

Recovery

• Essential for reliable DBMS usage

• DBMS may experience crashes (e.g., power outages,
etc.)

• Individual TXNs may be aborted (e.g., by user)

• How to make sure TXNs are either durably stored in full
or not at all?

CS 377 [Spring 2017] - Ho

Recovery: Protection

INSERT INTO SmallProduct(name, price)"
 SELECT pname, price "
 FROM Product
 WHERE price <= 0.99

DELETE Product "
 WHERE price <=0.99

Crash
or

Abort

What goes wrong?

CS 377 [Spring 2017] - Ho

Recovery: Protection

Now we’re okay — how do we achieve this?

START TRANSACTION
 INSERT INTO SmallProduct(name, price) "
 SELECT pname, price "
 FROM Product
 WHERE price <= 0.99

 DELETE Product "
 WHERE price <=0.99
COMMIT OR ROLLBACK

CS 377 [Spring 2017] - Ho

Recovery: System Log

Idea: Keep a system log and perform recovering when
necessary

• Separate and non-volatile (stable) storage that is
periodically backed up

• Contains log records that contains information about
an operation performed by transaction

• Each transaction is assigned a unique transaction ID to
different themselves

CS 377 [Spring 2017] - Ho

Log: Basic Idea
• Record information for every update

• Sequential writes to log

• Minimal information written to log

• Used by all modern systems

• Audit trail & efficiency reasons

• Alternative to logging is shadow paging: make copies of
pages and make changes to these copies — only on commit
are they made visible to others

CS 377 [Spring 2017] - Ho

Log: Memory Model

Local Global

Main	Memory	
(RAM)

Disk

Log

Assume log is on stable disk storage — spans
both main memory and disk and every so often

will “flush” (write) to disk

CS 377 [Spring 2017] - Ho

Log: Why Bother?

• Can’t we just write transaction to disk only once whole
transaction is completed?

• With unlimited memory and time, this could work…

• What if there isn’t enough space for a full transaction?

• What if one transaction takes very long?

CS 377 [Spring 2017] - Ho

Write Ahead Logging (WAL)

• All modifications are written to a log before they are
applied to database

• Each update is logged before the corresponding data
page goes to storage —> atomicity

• Must write all log records for a TXN before commit —>
durability

CS 377 [Spring 2017] - Ho

WAL: Pictorially

Data on Disk

Main Memory

Log on Disk

LogT		 A=0

B=5

A=0

T:	R(A),	W(A)		

CS 377 [Spring 2017] - Ho

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T:	R(A),	W(A)		
A: 0à1

WAL: Pictorially

CS 377 [Spring 2017] - Ho

Data on Disk

Main Memory

Log on Disk

LogT		 A=0

B=5

A=0

T:	R(A),	W(A)		

Data on Disk

Main Memory

Log on Disk

LogA=1

B=5

A=0

A: 0à1

WAL: Pictorially

CS 377 [Spring 2017] - Ho

WAL: Pictorially

Data on Disk

Main Memory

Log on Disk

LogT		 A=0

B=5

A=0

T:	R(A),	W(A)		

Data on Disk

Main Memory

Log on Disk

A: 0à1

A=1First write to log on
disk, then update

data on disk

CS 377 [Spring 2017] - Ho

Undo Logging
Idea: undo operations for uncommitted transactions to go back
to original state of database

• New transaction begins — add [start, T] to the log

• Read data — do nothing

• Write data — add [write, T, X, old_value], after successful
write to log, update X with new value

• Complete transaction — add [commit, T] to log

• Abort transaction — add [abort, T] to log

CS 377 [Spring 2017] - Ho

Example: Undo Logging

T1: Read (A, t);  
 t <— t x 2; 
 Write(A, t); 
 Read (B, t);  
 t <— t x 2; 
 Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

CS 377 [Spring 2017] - Ho

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=8	

<Start,	T1>	

B=8	

A=8	

Example: Undo Logging

T1: Read (A, t);  
 t <— t x 2; 
 Write(A, t); 
 Read (B, t);  
 t <— t x 2; 
 Write(B, t);

CS 377 [Spring 2017] - Ho

Example: Undo Logging

T1: Read (A, t);  
 t <— t x 2; 
 Write(A, t); 
 Read (B, t);  
 t <— t x 2; 
 Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=16	

B=8	

<Start,	T1>	

<Write,	T1,	A,	8>		
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=16	

B=8	

<Start,	T1>	

<Write,	T1,	A,	8>	If crash occurs now, we
can check the log and

roll back to the last
known state and recover  

A = 8, B = 8!

CS 377 [Spring 2017] - Ho

T1: Read (A, t);  
 t <— t x 2; 
 Write(A, t); 
 Read (B, t);  
 t <— t x 2; 
 Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=16	

B=16	

<Start,	T1>	

<Write,	T1,	A,	8>	

<Write,	T1,	B,	8>	

Example: Undo Logging

CS 377 [Spring 2017] - Ho

T1: Read (A, t);  
 t <— t x 2; 
 Write(A, t); 
 Read (B, t);  
 t <— t x 2; 
 Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=16	

B=16	

<Start,	T1>	

<Write,	T1,	A,	8>	

<Write,	T1,	B,	8>	

<Commit,	T1>	

A=16	 B=16	

Example: Undo Logging

CS 377 [Spring 2017] - Ho

Redo Logging
Idea: save disk I/Os by deferring data changes or do the
changes for committed transaction

• New transaction begins — add [start, T] to the log

• Read data — do nothing

• Write data — add [write, T, X, new_value], after successful
write to log, update X with new value

• Complete transaction — add [commit, T] to log

• Abort transaction — add [abort, T] to log

Checkpoints
• Log grows infinitely — take checkpoints

to reduce amount of processing

• Periodically

• Do not accept new transactions and
wait for active ones to finish

• Write “checkpoint” record to disk

• Flush all log records and resume
transaction processing

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

CS 377 [Spring 2017] - Ho

Logging Summary

• WAL and recovery protocol are used to

• Undo actions of aborted transactions

• Restore the system to a consistent state after a crash

• Helps with atomicity and durability

• But only half the story …

CS 377 [Spring 2017] - Ho

Concurrent Executions

• Multiple transactions should be allowed to run
concurrently in the system

• Increased processor and disk utilization — better
transaction throughput

• Reduced average response time for transactions

• But, interleaving transactions to ensure isolation and
handling system crashes are the hard part!

CS 377 [Spring 2017] - Ho

Example: Concurrent Executions

T1: START TRANSACTION
UPDATE Accounts"
SET Amt = Amt + 100
WHERE Name = ‘Alice’

UPDATE Accounts"
SET Amt = Amt - 100
WHERE Name = ‘Bob’

COMMIT

Transaction 1: Bob
transfers money to Alice

T2: START TRANSACTION
UPDATE Accounts"
SET Amt = Amt * 1.06

COMMIT

Transaction 2: Bank pays
interest for all accounts

CS 377 [Spring 2017] - Ho

Example: Serial Executions

T1	

T2	

Alice	+=	100	 Bob	-=	100	

Alice	*=	1.06	 Bob	*=	1.06	

Time	

T1	

T2	

Alice	+=	100	 Bob	-=	100	

Alice	*=	1.06	 Bob	*=	1.06	

Time	

Scenario 1:

Scenario 2:

Either scenario could occur in DBMS

CS 377 [Spring 2017] - Ho

Example: Concurrent Executions

Scenario 3: Interleave TXNs

T1	

T2	

Alice	+=	100	 Bob	-=	100	

Alice	*=	1.06	 Bob	*=	1.06	

Time	

Is this okay? Does the result look like what would
occur if we only ran in serial?

CS 377 [Spring 2017] - Ho

Interleaving Transactions

• Why bother? Interleaving might lead to anomalous
outcomes

• Individual transactions might be slow — should other
users wait for this one transaction to finish?

• Disk access may be slow — let some TXNs use CPUs
while others access disk

• This can lead to large differences in database
performance

CS 377 [Spring 2017] - Ho

Schedule

• A schedule S of n transactions T1, T2, …, Tn is an
ordering of the operations of the transactions

• For each transaction Ti, the operations in Ti in S must
appear in the same order in which they occur in Ti

• Operations from other transactions Tj can be
interleaved with operations of Ti in S

• Schedule represents an actual or potential execution
sequence of the transactions

CS 377 [Spring 2017] - Ho

Example: Schedule

Initial DB state: A = 25, B = 25

T1: Read(A); T2: Read(A);  
 A <— A+100; A <— A x 2;  
 Write(A); Write(A);  
 Read(B); Read(B);  
 B <— B + 100; B <— B x 2;  
 Write(B); Write(B);

CS 377 [Spring 2017] - Ho

Example: Serial Schedule A

T1 T2

Read(A); 
A <— A + 100; 

Write(A);
Read(B); 

B <— B + 100; 
Write(B);

Read(A); 
A <— A x 2; 

Write(A);
Read(B); 

B <— B x 2; 
Write(B);

A = 125

B = 125

A = 250

B = 250

CS 377 [Spring 2017] - Ho

Example: Serial Schedule B

T1 T2

Read(A); 
A <— A x 2; 

Write(A);
Read(B); 

B <— B x 2; 
Write(B);

Read(A); 
A <— A + 100; 

Write(A);
Read(B); 

B <— B + 100; 
Write(B);

A = 50

B = 50

A = 150

B = 150

CS 377 [Spring 2017] - Ho

Example: Interleaved Schedule C

T1 T2

Read(A); 
A <— A + 100; 

Write(A);
Read(A); 

A <— A x 2; 
Write(A);

Read(B); 
B <— B + 100; 

Write(B);
Read(B); 

B <— B x 2; 
Write(B);

A = 125

A = 250

B = 125

B = 250

Same result as
if I ran T1 first

then T2!

CS 377 [Spring 2017] - Ho

Example: Interleaved Schedule D

T1 T2

Read(A); 
A <— A + 100; 

Write(A);
Read(A); 

A <— A x 2; 
Write(A);
Read(B); 

B <— B x 2; 
Write(B);

Read(B); 
B <— B + 100; 

Write(B);

A = 125

A = 250

B = 50

B = 150
Different than

running in serial —
not serializable

CS 377 [Spring 2017] - Ho

Serializability
• Want schedules that are “good” regardless of

• Initial state

• Transaction semantics

• “Equivalent” to a serial schedule

• Only look at order of read and writes

• Note: if each transaction preserves consistency, every
serializable schedule preserves consistency

CS 377 [Spring 2017] - Ho

Interleaving TXNs: What goes wrong?

• Various anomalies which break isolation / serializability

• Occur because of / with certain “conflicts” between
interleaved transaction

• Note that conflicts can occur without causing anomalies

CS 377 [Spring 2017] - Ho

Schedules: “Good” vs “Bad”

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Want to develop ways to determine “good” vs
“bad” schedules

CS 377 [Spring 2017] - Ho

Conflict

• Pairs of consecutive actions such that if their order is
interchanged, the behavior of at least one of the
transactions can change

• Involve the same database element

• At least one write

• Three types of conflict: read-write conflicts (RW), write-
read conflicts (WR), write-write conflicts (WW)

CS 377 [Spring 2017] - Ho

Example: Read-Write Conflict
T1 T2

BEGIN 
Read(A);

BEGIN 
Read(A); 

A <— A * 2; 
Write(A); 
COMMIT;

Read(A); 
COMMIT

A = 10

A = 10

A = 20

A = 20

“Unrepeatable read”
- T1 gets different /
inconsistent values!

CS 377 [Spring 2017] - Ho

Example: Write-Read Conflict
T1 T2

BEGIN 
Read(A); 

A <— A + 2; 
Write(A);

BEGIN 
Read(A); 

A <— A * 2; 
Write(A); 
COMMIT;

Read(B); 
B <— B + 100; 

ABORT

A = 10
A = 12

A = 12

A = 24

A “dirty read” (reading uncommitted
data) means T2’s result is based on

obsolete / inconsistent value!

CS 377 [Spring 2017] - Ho

Example: Write-Write Conflict
T1 T2

BEGIN 
Write(A);

BEGIN 
Write(A); 
Write(B); 
COMMIT;

Write(B); 
COMMIT

A = 20
B = 100

Overwriting uncommitted data
results in partially-lost update and

not equivalent to any serial schedule

A = 10

B = 20

CS 377 [Spring 2017] - Ho

Conflict: Example

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)W-R Conflict

W-W Conflict

CS 377 [Spring 2017] - Ho

Conflict: Example

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All “conflicts”!

CS 377 [Spring 2017] - Ho

Serializability Definitions

• S1, S2 are conflict equivalent schedules if S1 can be
transformed into S2 by a series of swaps on non-
conflicting actions

• Every pair of conflicting actions of two TXNs are
ordered the same way

• A schedule is conflict serializable if it is conflict
equivalent to some serial schedule

• Maintains consistency & isolation!

CS 377 [Spring 2017] - Ho

Schedules: “Good” vs “Bad”

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Conflict serializability provides us with a notion
of “good” vs “bad” schedules

CS 377 [Spring 2017] - Ho

Example: Not conflict serializable
T1 T2

BEGIN 
Read(A);

Write(A);

BEGIN 
Read(A);

Write(A);

Read(B);

Write(B); 
COMMIT;

Read(B);

Write(B); 
COMMIT

Conflict 1

Conflict 2

Both conflicts will not happen in this order for a serial schedule!

Example: Serializable vs Conflict Serializable

• Equivalent to T1, T2, T3, so
serializable

• Not conflict equivalent to T1,
T3, T3 so not conflict
serializable

• Conflict serializable =>
serializable but not the other
way around!

T1 T2 T3

BEGIN 
Read(A);

BEGIN

Write(A); 
COMMIT

Write(A) 
COMMIT

BEGIN

Write(A); 
COMMIT

CS 377 [Spring 2017] - Ho

Precedence (Serialization) Graph

• Graph with directed edges

• Nodes are transactions in S

• Edge is created from Ti to Tj if one of the operations in
Ti appears before a conflicting operation in Tj

• Schedule is serializable if and only if precedence graph
has no cycles!

CS 377 [Spring 2017] - Ho

Example: Precedence Graph

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All “conflicts”!

Serial Schedule:

T1 T2

CS 377 [Spring 2017] - Ho

Example: Precedence Graph
Interleaved Schedule 1:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1 T2

CS 377 [Spring 2017] - Ho

Example: Precedence Graph
Interleaved Schedule 2:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1 T2

CS 377 [Spring 2017] - Ho

Example: Precedence Graph
T1 T2

Read(A); 
A <— A + 100; 

Write(A);
Read(A); 

A <— A x 2; 
Write(A);
Read(B); 

B <— B x 2; 
Write(B);

Read(B); 
B <— B + 100; 

Write(B);

T2T1

A non-conflict serializable
schedule has a cycle!

CS 377 [Spring 2017] - Ho

Exercise: Serializability

• Consider the schedule given in the table below of three
transactions T1, T2, and T3

• Draw the precedence graph

• Is this schedule serializable?

CS 377 [Spring 2017] - Ho

Concurrency

• Schedules that are conflict serializable means that we are
able to preserve isolation

• How can we guarantee conflict serializability in practice?

• What is the standard paradigm for concurrent
programming?

Mutex <=> Lock <=> Semaphore

Locks: Basic Idea

• Each time you want to R/W an
object, obtain a lock to secure
permission to R/W object

• When completed, unlock
removes permissions from item

• Ensure transactions remain
isolated and follow serializable
schedules

T1 T2

BEGIN 
Lock(A) 
Read(A);

BEGIN 
Lock(A)

Write(A)

Unlock(A) 
COMMIT

Read(A) 
Write(A) 
Unlock(A) 
COMMIT

denied since T1
has lock

Basic Locking

• Two lock modes: shared (read),
exclusive (write)

• If a transaction wants to read
an object, it must first 
request a shared lock on that
object

• If a transaction wants to modify
an object, it must first request
an exclusive lock on that object

Shared Exclusive

Shared Yes No

Exclusive No No

Does this work?

CS 377 [Spring 2017] - Ho

Example: Basic Locking Insufficient
T1 T2

Exclusive-Lock(A); 
Read(A); 

A <— A + 5; 
Write(A); 

Unlock(A);
Exclusive-Lock(A); 

Read(A); 
A <— A x 2; 

Write(A); 
Unlock(A);

Exclusive-Lock(B); 
Read(B); 

B <— B x 2; 
Write(B); 

Unlock(B)
Exclusive-Lock(B);

Read(B); 
B <— B + 5; 

Write(B); 
Unlock(B)

A = B 
A = 100 
A = 105

A = 105 
A = 210

B = 100  
B = 200

B = 200 
B = 205

A =/= B => not
conflict-serializable!

time

locks held

release phase acquisition
phase

Two-Phase Locking (2PL)

• All lock requests precede all
unlock requests

• Phase 1: obtain locks

• Phase 2: release locks

• Guarantees conflict
serializability

Does not prevent cascading aborts (where aborting one
transaction causes one or more other transactions to abort)

CS 377 [Spring 2017] - Ho

Example: Cascading Abort
T1 T2

Exclusive-Lock(A); 
Read(A); 

A <— A + 5; 
Write(A); 

Exclusive-Lock(B) 
Unlock(A);

Exclusive-Lock(A); 
Read(A); 

A <— A x 2; 
Write(A);

Exclusive-Lock(B); 
Unlock(A);
Read(B); 

B <— B x 2; 
Write(B); 

Unlock(B)
Read(B); 

B <— B + 5; 
Write(B); 
Unlock(B)

cannot obtain
lock on B until T1

unlocks

But what if we abort here?

Time	
Strict	2PL	

0	locks	

#	Locks	
the	TXN	
has	

Lock	
Acquisi:on	

Lock	Release	
On	TXN	commit!	

Strict Two-Phase Locking (Strict 2PL)

• Only release locks at
commit / abort time

• A transaction that writes
will block all other readers
until the transaction
commits or aborts

CS 377 [Spring 2017] - Ho

Strict 2PL: Properties

• Strict 2PL only allows conflict serializable schedules

• Maintains serializable

• Maintains isolation & consistency

• Used in many commercial DBMS systems

• Oracle is notable exception
What could go wrong?

CS 377 [Spring 2017] - Ho

Example: Strict PL

T1

T2

S(A) R(A)

T1 requests shared
lock on A to read it

S(B) R(B)

T2 requests shared
lock on B to read it

X(A)

T2 requests exclusive
lock on A to write

Wai$ng…

X(B)

T1 requests exclusive
lock on B to write

Wai$ng…

DEADLOCK!

CS 377 [Spring 2017] - Ho

Deadlock

• Deadlock: Cycle of transactions waiting for locks to be
released by each other

• Two ways of dealing with deadlocks

• Deadlock prevention

• Deadlock detection

CS 377 [Spring 2017] - Ho

Deadlock Protocols
• Deadlock prevention

• Rigorous locking protocol — acquire all locks in
advance

• Timeout — waits some amount of time then roll back

• Deadlock detection

• Construct waits-for graph (edge for any transaction
waiting for another transaction) and periodically check
for cycles

CS 377 [Spring 2017] - Ho

Transactions & Concurrency: Recap
• ACID

• Logging

• WAL

• Checkpoints

• Conflict Serializable Schedules

• Locking: Basic, 2PL, Strict 2PL

• Deadlock

