
Query Processing & Optimization
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Recap: File Organization & Indexing
• Physical level support for data retrieval

• File organization: ordered or sequential file to find items
using binary search

• Index: data structures to help with some query evaluation
(selection & range queries)

• Indexes may not always be useful even for selection queries

• What about join queries and other queries not supported by
indices?

CS 377 [Spring 2017] - Ho

Query Processing Introduction

• Some database operations are expensive

• Performance can be improved by being “smart”

• Clever implementation techniques for operators

• Exploiting “equivalences” of relational operators

• Using statistics and cost models to choose better
plans

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

Basic Steps in Query Processing

• Parse and translate:
convert to RA query

• Optimize RA query based
on the different possible
plans

• Evaluate the execution
plan to obtain the query
results

Figure 12.1 from Database System Concepts book

CS 377 [Spring 2017] - Ho

Query Processing Overview

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

SQL 
 

A declarative
expression of the

query result

RA 
 

Operational description
of a computation

WHY?

Systems optimize and execute
RA query plan!

Say what you want,
not how to get it!

Codd’s
theorem

CS 377 [Spring 2017] - Ho

Example: SQL Query

Find movies with stars born in 1960

SELECT movieTitle  
FROM StarsIn, MovieStar  
WHERE starName = name 
AND birthdate LIKE ‘%1960’;

CS 377 [Spring 2017] - Ho

Example: SQL —> RA

Find movies with stars born in 1960

SELECT movieTitle  
FROM StarsIn, MovieStar  
WHERE starName = name 
AND birthdate LIKE ‘%1960’;

H1 = (StarsIn⇥MovieStar)

H2 = �
starname = name AND birthdate like ‘%1960’

(H1)

Ans = ⇡
movie title

(H2)

Is this a good
query plan?

CS 377 [Spring 2017] - Ho

Example: SQL —> RA Take II

Find movies with stars born in 1960

SELECT movieTitle  
FROM StarsIn, MovieStar  
WHERE starName = name 
AND birthdate LIKE ‘%1960’;

Is this a better
query plan?

H1 = �
birthdate like ‘%1960’

(MovieStar)

H2 = �
starname = name

(H1⇥ StarsIn)

Ans = ⇡
movie title

(H2)

CS 377 [Spring 2017] - Ho

Example: SQL —> RA Take III

Find movies with stars born in 1960

SELECT movieTitle  
FROM StarsIn, MovieStar  
WHERE starName = name 
AND birthdate LIKE ‘%1960’;

Is this even
better query

plan?

H1 = ⇡name(�
birthdate like ‘%1960’

(MovieStar))

H2 = �
starname = name

(H1⇥ ⇡
starname, movieTitle

(StarsIn))

Ans = ⇡
movieTitle

(H2)

CS 377 [Spring 2017] - Ho

SQL Optimization

• Step 1: Convert SQL query into a parse tree

• Step 2: Convert parse tree into initial logical query plan
using RA expression

• Step 3: Transform initial plan into optimal query plan
using some measure of cost to determine which plan is
better

• Step 4: Select physical query operator for each relational
algebra operator in the optimal query plan

CS 377 [Spring 2017] - Ho

Example: SQL Query Step 1

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2017] - Ho

Example: SQL Query Step 2

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2017] - Ho

Example: SQL Query Step 3

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2017] - Ho

Example: SQL Query Step 4

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2017] - Ho

Recap: Relational Algebra

CS 377 [Spring 2017] - Ho

Recap: SQL Query to RA

• How do you represent queries in RA?

• Database: Students(sid, sname, gpa) 
 People(ssn, pname, address)

• SQL query: 
SELECT DISTINCT gpa, address  
FROM Students, People 
WHERE gpa > 3.5 AND sname = pname;

• RA query:
⇡gpa,address(�gpa>3.5(Students ./sname=name People))

CS 377 [Spring 2017] - Ho

Query Tree (Plan)
• A tree data structure that corresponds to a relational algebra

expression

• Leaf nodes = input relations

• Internal nodes = RA operations

• Execution of query tree

• Start at the leaf nodes

• Execute internal node whenever its operands are available
and replace node by result

CS 377 [Spring 2017] - Ho

Query Optimization Heuristics
• Apply heuristic rules on standard initial query tree to find

optimized equivalent query tree

• Main heuristic: Favor operations that reduce the size of
intermediate results first

• Apply SELECT and PROJECT operations before join or
other set operations

• Apply more selective SELECT and join first

• General transformation rules for relational algebra operators

CS 377 [Spring 2017] - Ho

RA Transformation Rules
• Selection cascade: conjunctive selection condition can be

broken into sequence of individual operations 

• Commutativity of selection  

• Cascade of projection: ignore all but the last one  

• Commuting selection and projection: if the selection condition
c involves only attributes in the projection list commute the two 

�c1 AND c2 AND ···AND cn(R) = �c1(�c2(· · · (�cn(R)) · · ·))

�c1(�c2(R)) = �c2(�c1(R))

⇡A(⇡A,B(R)) = ⇡A(R)

⇡A, B(�c(R)) = �c(⇡A, B(R))

CS 377 [Spring 2017] - Ho

RA Transformation Rules
• Commutativity of joins, cartesian product, union, intersection 

• Associativity of join, cartesian product, union, intersection 

• Selection and join: if attributes in the selection condition
involves only attributes of one of the relations being joined

•

(R ✓ S) ✓ T = R ✓ (S ✓ T)

R ✓ S = S ✓ R

�c(R ./ S) = �c(R) ./ S

�c(R ./ S) = �c1(R) ./ �c2(S)

CS 377 [Spring 2017] - Ho

RA Transformation Rules

• Commuting projection with join: if join condition involves
only attributes in the projection list, commute the
operations 

• Commuting selection with intersection, union, or
difference 

• Several others in the book…

�c(R ✓ S) = (�c(R)) ✓ (�c(S))

⇡L(R ./c S) = (⇡L1(R)) ./c (⇡L2(S))

CS 377 [Spring 2017] - Ho

Query Optimization Heuristic Algorithm

• Break up any select operations with conjunctive
conditions into cascade of select operations and move
select operations as far down query tree as permitted

• Rearrange leaf nodes so leaf nodes with most restrictive
select operations are executed first

• Combine cartesian product operation with a subsequent
selection operation into join operation

CS 377 [Spring 2017] - Ho

Query Optimization Heuristic Algorithm

• Break down and move lists of projection attributes down
the tree as far as possible

• Identify subtrees that represent group of operations that
can be executed as a single algorithm

CS 377 [Spring 2017] - Ho

Example: SQL Query Optimization
SELECT lname  
FROM employee, works_on, project  
WHERE pname = ‘Aquarius’ and pnumber = pno  
AND bdate > ‘1957-12-31’;

Initial query tree

CS 377 [Spring 2017] - Ho

Example: SQL Query Optimization

Break up conjunctive select operations
and move them down the tree

CS 377 [Spring 2017] - Ho

Example: SQL Query Optimization

Returns
1 tuple

Returns at
least 1 tuple Change

position

Apply more restrictive SELECT
first (left most side of tree)

CS 377 [Spring 2017] - Ho

Example: SQL Query Optimization

Replace cartesian product
and select with join

CS 377 [Spring 2017] - Ho

Example: SQL Query Optimization
Break down and move lists of

projection attributes down the tree if
possible

need lname, ssnneed essn

need essn, pnoneed pnumber

CS 377 [Spring 2017] - Ho

Exercise: Query Optimization
Given three relations:  
Course(cid, title, dname, credits) 
Teaches(iid, cid, sid, semester, year)  
Instructor(iid, name, dname, salary)

Query: Find the names of all instructors in the Music
department who have taught a course in 2009, along with
the titles of the courses that they taught

• What is the initial RA query?

• Transform the query into an “optimal” RA query

CS 377 [Spring 2017] - Ho

Query Optimization

• Logical level: heuristics based optimization to find a
better RA query tree

• SQL query —> initial logical query tree —> optimized
query tree

• Physical level: cost-based optimization to determine
“best” query plan

• Optimized query tree —> query execution plans —>
cost estimation —> “best” query plan

CS 377 [Spring 2017] - Ho

Cost-based Query Optimization
Estimate and compare the costs of executing a query using
different execution strategies and choose the strategy with the
lowest cost estimate

• Disk I/O cost

• Storage cost

• Computation cost

• Memory usage cost

• Communication cost (distributed databases)

CS 377 [Spring 2017] - Ho

Catalog Information
Database maintains statistics about each relation

• Size of file: number of tuples [nr], number of blocks [br], tuple
size [sr], number of tuples or records per block [fr], etc.

• Information about indexes and indexing attributes

• Attribute values - number of distinct values [V(att, r)]

• Selection cardinality - expected size of selection given value
[SC(att, r)]

• …

CS 377 [Spring 2017] - Ho

Catalog Information for Index

• Average fan-out of internal nodes of index i for tree-
structured indices [fi]

• Number of levels in index i (i.e., height of index i) [HTi]

• Balanced tree on attribute A of relation r:

• Hash index: 1

• Number of lowest-level index blocks in i (i.e., number of
blocks at the leaf level of the index) [LBi]

dlogfi V (A, r)e

CS 377 [Spring 2017] - Ho

Example: Bank Schema
Account relation

• faccount = 20 (20 tuples per block)

• V(bname, account) = 50 (50 branches)

• V(balance, account) = 500 (500 different balance
values)

• naccount = 10000 (10,000 tuples in account)

• baccount = 10000 / 20 = 500

CS 377 [Spring 2017] - Ho

SELECT: Simple Algorithms

• Linear search (brute force): selection attribute is not
ordered and no index on attribute

• Cost: # blocks in relation = br

• Account example: 500 I/Os

• Binary search: selection attribute is ordered and no index

• Cost:  

dlog
2

(br)e| {z }
locating first tuple

+ dSC(att, r)/fre| {z }
blocks with selection

�1

CS 377 [Spring 2017] - Ho

Example: Binary search

• How expensive is the following query if we assume
Account is sorted by branch name?  

• Ans:

• # of tuples in the relation pertaining to Perryridge is total
number of tuples divided by distinct values: 10000/50

• Cost:  

�bname=‘Perryridge’(Account)

dlog2(500)e+ d200/20e � 1 = 18

CS 377 [Spring 2017] - Ho

SELECT: Simple Algorithm with Index

• Index search: cost depends on the number of qualifying
tuples, cost of retrieving the tuples and the type of query

• Primary index

• Equality search on candidate key:

• Equality search on nonkey:

• Comparison search:
estimated number of tuples that satisfy condition

HTi + dSC(att, r)/fre

HTi + 1

HTi + dc/fre

CS 377 [Spring 2017] - Ho

SELECT: Simple Algorithm with Index

• Secondary index

• Equality search on candidate key:

• Equality search on nonkey:

• Comparison search:

Note that linear file scan maybe cheaper if the number of tuples
satisfying the condition is large!

HTi + 1

HTi + SC(att, r)

HTi + LBi ⇥ c/nr + c

CS 377 [Spring 2017] - Ho

Example: Index search
• How expensive is the following query if we assume primary

index on branch name? 

• Ans:

• 200 tuples relating to Perryridge branch => clustered index

• Assume B+-tree index stores 20 pointers per node, then
index must have between 3 and 5 leaf nodes with a depth
of 2

• Cost:

�bname=‘Perryridge’(Account)

2 + d200/20e = 12

CS 377 [Spring 2017] - Ho

Search Type Details Cost

Linear

Binary

Primary index candidate key

Primary index nonkey

Primary index comparison

Secondary index candidate key

Secondary index nonkey

Secondary index comparison

SELECT Algorithms: Cost

dlog2 bre+ dSC(att, r)/fre � 1

br

HTi + 1

HTi + 1

HTi + dSC(att, r)/fre

HTi + SC(att, r)

HTi + dc/fre

HTi + (LBic)/nr + c

CS 377 [Spring 2017] - Ho

Exercise: SELECT
• Employee relation with clustering index on salary:

• nemployee = 10,000 (10,000 tuples in employee)

• bemployee = 2,000 (2,000 blocks)

• Secondary index (B+-Tree) on SSN (key attribute)

• HTi = 4 levels

• What algorithm would be used for the following query
and why? �SSN=123456789(Employee)

CS 377 [Spring 2017] - Ho

Exercise: SELECT
Same employee relation with clustering index on salary:

• Secondary index (B+-Tree) on DNO (non-key)

• HTi = 2

• LBi = 4 (4 first level index blocks)

• V(DNO, employee) = 125

• What algorithm would be used for the following query
and why? �DNO>5(Employee)

CS 377 [Spring 2017] - Ho

SELECT: Complex Algorithms
• Conjunctive selection (several conditions with AND)

• Single index: retrieve records satisfying some attribute condition
(with index) and check remaining conditions

• Composite index

• Intersection of multiple indexes

• Disjunctive selection (several conditions with OR)

• Index/binary search if all conditions have access path and take union

• Linear search otherwise

CS 377 [Spring 2017] - Ho

Example: Complex search
• How expensive if we want to find accounts where the branch name

is Perryridge with a balance of 1200 if we assume there is a primary
index on branch name and secondary on balance?

• Ans for using one index:

• Cost for branch name: 12 block reads

• Balance index is not clustered, so expected selection is 10,000 /
500 = 20 accounts

• Cost for balance: 2 + 20 = 22 block reads

• Thus use branch name index, even if it is less selective!

CS 377 [Spring 2017] - Ho

Example: Complex search
• Ans for using intersection of two indexes:

• Use index on balance to retrieve set of S1 pointers: 2 reads

• Use index on branch name to retrieve set of S2 pointers: 2
reads

• Take intersection of the two

• Estimate 1 tuple in 50 * 500 meets both conditions, so we
estimate the intersection of two has one pointer

• Estimated cost: 5 block reads

CS 377 [Spring 2017] - Ho

Sorting
• One of the primary algorithms used for query processing

• ORDER BY

• DISTINCT

• JOIN

• Relations that fit in memory — use techniques like
quicksort, merge sort, bubble sort

• Relations that don’t fit in memory — external sort-merge

CS 377 [Spring 2017] - Ho

JOIN

• One of the most time-consuming operations

• EQUIJOIN & NATURAL JOIN varieties are most
prominent — focus on algorithms for these

• Two way join: join on two files

• Multi-way joins: joins involving more than two files

CS 377 [Spring 2017] - Ho

JOIN Performance

Factors that affect performance

• Tuples of relation stored physically together

• Relations sorted by join attribute

• Existence of indexes

CS 377 [Spring 2017] - Ho

JOIN Algorithms
• Several different algorithms to implement joins

• Nested loop join

• Nested-block join

• Indexed nested loop join

• Sort-merge join

• Hash-join

• Choice is based on cost estimate

CS 377 [Spring 2017] - Ho

Example: Bank Schema
• Join depositor and customer tables

• Catalog information for both relations:

• ncustomer = 10000

• fcustomer = 25 => bcustomer = 10000/25 = 400

• ndepositor = 5000

• fdepositor = 50 => bdepositor = 5000/50 = 100

• V(cname, depositor) = 2500 (each customer on average has 2 accounts)

• Cname in depositor is a foreign key of customer

CS 377 [Spring 2017] - Ho

Cardinality of Join Queries

• Cartesian product or two relations R x S contains nR * nS
tuples with each tuple occupying sR + sS bytes

• If , then is the same as

• If is a key in R, then a tuple of s will join with one
tuple from R => the number of tuples in the join will be no
greater than the number of tuples in S

• If is a foreign key in S referencing R, then the
number of tuples is exactly the same number as S

R \ S = ; R ./ S R⇥ S

R \ S

R \ S

CS 377 [Spring 2017] - Ho

Cardinality of Join Queries
• If and A is not a key of R or S there are two

estimates that can be used

• Assume every tuple in R produces tuples in the join,
number of tuples estimated: 

• Assume every tuple in S produces tuples in the join,
number of tuples estimated: 

• Lower of two estimates is probably more accurate

R \ S = {A}

nR ⇤ ns

V (A, s)

nR ⇤ ns

V (A, r)

CS 377 [Spring 2017] - Ho

Example: Cardinality of Join
• Estimate the size of

• Assuming no foreign key:

• V(cname, depositor) = 2500 =>  
5000 * 10000 / 2500 = 20,000

• V(cname, customer) = 10000 => 
5000 * 10000 / 10000 = 5000

• Since cname in depositor is foreign key of customer, the
size is exactly ndepositor = 5000

Depositor ./ Customer

CS 377 [Spring 2017] - Ho

Nested Loop Join

• Default (brute force) algorithm

• Requires no indices and can be used with any join
condition

• Algorithm:  
for each tuple tr in R do  
 for each tuple ts in S do 
 test pair (tr, ts) to see if condition satisfied  
 if satisfied, output (tr, ts) pair

R is outer relation

S is inner relation

CS 377 [Spring 2017] - Ho

Nested Loop Join Cost

• Algorithm:  
for each tuple tr in R do  
 for each tuple ts in S do 
 test pair (tr, ts) to see if condition satisfied  
 if satisfied, output (tr, ts) pair

Read in tuples of R: br
For every tuple in R read S: bs

Worst case: br + nr x bs

CS 377 [Spring 2017] - Ho

Nested Loop Join Cost

• Algorithm:  
for each tuple tr in R do  
 for each tuple ts in S do 
 test pair (tr, ts) to see if condition satisfied  
 if satisfied, output (tr, ts) pair

Read in tuples of R: br
For every tuple in R read S: bs

If smaller block fits into memory, we can avoid the
cost of re-reading relation S — cost = br + bs

CS 377 [Spring 2017] - Ho

Nested Loop Join Cost

• Expensive as it examines every pair of tuples in the two
relations

• If smaller relation fits entirely in main memory, use that
relation as inner relation

• Worst case: only enough memory to hold one block of
each relation, estimated cost is nr * bs + br

• Best case: smaller relation fits in memory, estimated cost
is br + bs disk access

CS 377 [Spring 2017] - Ho

Example: Nested Loop Join

• Worst case memory scenario:

• Depositor as outer relation: 5000 * 400 + 1000 =
2,000,100 I/Os

• Customer as outer relation: 10000 * 100 + 400 =
1,000,400 I/Os

• Best case memory scenario (depositor fits in memory)

• 100 + 400 = 500 I/Os

CS 377 [Spring 2017] - Ho

Nested-Block Join
• Instead of individual tuple basis, join one block at a time together

• Algorithm: 
for each block in r do 
 for each block in s do 
 use nested loop join algorithm on blocks  
 to output matching pairs

• Worst case: each block in the inner relation s is only read once
for each block in the outer relation, so estimated cost is br * bs +
br

• Best case: same as nested loop with cost br + bs

CS 377 [Spring 2017] - Ho

Nested-Block vs Nested Loop Join
Assume worst memory case

• Nested loop join with depositor as inner relation: 10000 *
100 + 400 = 1,000,400 I/Os

• Nested-block join with depositor as inner relation: 400 *
100 + 400 = 40400 I/Os

What if a disk speed is 360K I/Os per hour?

• Nested loop join ~= 2.78 hours

• Nested-block join ~= 0.11 hours

A very small change
can make a huge

difference in speed!

CS 377 [Spring 2017] - Ho

Indexed Nested-Loop Join
• Index is available on inner loop’s join attribute — use index to

compute the join

• Algorithm:  
for each tuple tr in r do  
 retrieve tuples from s using index search

• Worst case: buffer only has space for one page of r and one
page of index, estimated cost is br + nr * c (c is cost of single
selection on s using join condition)

• If indices available on both relations, use one with fewer
tuples as outer relation

CS 377 [Spring 2017] - Ho

Example: Index Nested Loop Join
• Assume customer has primary B+-tree index on customer

name, which contains 20 entries in each node

• Since customer has 10,000 tuples, height of tree is 4

• Using depositor as outer relation, estimated cost: 100 +
5000 * (4 + 1) = 25,100 disk accesses

• Block nested-loop join cost: 100 * 400 + 100 = 40,100 I/Os

• Cost is lower with index nested loop than block nested-loop
join

a 3
b 1
d 8

13d
f 7

m 5
q 6

a A
b G
c L
d N
m B

a1 a2 a1 a3
pr ps

r

s

Sort-Merge Join

• Sort the relations based on the join
attributes (if not already sorted)

• Merge similar to the external sort-
merge algorithm with the main
difference in handling duplicate
values in the join attribute — every
pair with same value on join
attribute must be matched

Figure 12.8 from Database System
Concepts book

CS 377 [Spring 2017] - Ho

Sort-Merge Join

• Can only be used for equijoins and natural joins

• Each tuple needs to be read only once, and as a result,
each block is also read only once  
cost = sorting cost + br + bs

• If one relation is sorted, and other has secondary B+-tree
index on join attribute, hybrid merge-joins are possible

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

External Sort Merge Algorithm

• Sort r records, stored in b file
blocks with a total memory space
of M blocks (relation is larger than
memory)

• Total cost:

Figure 12.4 from Database System Concepts book

2br(dlogM�1(br/M)e+ 1)

NOTE: that the previous slides were off
by a factor of 2 for the second part!

CS 377 [Spring 2017] - Ho

Sort-Merge vs Nested-Block

• Assume we have 100 blocks of memory, relation R has
1000 blocks and relation S has 500 blocks

• What is cost of nested-block?

• What is cost of sorted merge?

• What happens if we have only 35 blocks of memory?

CS 377 [Spring 2017] - Ho

Hash-Join

• Applicable for equijoins and natural joins

• A hash function, h, is used to partition tuples of both
relations into sets that have same hash value on the join
attributes

• Tuples in the corresponding same buckets just need to
be compared with one another and not with all the other
tuples in the other buckets

CS 377 [Spring 2017] - Ho

Example: Hash-Join

Disk

R

S

(3,j) !
(0,j) !

(0,a) !
(0,a) !

(3,b) !
!

(5,b) !
!

(0,a) !
(0,j) !

Disk

R1

S1

S2

R2

(0,a) !
(0,a) !

(0,j) !
!

(3,j) !
(3,b) !

(0,a) !
(0,j) !

(5,b) !
!

(5,b) !
!

Step 1: Use hash function to partition
into B buckets

CS 377 [Spring 2017] - Ho

Example: Hash-Join

Disk

R

S

(3,j) !
(0,j) !

(0,a) !
(0,a) !

(3,b) !
!

(5,b) !
!

(0,a) !
(0,j) !

Disk

R1

S1

S2

R2

(0,a) !
(0,a) !

(0,j) !
!

(3,j) !
(3,b) !

(0,a) !
(0,j) !

(5,b) !
!

(5,b) !
!

Step 2: Join matching buckets

CS 377 [Spring 2017] - Ho

Hash-Join Algorithm
• Partitioning phase

• 1 block for reading and M-1 blocks for hashed
partitions

• Hash R tuples into k buckets (partitions)

• Hash S tuples into k buckets (partitions)

• Joining phase (nested block join for each pair of partitions)

• M-2 blocks for R partition, 1 block for S partition

CS 377 [Spring 2017] - Ho

Hash-Join Algorithm

• Hash function h and the number of buckets are chosen
such that each bucket should fit in memory

• Recursive partitioning required if number of buckets is
greater than number of pages M of memory

• Hash-table overflow occurs if each bucket does not fit in
memory

CS 377 [Spring 2017] - Ho

Hash-Join Cost
• If recursive partitioning is not required:

• Partitioning phase: 2bR + 2bS

• Joining phase: bR + bS

• Total: 3bR + 3bS

• If recursive partitioning is required:

• Number of passes required to partition:

• Total cost:
2(bR + bS)dlogM�1(bS)� 1e+ bR + bS

dlogM�1(bS)� 1e

CS 377 [Spring 2017] - Ho

Example: Hash-Join

• Assume memory size is 20 blocks

• What is cost of joining customer and depositor?

• Since depositor has less total blocks, we will use it to
partition into 5 buckets, each of size 20 blocks

• Customer is also partitioned into 5 buckets, each of size
80 blocks

• Total cost: 3(100 + 400) = 1500 block transfers

CS 377 [Spring 2017] - Ho

Hash Join vs Sorted Join
• Sorted join advantages

• Good if input is already sorted, or need output to be sorted

• Not sensitive to data skew or bad hash functions

• Hash join advantages

• Can be cheaper due to hybrid hashing

• Dependent on size of smaller relation — good for different relation
sizes

• Good if input already hashed or need output hashed

CS 377 [Spring 2017] - Ho

Type Details Cost

Nested loop

Nested block

Indexed nested loop

Sort merge join

Hash join no recursive partitioning

Hash join recursive partitioning

JOIN Algorithms Cost

nRbS + bR

bRbS + bR

if both fit in memory: bR + bS

bR + nRc

sort cost + bR + bS

3bR + 3bS

2(bR + bS)dlogM�1(bS)� 1e
+ bR + bS

CS 377 [Spring 2017] - Ho

Exercise: JOIN Operation
Employee and Department

• nemployee = 10,000 (10,000 tuples in employee)

• bemployee = 2,000 (2,000 blocks)

• ndepartment = 125 (125 tuples in department)

• bdepartment = 13 (13 blocks)

• Primary index dnumber in department with HTi = 1

• Secondary index mgr_ssn in department with HTi = 2

CS 377 [Spring 2017] - Ho

Exercise: JOIN Operation

Employee and Department

• What join algorithm makes sense for joining Employee
and Department on department number?

• What join algorithm makes sense for joining Employee
and Department on manager ssn?

CS 377 [Spring 2017] - Ho

Complex Join
• What about joins with conjunctive (AND) conditions?

• Compute the result of one of the simpler joins

• Final result consists of tuples in intermediate results
that satisfy remaining conditions

• Test these conditions as tuples are generated

• What about joins with disjunctive (OR) conditions?

• Compute as the union of the records in individual joins

CS 377 [Spring 2017] - Ho

Example: Complex Join

What if we did a join on loan, depositor, and customer?

• Strategy 1: Compute depositor joins customer and
then use that to compute the join with loans

• Strategy 2: Compute loan joins depositor first then use
that to join with customer

CS 377 [Spring 2017] - Ho

Example: Complex Join

What if we did a join on loan, depositor, and customer?

• Strategy 3: Perform pair of joins at once, build an index
on loan for lID and on customer for cname

• For each tuple t in depositor, lookup corresponding
tuples in customer and corresponding tuples in loan

• Each tuple of depositor is examined exactly once

CS 377 [Spring 2017] - Ho

PROJECT Algorithms

• Extract all tuples from R with only attributes in attribute
list of projection operator & remove tuples

• By default, SQL does not remove duplicates (unless
DISTINCT keyword is included)

• Duplicate elimination

• Sorting

• Hashing (duplicates in same bucket)

CS 377 [Spring 2017] - Ho

Aggregation Algorithms

Similar to duplicate elimination

• Sort or hash to group same tuples together

• Apply aggregate functions to each group

CS 377 [Spring 2017] - Ho

Set Operation Algorithms

• CARTESIAN PRODUCT

• Nested loop - expensive and should avoid if possible

• UNION, INTERSECTION, SET DIFFERENCE

• Sort-merge

• Hashing

CS 377 [Spring 2017] - Ho

Recap: Query Processing

SQL Query RA Plan Optimized
RA Plan Execution

Declarative
user query

Translate to RA
expression

Find logically
equivalent but

more efficient RA
expression

Select physical
algorithm with

lowest IO cost to
execute the plan

CS 377 [Spring 2017] - Ho

DBMS’s Query Execution Plan

• Most commercial RDBMS can produce the query
optimizer’s execution plan to try to understand the
decision made by the optimizer

• Common syntax is EXPLAIN <SQL query> (used by
MySQL)

• Good DBAs (database administrators) understand query
optimizers VERY WELL!

CS 377 [Spring 2017] - Ho

Why Should I Care?
• If query runs slower than expected, check the plan — DBMS

may not be executing a plan you had in mind

• Selections involving null values

• Selections involving arithmetic or string operations

• Complex subqueries

• Selections involving OR conditions

• Determine if you should build another index, or if index needs
to be re-clustered or if statistics are too old

CS 377 [Spring 2017] - Ho

Query Tuning Guidelines
• Minimize the use of DISTINCT — don’t need if duplicates are

acceptable or if answer already has a key

• Minimize use of GROUP BY and HAVING

• Consider DBMS use of index when using math

• E.age = 2 * D.age might only match index on E.age

• Consider using temporary tables to avoid “double-dipping”
into a large table

• Avoid negative searches (can’t utilize indexes)

CS 377 [Spring 2017] - Ho

Query Optimization: Recap

• Query processing

• Cost-based optimization

• SELECT, JOIN algorithms

• Other operation algorithms
(PROJECT, SET, Aggregate)

