
Indexing
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Review: Data Store Overview

Memory DBMS

blocks

Records 
(tuples)

Blocks  
(pages)

Files

Disk

Different ways to organize files for
better performance

CS 377 [Spring 2017] - Ho

Today and Next Lecture

1. Index Overview

2. Hashing Index

3. B+ Tree

CS 377 [Spring 2017] - Ho

Index: Motivation
• Suppose we want to search for employees of a specific

age in our company database with a relation:  
SELECT * from Employee where age = 25;

• Simple scan: O(N) — inefficient to read all tuples to find
one

• Idea: Sort the records by age and we know how to do
this fast (several efficient algorithms such as merge sort,
heapsort, etc.)

• Binary search: O(log2 N)

CS 377 [Spring 2017] - Ho

Index: Motivation

• What if we want to be able to search quickly over multiple
attributes (e.g., not just age)?

• Idea: Keep multiple copies of the records, each sorted
by one attribute set — very expensive from a storage
perspective

• Are there better techniques that allow better tradeoffs
between storage and query speed?

CS 377 [Spring 2017] - Ho

Indexes
• Data structures that organize records via trees or hashing

• Speed up search for a subset of records based on
values in a certain field (search key)

• Any subset of the fields of the relation can be the
search field

• Search key need not be the same as the key!

• Contains a collection of data entries (each entry with
sufficient information to locate the records)

CS 377 [Spring 2017] - Ho

Index Effect

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html

Index maps the search key value to the list of blocks that
contains the search key value

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html

Index File

• Stores records in the
following format:  
Search Key | Block Ptr

• Size of index file is much
smaller than size of a data
file

• Allows you to locate the
block that contains the
record quickly

CS 377 [Spring 2017] - Ho

Dense vs Sparse Index

• Dense: one index entry for each search key value

• Sparse: index entries only for some of the search values

CS 377 [Spring 2017] - Ho

Dense vs Sparse Index
• Sparse:

• Less index space

• Potentially more varied
time to find a record
within a block

• Easier update process

• Records must be
clustered

• Dense:

• Can directly tell if a
record exists without
accessing file

• More index space 

CS 377 [Spring 2017] - Ho

Primary Index

• Created for the primary key of a table

• Usually ordered index whose search key is the sort key
for the sequential file

• Typically sparse index

• Binary search on the index file requires fewer block
accesses than on data file

CS 377 [Spring 2017] - Ho

Example: Primary Index

CS 377 [Spring 2017] - Ho

Clustering Index

• Created on an ordered non-key field (not unique), known
as a cluster field

• One index entry for each distinct value of the field

• Index entry points to the first data block that contains
records with that field value

• Insertion and deletion are relatively straightforward

CS 377 [Spring 2017] - Ho

Example: Clustering Index

CS 377 [Spring 2017] - Ho

Secondary Index
• An ordered index whose search key is not the sort key for

the sequential file

• Unique non-ordering key field results in a dense index
with an entry for each record

• Not unique fields results in an entry for each distinct
value (nondense index)

• Multiple secondary indexes for the same file

• Requires more space and longer search time

CS 377 [Spring 2017] - Ho

Example: Secondary Index (Dense)

CS 377 [Spring 2017] - Ho

Summary of Types of Indexes

Search key used for
ordering of file

Search key not used
for ordering of file

Search key is key of
relation

Primary index —
sparse

Secondary index (key)
— dense

Search key is not key
of relation

Clustering index —
sparse

Secondary index
(nonkey) — dense or

sparse

Multi-level Index

• What if index can’t fit in
memory?

• What if we want faster
search than log2(n)?

• Solution: An index file is also
a data file — create an index
on the index file

CS 377 [Spring 2017] - Ho

Example: Multi-level Index

50
30

70
20

40
80

10
100

60
90

10
20
30
40

50
60
70
...

10
50
90
...

First level is
dense

Second level
is sparse

unordered file (according
to search key)

CS 377 [Spring 2017] - Ho

Hash Index

Hash Function

• A hash function, h, is a function
which transforms a search key
from a set K, into an index in a
table of size n 
h: K —> {0, 1, …, n-2, n-1}

• Bucket is a location (slot) in the
bucket array (or the hash table)

• Different search keys can be
hashed into the same bucket

CS 377 [Spring 2017] - Ho

Hash Function: Properties

• Minimize collisions (different hash keys should hash to
different values whenever possible)

• Uniform — each bucket is assigned the same number of
search key values from the set of all possible values

• Random — each bucket will have the same number of
records assigned to it irrespective of the actual
distribution of search-key values in the file

• Be easy and quick to compute

CS 377 [Spring 2017] - Ho

Hash Function: Usage

• The mark of a computer scientist is their belief in hashing

• Possible to insert, delete, and lookup items in a large
set in O(1) time per operation

• Widely used in a variety of applications

• Cryptography, table or database lookup, caches for
large datasets, finding duplicate records, finding similar
“items”, etc.

CS 377 [Spring 2017] - Ho

Hash Index

• Hash function, h, distributes all search-key values to a
collection of buckets

• Each bucket contains a primary page plus overflow
pages

• Buckets contain data entries

• Entire bucket has to be searched sequentially to locate
a record (since different search-key values may be
mapped to same bucket)

CS 377 [Spring 2017] - Ho

Example: Hash Index

CS 377 [Spring 2017] - Ho

Bucket Overflows
• Causes of bucket overflows

• Insufficient buckets

• Skew in distribution of records

• Multiple records with the same search-key value

• Hash function produces non-uniform distribution

• Overflow chaining links the buckets together to handle
when a certain bucket has a large number of entries

CS 377 [Spring 2017] - Ho

Example: Overflow Hash

Hash Index Query

• Compute hash value h(x)

• Read the disk block pointed
to by the block pointer h(x)
into memory

• Linear search the bucket for
x, ptr(x)

• Use ptr(x) to access x on
disk

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html

CS 377 [Spring 2017] - Ho

Hash Index Insert/Deletion

• Hash the new item h(x)

• Find the hash bucket for the item

• Add/delete item from hash bucket

• If there is insufficient space, allocate an overflow
bucket and then add it to the overflow bucket

CS 377 [Spring 2017] - Ho

Static Hashing Issues

Databases grow and shrink with time, while static hashing
assumes a fixed set of B bucket addresses

• If initial number of buckets is too small, performance
will degrade due to too much overflow

• If space allocated for anticipated growth or database
shrinks, buckets will be underutilized and space will be
wasted

CS 377 [Spring 2017] - Ho

Fixing Static Hashing

• One solution: periodic re-organization of the file with new
hash functions

• Expensive — rehash all keys into a new table!

• Disrupts normal operations

• Another (better) solution: dynamic hashing techniques
that allow size of the hash table to change with relative
low cost

CS 377 [Spring 2017] - Ho

Extendible Hashing (Fagin, 1979)

Main idea:

• Directory of pointers to the buckets

• Double the number of buckets by splitting just the
bucket that overflowed

• Directory is much smaller than file, so doubling it is
cheaper

CS 377 [Spring 2017] - Ho

Extendible Hashing Structure

CS 377 [Spring 2017] - Ho

Example: Instructor Table

10101 	Srinivasan	Comp. Sci. 	65000 	
12121 	Wu 	Finance 	90000
15151 	Mozart 	Music 	40000
22222 	Einstein 	Physics 	95000
32343 	El Said 	History 	60000	
33456 	Gold 	Physics 	87000
45565 	KaJ 	Comp. Sci. 	75000
58583 	Califieri 	History 	62000
76543 	Singh 	Finance 	80000
76766 	Crick 	Biology 	72000	
83821 	Brandt 	Comp. Sci. 	92000	
98345 	Kim 	Elec. Eng. 	80000	

Instructor(ID, Lname, Department, Salary) and want to build
a secondary index on the department attribute

CS 377 [Spring 2017] - Ho

Example: Hash Index For Dept

!"#$%&'(" !"!"#$%&'("#

$%&'&() **+* ++*+ ++++ +*++ **+* ++** **++ ****
,&-./ 01%/ ++++ ***+ **+* *+** +**+ **++ *++* ++*+
2'31/ 24(/ *+** **++ +*+* ++** ++** *++* ++*+ ++++
5%46413 +*+* **++ +*+* **** ++** *++* +**+ ++++
7%89&:) ++** *+++ +++* ++*+ +*++ ++++ **++ +*+*
;<8%1 **++ *+*+ +*+* *++* ++** +**+ +++* +*++
=!)8%18 +**+ +*** **++ ++++ +**+ ++** **** ***+

We will use high-order bits (left —> right)

CS 377 [Spring 2017] - Ho

Example: Extendible Hashing Structure

0 0

bucket 1bucket address table

hash prefix

of leading bits of the hash

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt

CS 377 [Spring 2017] - Ho

Example: Extendible Hashing Structure (2)
Insert 3 new tuples: (15151, Mozart, Music, 40000),  
 (10101, Srinivasan, Comp. Sci, 90000),  
 (12121, Wu, Finance, 90000)

1 1

bucket address table

hash prefix

1

15151 Music 40000

10101
12121

Srinivasan 90000
Wu 90000

Mozart

Comp. Sci.
Finance

Insert next tuple (22222, Einstein, Physics, 95000) with
leading hash bit = 1

CS 377 [Spring 2017] - Ho

Example: Extendible Hashing Structure
Matches the 2nd bucket and overflows => increase

the hash prefix and have the new bucket

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

CS 377 [Spring 2017] - Ho

Example: Extendible Hashing Structure

3

1

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

32343 El Said History 60000

3

CS 377 [Spring 2017] - Ho

Other Dynamic Hashing Schemes

• Dynamic hashing (Larson, 1978): precursor to extendible
hashing with the main difference in the organization of the
directory with tree-structured directory with internal
nodes and leaf nodes

• Linear hashing (Litwin, 1980): allows incremental growth
without needing a directory at the cost of more bucket
overflows

CS 377 [Spring 2017] - Ho

Dynamic Hashing Properties

• Benefits

• Hash performance does not degrade with growth of
file

• Minimal space overhead

• Disadvantages

• Additional level of indirection on lookup (2 block access
instead of one)

CS 377 [Spring 2017] - Ho

Ordered Files vs Hashing

• Relative frequency of insertions and deletions

• Ordered files are much more expensive to keep sorted

• Cost of periodic re-organization in hashing

• Is average access time more important than worst-case
access time?

CS 377 [Spring 2017] - Ho

Ordered Files vs Hashing

• What types of queries are expected?

• Hashing is good for equality

• Ordered files are preferred if range queries are
common

CS 377 [Spring 2017] - Ho

B+-Tree

CS 377 [Spring 2017] - Ho

B+-Tree

• Dynamic, multi-level tree data structure

• Adjusted to be height-balanced (all leaf nodes are at
same depth)

• Good performance guarantee — supports efficient
equality and range search

• Widely used in DBMS

CS 377 [Spring 2017] - Ho

B+-Tree Basics

• Order p: maximum 
number of children 
at each node

• Every node contains 
m entries, with

• Minimum 50% occupancy

• Only exception is root node

https://www.simple-talk.com/iwritefor/articlefiles/735-image012.jpg

https://www.simple-talk.com/iwritefor/articlefiles/735-image012.jpg

CS 377 [Spring 2017] - Ho

B+-Tree Node Structure
• Typical node

• Ki are the search-key values

• Pi are the points to the children (for non-leaf nodes) or
pointers to records (for leaf nodes)

• Search keys in nodes are ordered

• K1 < K2 < … < Kn-1

P1 K1 P2 Pn-1 Kn-1 Pn…

 23 56

To keys
23≤ k<56

To keys
56≤ k

To keys
k<23

B+-Tree: Non-Leaf Node

• Multi-level sparse index on the
leaf nodes

• All search-keys in the subtree to
which P1 points to are less than
K1

• All search-keys in the subtree to
which Pn points to have values
greater than Kn-1

CS 377 [Spring 2017] - Ho

B+-Tree: Leaf Node
• All pointers (except the last one) point to tuples or

records

• Search key values are sorted in order

• Last pointer (Pn) points to next leaf node in search-key
order

 20 30

From a
non-leaf node

Last pointer: to the next leaf node

20 Susan 2.7

30 James 3.6

50 Peter 1.8

… … …

points to tuple

CS 377 [Spring 2017] - Ho

Example: B+-Tree

Figure from Database System Concepts book

Brandt Califieri Crick	 Einstein El Said	 Gold Ka6 Kim	 Mozart Singh	 Srinivasan Wu	

Internal nodes

Root node

Leaf nodes

10101  Srinivasan Comp. Sci. 	65000	
12121  Wu 	 	 Finance	 	90000	
15151 Mozart 	 Music 	 	40000	
22222 Einstein 	 Physics	 	95000	
32343 El Said	 	 History	 	80000	
33456 Gold 	 	 Physics	 	87000	
45565 Ka6 	 	 Comp. Sci. 	75000	
58583 Califieri 	 History	 	60000	
76543 Singh	 	 Finance	 	80000	
76766 Crick	 	 Biology	 	72000	
83821 Brandt	 	 Comp. Sci. 	92000	
98345 Kim 	 	 Elec. Eng. 	80000	
	

Einstein Gold	

 Mozart	

Srinivasan 	

CS 377 [Spring 2017] - Ho

B+-Tree Search

• Start from root

• Examine index entries in non-leaf nodes to find the
correct children

• Searched using a binary or linear search

• Traverse down the tree until a leaf node is reached

CS 377 [Spring 2017] - Ho

Example: B+-Tree Exact Query

Brandt Califieri Crick	 Einstein El Said	 Gold Ka6 Kim	 Mozart Singh	 Srinivasan Wu	

Internal nodes

Root node

Leaf nodes

10101  Srinivasan Comp. Sci. 	65000	
12121  Wu 	 	 Finance	 	90000	
15151 Mozart 	 Music 	 	40000	
22222 Einstein 	 Physics	 	95000	
32343 El Said	 	 History	 	80000	
33456 Gold 	 	 Physics	 	87000	
45565 Ka6 	 	 Comp. Sci. 	75000	
58583 Califieri 	 History	 	60000	
76543 Singh	 	 Finance	 	80000	
76766 Crick	 	 Biology	 	72000	
83821 Brandt	 	 Comp. Sci. 	92000	
98345 Kim 	 	 Elec. Eng. 	80000	
	

Einstein Gold	

 Mozart	

Srinivasan 	

SELECT * FROM instructor WHERE name = ‘Katz’;
Katz < Mozart

Katz > Gold

CS 377 [Spring 2017] - Ho

Example: B+-Tree Range Query

Brandt Califieri Crick	 Einstein El Said	 Gold Ka6 Kim	 Mozart Singh	 Srinivasan Wu	

Internal nodes

Root node

Leaf nodes

10101  Srinivasan Comp. Sci. 	65000	
12121  Wu 	 	 Finance	 	90000	
15151 Mozart 	 Music 	 	40000	
22222 Einstein 	 Physics	 	95000	
32343 El Said	 	 History	 	80000	
33456 Gold 	 	 Physics	 	87000	
45565 Ka6 	 	 Comp. Sci. 	75000	
58583 Califieri 	 History	 	60000	
76543 Singh	 	 Finance	 	80000	
76766 Crick	 	 Biology	 	72000	
83821 Brandt	 	 Comp. Sci. 	92000	
98345 Kim 	 	 Elec. Eng. 	80000	
	

Einstein Gold	

 Mozart	

Srinivasan 	

SELECT * FROM instructor WHERE name > “El Said” 
AND name < “Singh”;

El Said < Mozart

El Said < Gold

Find El Said

Follow pointer until you hit upper bound

CS 377 [Spring 2017] - Ho

B+-Tree Insert

• Find the leaf node in which the search-key value would
appear

• If the search-key value is already present in the leaf node

• Add the record to the file

• Add pointer to the bucket (if necessary)

CS 377 [Spring 2017] - Ho

B+-Tree Insert

• If search-key value is not present

• Add record to main file

• If room in the leaf node, insert (key, pointer) pair in leaf
node

• Otherwise split the node along with the new (key,
pointer) pair

CS 377 [Spring 2017] - Ho

Example: B+-Tree Insert

Brandt Califieri Crick	 Einstein El Said	 Gold Ka6 Kim	 Mozart Singh	 Srinivasan Wu	

Internal nodes

Root node

Leaf nodes

10101  Srinivasan Comp. Sci. 	65000	
12121  Wu 	 	 Finance	 	90000	
15151 Mozart 	 Music 	 	40000	
22222 Einstein 	 Physics	 	95000	
32343 El Said	 	 History	 	80000	
33456 Gold 	 	 Physics	 	87000	
45565 Ka6 	 	 Comp. Sci. 	75000	
58583 Califieri 	 History	 	60000	
76543 Singh	 	 Finance	 	80000	
76766 Crick	 	 Biology	 	72000	
83821 Brandt	 	 Comp. Sci. 	92000	
98345 Kim 	 	 Elec. Eng. 	80000	
	

Einstein Gold	

 Mozart	

Srinivasan 	

INSERT INTO instructor(name) VALUES(‘Adams’);

No room in the
leaf - split into 2

CS 377 [Spring 2017] - Ho

Example: B+-Tree Insert

 Adams Brandt 	 Califieri Crick	

Split so that Adams and Brandt on one side, Califieri and Crick on the other

Since we are introducing new leaf node, we need to update the parent leaf…

Adams Brandt	 Califieri Crick	 Einstein El Said	 Gold Ka8 Kim	 Mozart Singh	 Srinivasan Wu	

Califieri Einstein Gold	 Srinivasan 	

Mozart 	

CS 377 [Spring 2017] - Ho

Example: B+-Tree Insert

INSERT INTO instructor(name) VALUES(‘Lamport’);

No room in the leaf - split into 2

Adams Brandt	 Califieri Crick	 Einstein El Said	 Gold Ka8 Kim	 Mozart Singh	 Srinivasan Wu	

Califieri Einstein Gold	 Srinivasan 	

Mozart 	

CS 377 [Spring 2017] - Ho

Example: B+-Tree Insert
But after split, there is no room in the parent node either, so parent
needs to be split which affects the root

Califieri Einstein 	 Srinivasan 	

 Gold Mozart 	

 Kim 	

Adams Brandt	 Califieri Crick 	 Einstein El Said 	 Gold Ka; 	 Kim Lamport 	 Mozart Singh 	 Srinivasan Wu 	

CS 377 [Spring 2017] - Ho

B+-Tree Deletion
• Find the leaf node in which the search-key value appears

and delete it from the main file and bucket

• Delete the (key, pointer) pair from the leaf node

• If underflow occurs (leaf node is under minimum size)

• Merge with sibling (reduce tree pointers from parent
nodes)

• Redistribute entries from left or right sibling if merge
not possible

CS 377 [Spring 2017] - Ho

Example: B+-Tree Delete

DELETE FROM instructor where name = ‘Srinivasan’;

Adams Brandt	 Califieri Crick	 Einstein El Said	 Gold Ka8 Kim	 Mozart Singh	 Srinivasan Wu	

Califieri Einstein Gold	 Srinivasan 	

Mozart 	

After the deletion, only Wu is in the leaf node, and that is
too empty since it needs to be at least 50% occupied =>
must merge with a sibling node or redistribute entries
between the nodes

CS 377 [Spring 2017] - Ho

Example: B+-Tree Delete

Adams Brandt Califieri Crick Einstein El Said Gold Ka7 Kim Mozart Singh Wu

Califieri Einstein

 Gold

Mozart

Merged with the previous sibling and delete from
parent, but parent also only has one pointer so we
must either merge or redistribute… since merging is
not possible, must redistribute

CS 377 [Spring 2017] - Ho

Example: B+-Tree Delete

DELETE FROM instructor where name = ‘Singh’;

Adams Brandt Califieri Crick Einstein El Said Gold Ka7 Kim Mozart Singh Wu

Califieri Einstein

 Gold

Mozart

Easy case - just delete!

CS 377 [Spring 2017] - Ho

Example: B+-Tree Delete

Adams Brandt Califieri Crick Einstein El Said Gold Ka7 Kim Mozart Wu

Califieri Einstein

 Gold

Mozart

DELETE FROM instructor where name = ‘Wu’;

Deleting Wu makes the leaf undefiled and not
possible to merge with sibling - so redistribute

CS 377 [Spring 2017] - Ho

Example: B+-Tree Delete

Adams Brandt Califieri Crick Einstein El Said Gold Ka7 Kim Mozart

Califieri Einstein

 Gold

 Kim

Update parent node to
reflect new redistribution

CS 377 [Spring 2017] - Ho

Example: B+-Tree Delete

Adams Brandt Califieri Crick Einstein El Said Gold Ka7 Kim Mozart

Califieri Einstein

 Gold

 Kim

DELETE FROM instructor where name = ‘Gold’;

Merge Katz with the sibling on the right

If we merge the leaf nodes,
only one pointer left here!

CS 377 [Spring 2017] - Ho

Example: B+-Tree Delete

Delete original root node to avoid condition where root has only one child

Depth of tree has now decreased by 1!

Adams Brandt Califieri Crick Einstein El Said Ka5 Kim Mozart

Califieri Einstein Gold

CS 377 [Spring 2017] - Ho

B+-Tree: Dealing with Duplicates

• Can have many data entries with the same key value
(e.g., Year of a movie)

• Solution 1:

• All entries with a given key value reside on a single
page

• Use overflow pages

CS 377 [Spring 2017] - Ho

B+-Tree: Dealing with Duplicates

• Solution 2:

• Allow duplicate key values in data entries

• Modify search to deal with duplicates

CS 377 [Spring 2017] - Ho

B+-Tree Performance

• How many I/O’s are required for each operation?

• Worst case cost of insertion / deletion are proportional
to the height of the tree (more or less)

• Height is roughly the logn/2 (number of records)

• Fanout can be typically large (in the hundreds) - many
keys and pointers can fit into one block

• A 4-level tree is enough for “typical” tables

CS 377 [Spring 2017] - Ho

B+-Tree Index Files

• Alternative to indexed-sequential files

• Cool visualization - https://www.cs.usfca.edu/~galles/
visualization/BPlusTree.html

• (Pro) Automatically reorganizes itself with small, local
changes when dealing with insertions/deletions

• (Pro) Reorganization of entire file is not required to
maintain performance

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

CS 377 [Spring 2017] - Ho

B+-Tree Index Files

• (Con) Extra insertion and deletion overhead

• However, I/O operations is proportion to height of tree
and therefore low

• (Con) Additional space required

CS 377 [Spring 2017] - Ho

Index Structures
• Hash index

• Good for equality search

• In expectation: O(1) I/Os and CPU performance for
search and insert

• B+ tree index

• Good for range and equality search

• O(logF(N)) I/O cost for search, insert, and delete

CS 377 [Spring 2017] - Ho

SQL Index

• PRIMARY KEY declaration automatically creates a
primary index

• UNIQUE key automatically creates a secondary index

• Additional secondary indexes can be created on non-key
attributes 
CREATE INDEX <indexName> ON <Relation>(<attr>);

• Example: Company Database  
CREATE INDEX employeeAgeIdx ON Employee(Age);

CS 377 [Spring 2017] - Ho

Multiple-Key Access

• What if we want to access more than one attribute such
as a combination of attributes?

• Example: 
SELECT * from EMPLOYEE WHERE dno = 4 AND age =
59;

• Assume that we may have created index on dno and/or
age

CS 377 [Spring 2017] - Ho

Multiple-Key Access Strategies

• Dno has index: access tuples with dno=4 using index
then do linear search to satisfy age = 59

• Age has index: access tuples with age = 59 using the
index and then do linear search to satisfy dno = 4

• Both have indices: get pointer sets and find intersection

What if the number of records that meet each
condition is individually large, but the intersection is

small? Are the methods efficient?

CS 377 [Spring 2017] - Ho

Composite Search Keys
• Search on a combination of attributes (e.g., age and dno)

• Lexicographic ordering (a1, a2) < (b1, b2) if either

• a1 < b1 or

• a1 = b1 and a2 < b2

• Suppose we have an index on (dno, age)

• Can efficiently handle queries with dno = 4 and age = 59

• Can also efficiently handle cases with dno = 4 and age < 59

CS 377 [Spring 2017] - Ho

Beyond B+-Tree and Hashing

• Tree-based indexes: R-trees and variants, GIST, etc.

• Text indexes: inverted-list index, suffice arrays, etc.

• Other tricks: bitmap index, bit-sliced index, etc.

CS 377 [Spring 2017] - Ho

Choosing Indexes
• What indexes should we create?

• Which relations should have indexes?

• What field(s) should be in the search key?

• Should we build several indexes?

• For each index, what kind should it be?

• Clustered?

• Hash/tree?

CS 377 [Spring 2017] - Ho

Choosing Indexes

• Consider best plan using current index and see if a better
plan is possible with an additional index — if so, create

• Must understand how DBMS evaluates queries and
creates query evaluation plans

• Consider tradeoffs: faster queries but slower updates
and more storage

CS 377 [Spring 2017] - Ho

Choosing Indexes
• Attributes in WHERE clause are candidates for index keys

• Exact match condition suggests hash index

• Indexes also speed up joins

• Range query suggests tree index

• Multi-attribute search keys should be considered when a
WHERE clause contains several conditions

• Order of attributes is important for range queries

CS 377 [Spring 2017] - Ho

Index Demo on IMDB

CS 377 [Spring 2017] - Ho

Tuning Indexes

• Initial choice of indexes may have to be revised

• Certain queries may take too long to run without an
index

• Certain indexes may not get used at all

• Certain indexes undergo too much updating because
the attribute undergoes frequent changes

CS 377 [Spring 2017] - Ho

Indexing: Recap

• Index Overview

• Hash index

• B+-Tree

• Composite search keys

• Choosing indexes

