
Data Storage & IO Models
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Review: Course Material to Date
• How to use a databases and how great they are

• Data modeling with ER

• Relational model

• Query languages (relational algebra, relational calculus,
SQL)

• SQL application programming

• Database design

CS 377 [Spring 2017] - Ho

Context: Rest of Course
• “Peeking under the hood”

• Where the data is located and how to keep track of them

• How to process SQL queries

• Why do certain queries run faster than others?

• Why did we learn relational algebra when SQL is
easier?

• How to allow concurrency and transaction semantics

CS 377 [Spring 2017] - Ho

DMBS Architecture

Query Optimization /
Execution

Storage Manager

query

data access

I/O access

CS 377 [Spring 2017] - Ho

Today’s Lecture

1. Typical storage hierarchy

2. File organization

CS 377 [Spring 2017] - Ho

Computer System Overview

http://www.doc.ic.ac.uk/~eedwards/compsys/memory/memory.gif

http://www.doc.ic.ac.uk/~eedwards/compsys/memory/memory.gif

CS 377 [Spring 2017] - Ho

Memory Hierarchy

CPU cache

Main Memory

Flash Storage

Magnetic Hard Disk Drive

access
speed capacity

price

Magnetic Tape

CS 377 [Spring 2017] - Ho

Jim Gray’s Storage Latency Analogy

109 Tape Andromeda 2,000 Years

106 Disk Pluto 2 years

100 Memory Atlanta 1.5 hours

10 On board chip This building 10 min

2 On chip cache This room

1 register In my head 1 min

How far away is the data?

CS 377 [Spring 2017] - Ho

Typical Storage Hierarchy

• Main memory (RAM) for currently used data

• Disk for main database (secondary storage)

• Tapes for archiving older versions of the data (tertiary
storage)

CS 377 [Spring 2017] - Ho

Why Not Just Main Memory?

• Main memory is volatile (not persistent)

• Main memory has relatively high cost

• $100 = 16 GB of RAM or 2 TB of disk (approximately)

• High-end databases sit in the 10-100 TB range

CS 377 [Spring 2017] - Ho

Disks & Files

• How does a DBMS store and access data?

• Disk & main memory

• Why is this important?

• READ/WRITE: transfer data from disk <—> main
memory

• Both are high-cost operations —> major implications
on database design

Components of Hard Disk
• Data is encoded in concentric

circles of sectors called tracks

• Disk head: mechanism to
read / write data

• Boom (disk arm) moves to
position disk head on the
desired track

• Exactly one head reads/writes
at any time

CS 377 [Spring 2017] - Ho

Hard Disks

• Data is stored and retrieved in units called disk blocks or
pages

• Typical numbers these days are 64 KB per block

• Retrieval time depends upon the location of the disk

• Placement of blocks on disk has major impact on
DBMS performance

CS 377 [Spring 2017] - Ho

Understanding Block Access Time

• Time to access (read/write) a page

• Seek time: move arms to position disk head on track

• Rotational delay: wait for page to rotate under head

• Transfer time: move data to/from disk surface

CS 377 [Spring 2017] - Ho

Block Access: Dominant Factors

• Seek time and rotational delay are dominant factors

• Seek time: ~ 0 to 10 ms

• Rotational delay: ~ 0 to 10 ms

• Transfer rate: ~100 MB / s

CS 377 [Spring 2017] - Ho

Disk Access Situations

• Random access: collection of short processes that
execute in parallel, share the same disk, and cannot be
predicted in advance

• Very expensive I/O

• Sequential access: blocks are accessed in a sequence
that can be predicted (e.g., accessing all the records in a
single relation)

• Much less expensive I/O

CS 377 [Spring 2017] - Ho

Example: Disk Specifications

• What are I/O rates for block size of 4 KB?

• Random workload: ~0.3 MB/s

• Sequential workload: ~210 MB/s

Capacity 3TB
RPM 7,200

Average Seek Time 9 ms
Max Transfer Rate 210 MB/s

Platters 3

Seagate HDD

CS 377 [Spring 2017] - Ho

Speeding up Disk Access
• Blocks in a file should be arranged sequentially on disk to

minimize seek and rotational delay

• ‘Next’ block concept

• Blocks on same track

• Blocks on same cylinder

• Blocks on adjacent cylinder

• For sequential scan, pre-fetch several blocks at a time!

Disk	

Main	Memory	

Buffer	

Buffer

• Buffer is region of physical
memory used to store
temporary data

• For purpose of this class,
think of it as an intermediary
between RAM and disk

• Key idea: Reading / writing to
disk is slow - so prefetch /
cache data

CS 377 [Spring 2017] - Ho

Buffer Manager
• Data should be in RAM for DBMS to operate on it

efficiently

• All pages may not fit into main memory

• Buffer manager is responsible for bringing blocks from
disk to main memory as needed

• Allocate space in the buffer if not exist (replace some
other block to make space for new block)

• Reads the block from disk to buffer

CS 377 [Spring 2017] - Ho

Buffer Manager (Pictorially)

http://courses.cs.washington.edu/courses/csep544/14wi/video/archive/html5/csep544_14wi_6/slide487.jpg

http://courses.cs.washington.edu/courses/csep544/14wi/video/archive/html5/csep544_14wi_6/slide487.jpg

CS 377 [Spring 2017] - Ho

DBMS vs. OS File System

Why not let OS handle disk management and buffer
management?

• DBMS better at predicting reference patterns

• Buffer management is necessary to implement
concurrency control and recovery

• More control of the overlap of I/O with computation

• Leverage multiple disks more effectively

CS 377 [Spring 2017] - Ho

Data Store Overview

Memory DBMS

blocks

Records 
(tuples)

Blocks  
(pages)

Files

Disk

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 60000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 62000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

Records

• Records contain fields
which have values of a
particular type 
(e.g., amount, date,
time, age)

• Fields themselves may
be fixed length or
variable length

CS 377 [Spring 2017] - Ho

Blocks
Blocks contain records

• Unspanned: records must be within one block, simple
but can lead to unused space

• Spanned: record size can be larger than block size,
pointer to rest of record

CS 377 [Spring 2017] - Ho

Files

• Disk space is organized into files

• Files consist of blocks (pages)

• Blocks consist of records (tuples)

• Organization of records in files

• Heap

• Ordered (sequential)

CS 377 [Spring 2017] - Ho

Unordered (Heap) Files

• Contains records in no particular order

• New records are inserted at the end of the file

• Insert: very efficient, last disk block of file is copied into
buffer, add new record, and rewrite back onto disk

• Linear search: O(b)

• Reading the records in order of a particular filed requires
sorting the file records

Ordered (Sequential) File
• File whose records are sorted by

some attribute (usually its
primary key)

• Search: binary search in
O(log2(b))

• Insert: more expensive to keep
records in ordered file

• Reading the records in order of
the ordering field is quite efficient

CS 377 [Spring 2017] - Ho

Average Access Times

CS 377 [Spring 2017] - Ho

External Sort-Merge

CS 377 [Spring 2017] - Ho

Importance of Sort Algorithms

• Data requested from DB in sorted order is extremely
common

• Example: Find students by last name or first name

• Why not just use quicksort in main memory?

• What if we need to sort 1 TB of data with 16 GB of
RAM?

CS 377 [Spring 2017] - Ho

Importance of Sort Algorithms

• Sorting is used for eliminating duplicate copies in a
collection of records

• Sorting is needed for the ordered sequential file during
bulk load

• Sort-merge join algorithm involves sorting (more on this
several lectures later)

CS 377 [Spring 2017] - Ho

External Merge Algorithm

• How can we efficiently merge two sorted files when both
are much larger than our main memory?

• Key idea: To find an element that is no larger than all
elements in two lists, one only needs to compare
minimum elements from each list

• If: Then: A1  A2  · · ·  AN

B1  B2  · · ·  BM

min(A1, B1)  Ai, 8i
min(A1, B1)  Bj , 8j

CS 377 [Spring 2017] - Ho

External Sort-Merge Algorithm

• Problem: Sort r records, stored in b file blocks with a total
memory space of M blocks

• Create sorted runs with i = 0

• Read M blocks of relation into memory

• Sort the in-memory blocks

• Write sorted data to run Ri, increment i

CS 377 [Spring 2017] - Ho

External Sort-Merge Algorithm

• Merge the sorted runs: merge subfiles until 1 remains

• Select the first record in sort order from each of the
buffers

• Write the record to the output

• Delete the record from the buffer page, and read the
next block if empty

• Total cost: br(2dlogM�1(br/M)e+ 1)

CS 377 [Spring 2017] - Ho

Example: External Merge Sort

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19Sort fragments of

file in memory
using internal sort

— where each
run size is the

size of the block

For this example,
use block size =

3 tuples

run 1

run 2

run 3

run 4

CS 377 [Spring 2017] - Ho

Example: External Merge Sort (2)

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

Once each run is
sorted, we will

merge two runs
together at a time

merge 1

merge 2

CS 377 [Spring 2017] - Ho

Example: External Merge Sort (3)

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

Another layer of
sorted runs, so
again merge 2

runs at a time…

CS 377 [Spring 2017] - Ho

Example: External Merge Sort (4)

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

CS 377 [Spring 2017] - Ho

Data Storage: Recap

• How DBMS stores data

• Disk, main memory

• Files, blocks, records

• Organization of records in files

• External Merge Sort

