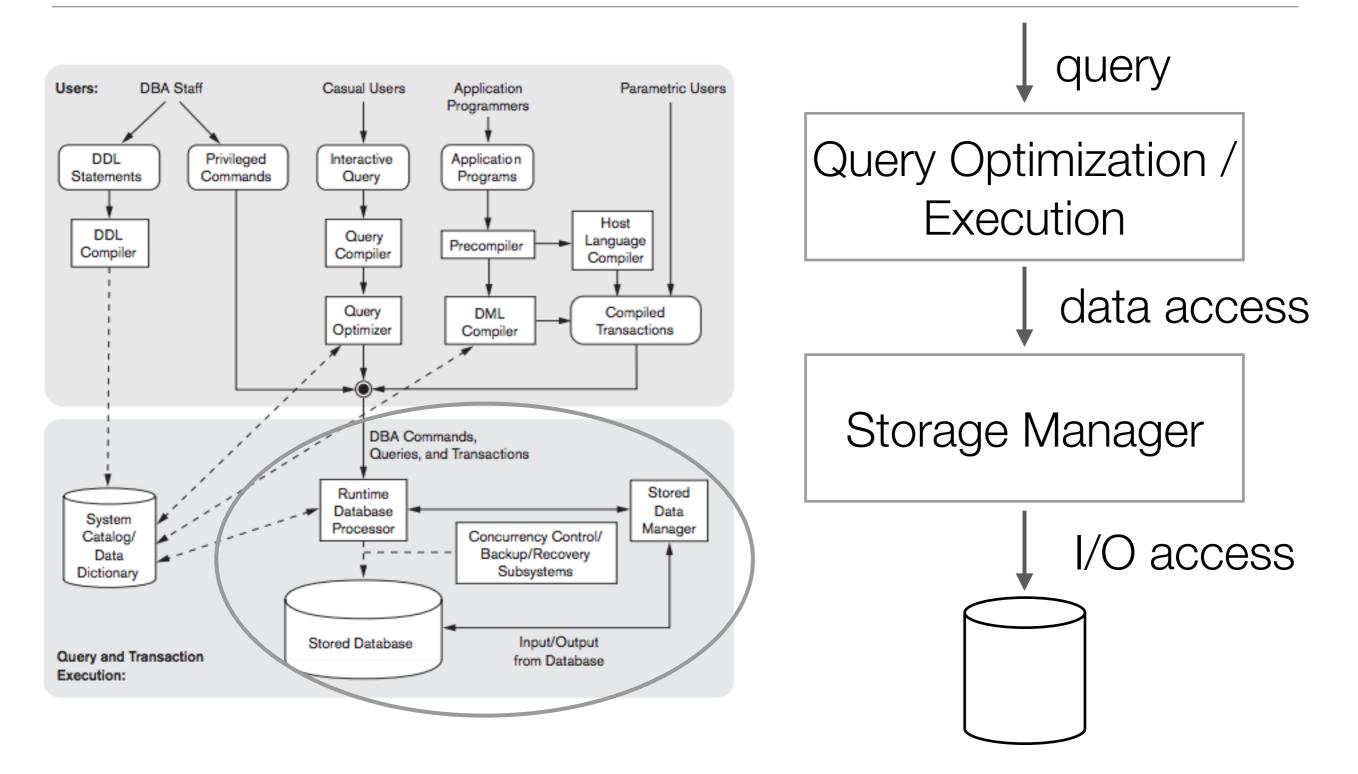
Data Storage & IO Models

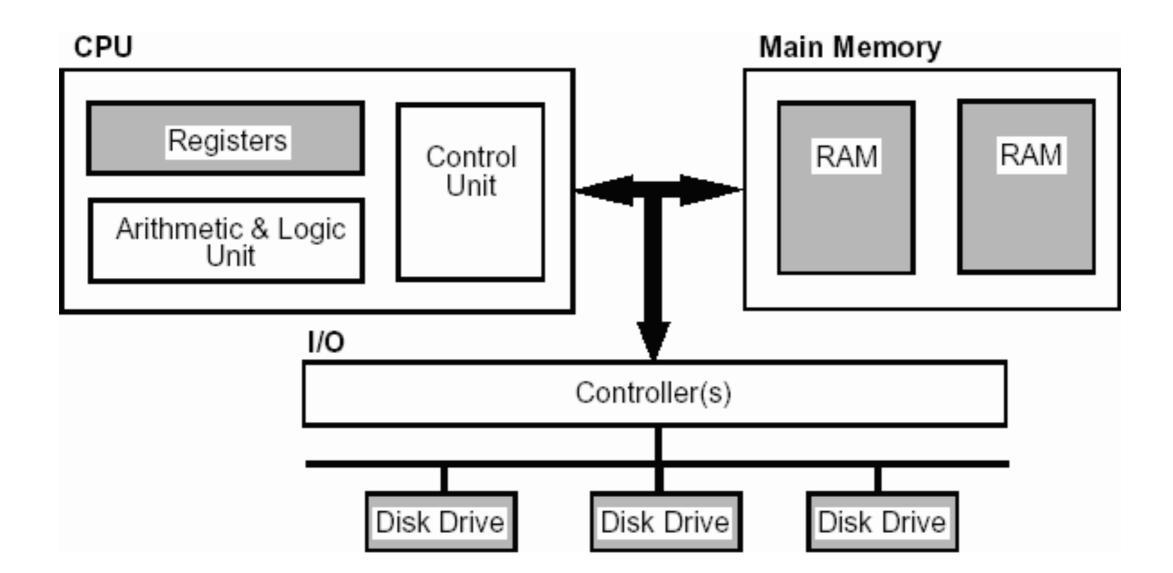
CS 377: Database Systems


Review: Course Material to Date

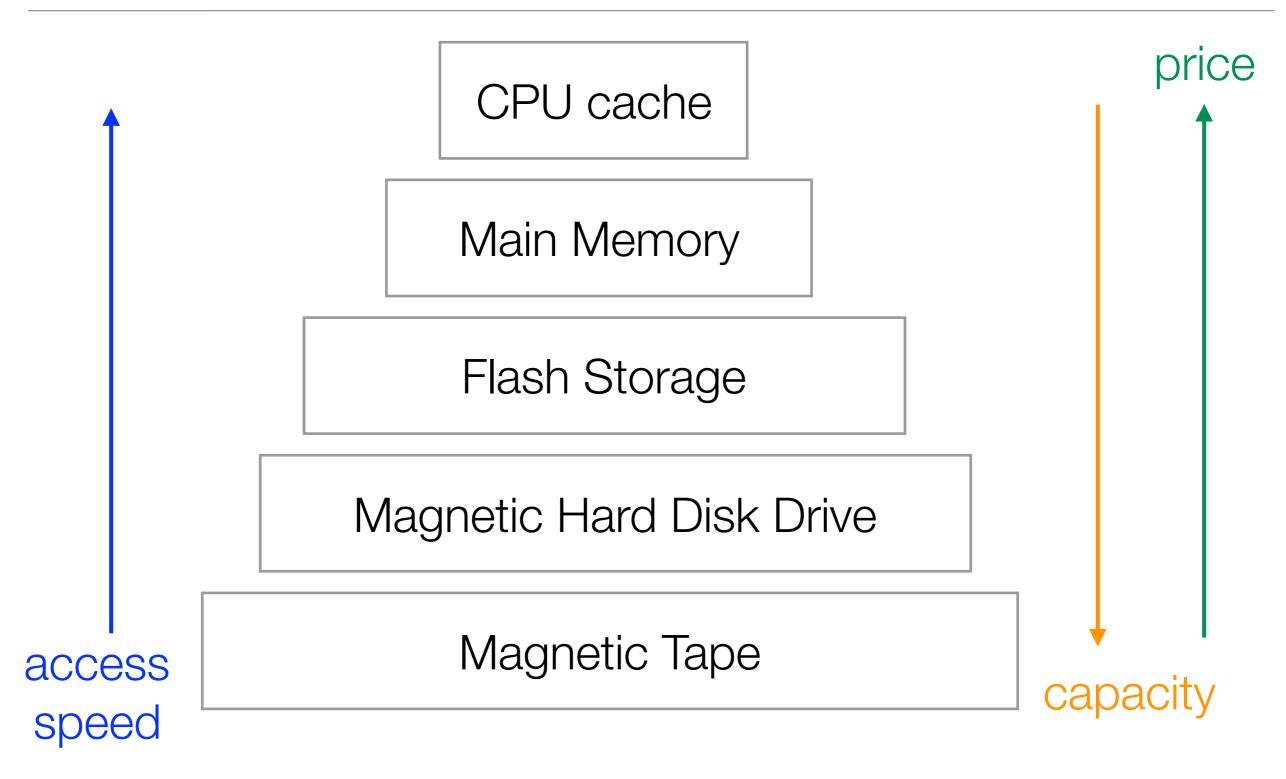
- How to use a databases and how great they are
 - Data modeling with ER
 - Relational model
 - Query languages (relational algebra, relational calculus, SQL)
 - SQL application programming
 - Database design

Context: Rest of Course

- "Peeking under the hood"
 - Where the data is located and how to keep track of them
 - How to process SQL queries
 - Why do certain queries run faster than others?
 - Why did we learn relational algebra when SQL is easier?
 - How to allow concurrency and transaction semantics


DMBS Architecture

Today's Lecture


- 1. Typical storage hierarchy
- 2. File organization

Computer System Overview

http://www.doc.ic.ac.uk/~eedwards/compsys/memory/memory.gif

Memory Hierarchy

Jim Gray's Storage Latency Analogy

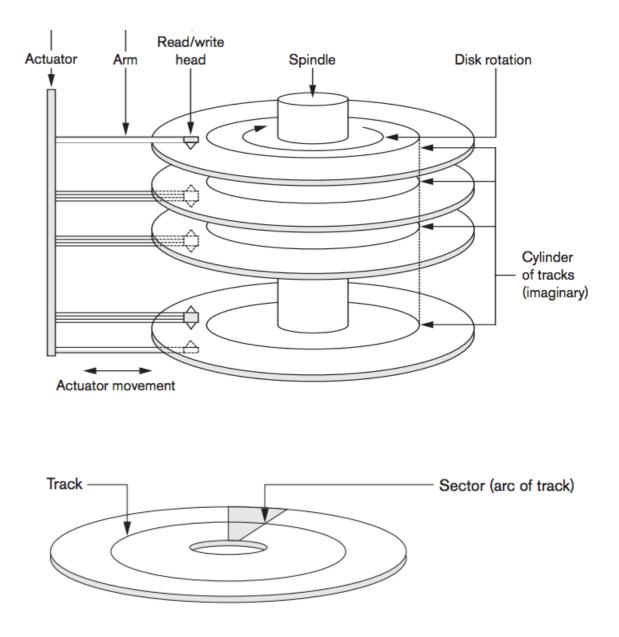
How far away is the data?

10 ⁹	Таре	Andromeda		2,000 Years
10 ⁶	Disk	Pluto		2 years
100	Memory	Atlanta	And Mailesterner	1.5 hours
10	On board chip	This building		10 min
2	On chip cache	This room		
1	register	In my head		1 min

Typical Storage Hierarchy

- Main memory (RAM) for currently used data
- Disk for main database (secondary storage)
- Tapes for archiving older versions of the data (tertiary storage)

Why Not Just Main Memory?


- Main memory is volatile (not persistent)
- Main memory has relatively high cost
 - \$100 = 16 GB of RAM or 2 TB of disk (approximately)
 - High-end databases sit in the 10-100 TB range

Disks & Files

- How does a DBMS store and access data?
 - Disk & main memory
- Why is this important?
 - READ/WRITE: transfer data from disk <—> main memory
 - Both are high-cost operations —> major implications on database design

Components of Hard Disk

- Data is encoded in concentric circles of sectors called tracks
- Disk head: mechanism to read / write data
- Boom (disk arm) moves to position disk head on the desired track
- Exactly one head reads/writes at any time

Hard Disks

- Data is stored and retrieved in units called disk blocks or pages
 - Typical numbers these days are 64 KB per block
- Retrieval time depends upon the location of the disk
 - Placement of blocks on disk has major impact on DBMS performance

Understanding Block Access Time

- Time to access (read/write) a page
 - Seek time: move arms to position disk head on track
 - Rotational delay: wait for page to rotate under head
 - Transfer time: move data to/from disk surface

Block Access: Dominant Factors

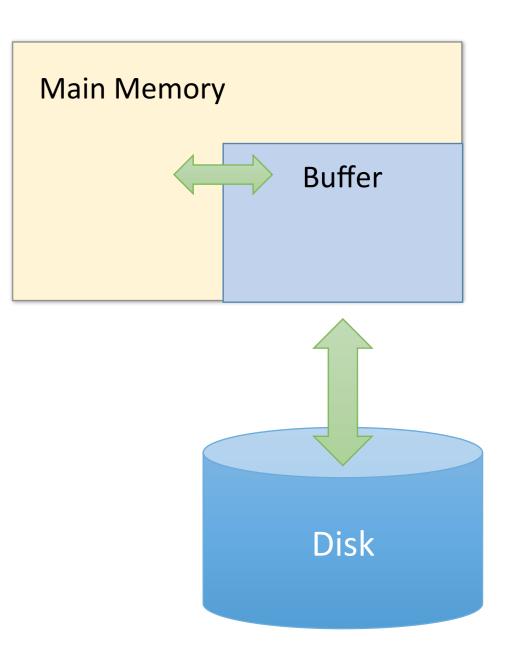
- Seek time and rotational delay are dominant factors
 - Seek time: ~ 0 to 10 ms
 - Rotational delay: ~ 0 to 10 ms
 - Transfer rate: ~100 MB / s

Disk Access Situations

- Random access: collection of short processes that execute in parallel, share the same disk, and cannot be predicted in advance
 - Very expensive I/O
- Sequential access: blocks are accessed in a sequence that can be predicted (e.g., accessing all the records in a single relation)
 - Much less expensive I/O

Example: Disk Specifications

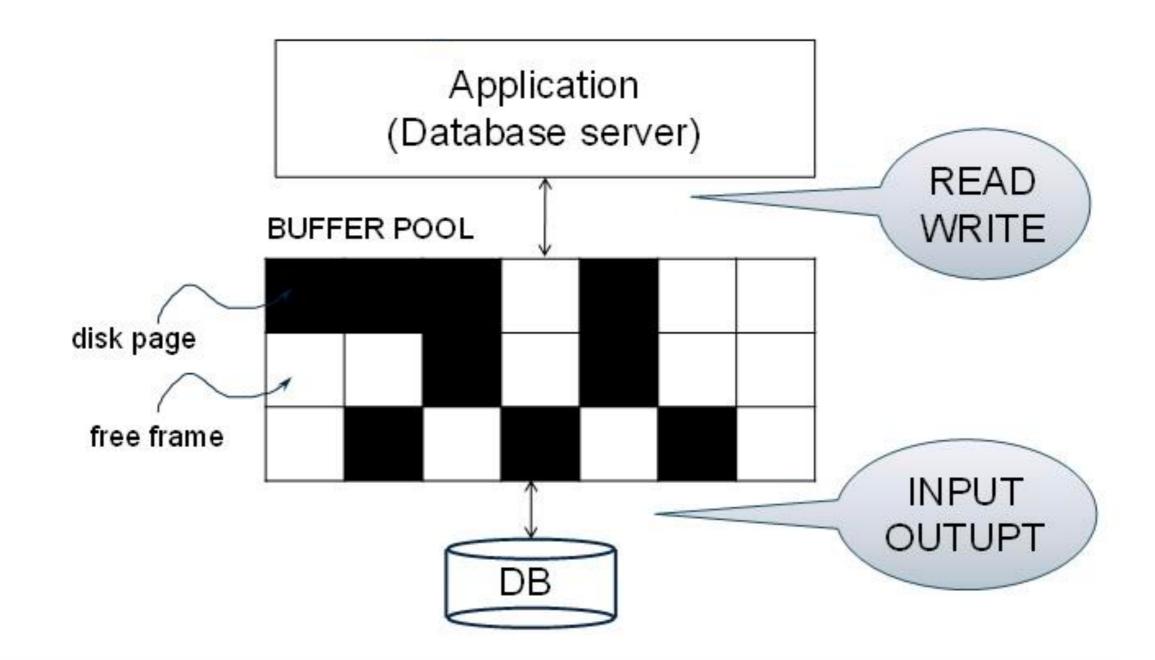
	Seagate HDD
Capacity	3TB
RPM	7,200
Average Seek Time	9 ms
Max Transfer Rate	210 MB/s
# Platters	3


- What are I/O rates for block size of 4 KB?
 - Random workload: ~0.3 MB/s
 - Sequential workload: ~210 MB/s

Speeding up Disk Access

- Blocks in a file should be arranged sequentially on disk to minimize seek and rotational delay
- 'Next' block concept
 - Blocks on same track
 - Blocks on same cylinder
 - Blocks on adjacent cylinder
- For sequential scan, pre-fetch several blocks at a time!

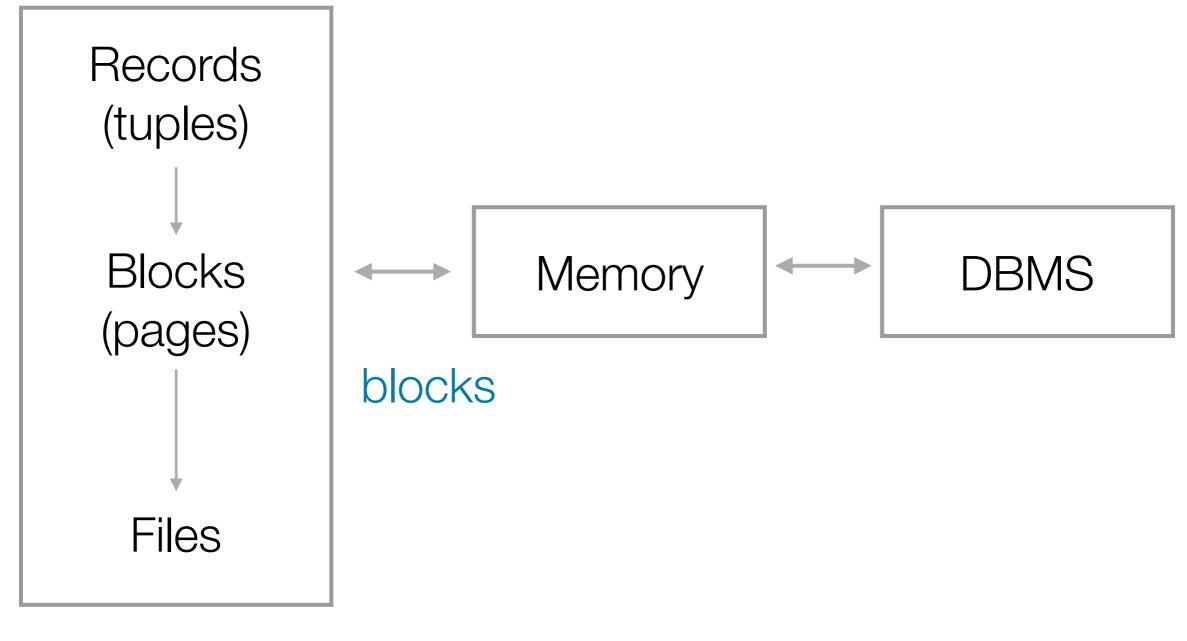
Buffer


- Buffer is region of physical memory used to store temporary data
 - For purpose of this class, think of it as an intermediary between RAM and disk
- Key idea: Reading / writing to disk is slow - so prefetch / cache data

Buffer Manager

- Data should be in RAM for DBMS to operate on it efficiently
- All pages may not fit into main memory
- Buffer manager is responsible for bringing blocks from disk to main memory as needed
 - Allocate space in the buffer if not exist (replace some other block to make space for new block)
 - Reads the block from disk to buffer

Buffer Manager (Pictorially)


http://courses.cs.washington.edu/courses/csep544/14wi/video/archive/html5/csep544_14wi_6/slide487.jpg

DBMS vs. OS File System

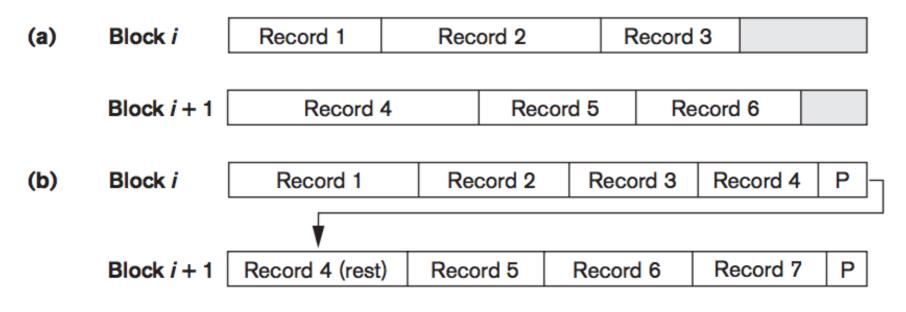
Why not let OS handle disk management and buffer management?

- DBMS better at predicting reference patterns
- Buffer management is necessary to implement concurrency control and recovery
- More control of the overlap of I/O with computation
- Leverage multiple disks more effectively

Data Store Overview

Records

- Records contain fields which have values of a particular type (e.g., amount, date, time, age)
- Fields themselves may be fixed length or variable length


reco reco recc reco reco reco reco reco reco reco reco reco

ord 0	10101	Srinivasan	Comp. Sci.	65000
ord 1	12121	Wu	Finance	90000
ord 2	15151	Mozart	Music	40000
ord 3	22222	Einstein	Physics	95000
ord 4	32343	El Said	History	60000
ord 5	33456	Gold	Physics	87000
ord 6	45565	Katz	Comp. Sci.	75000
ord 7	58583	Califieri	History	62000
ord 8	76543	Singh	Finance	80000
ord 9	76766	Crick	Biology	72000
ord 10	83821	Brandt	Comp. Sci.	92000
ord 11	98345	Kim	Elec. Eng.	80000

Blocks contain records

- Unspanned: records must be within one block, simple but can lead to unused space
- Spanned: record size can be larger than block size, pointer to rest of record

CS 377 [Spring 2017] - Ho

Files

- Disk space is organized into files
- Files consist of blocks (pages)
- Blocks consist of records (tuples)
- Organization of records in files
 - Heap
 - Ordered (sequential)

Unordered (Heap) Files

- Contains records in no particular order
- New records are inserted at the end of the file
- Insert: very efficient, last disk block of file is copied into buffer, add new record, and rewrite back onto disk
- Linear search: O(b)
- Reading the records in order of a particular filed requires sorting the file records

Ordered (Sequential) File

- File whose records are sorted by some attribute (usually its primary key)
- Search: binary search in O(log₂(b))
- Insert: more expensive to keep records in ordered file
- Reading the records in order of the ordering field is quite efficient

	Name	Ssn	Birth_date	Job	Salary	Sex
Block 1	Aaron, Ed					
	Abbott, Diane					
			•			
	Acosta, Marc					
Block 2	Adams, John					
DIOCK 2	Adams, Robin					
	Adams, Robin		:			
	Akers, Jan					
Block 3	Alexander, Ed					
	Alfred, Bob					
			:			
	Allen, Sam					
Block 4	Allen, Troy					
	Anders, Keith					
			:			
	Anderson, Rob					
Block 5	Anderson, Zach					
	Angeli, Joe					
			:			
	Archer, Sue					
			1			
Block 6	Arnold, Mack					
	Arnold, Steven					
			:			_
	Atkins, Timothy					
			•			
Block n_1	Wong James		•			
DIOCK n=1	Wong, James					
	Wood, Donald		:			
	Woods, Manny		:			
	vvoods, ividinity					
Block n	Wright, Pam					
	Wyatt, Charles					1
	,,		:	1	1	
	Zimmer, Byron					
	-		1			

Average Access Times

Table 17.2 Average Access Times for a File of *b* Blocks under Basic File Organizations

Type of Organization	Access/Search Method	Average Blocks to Access a Specific Record
Heap (unordered)	Sequential scan (linear search)	<i>b</i> /2
Ordered	Sequential scan	b/2
Ordered	Binary search	$\log_2 b$

External Sort-Merge

Importance of Sort Algorithms

- Data requested from DB in sorted order is extremely common
 - Example: Find students by last name or first name
- Why not just use quicksort in main memory?
 - What if we need to sort 1 TB of data with 16 GB of RAM?

Importance of Sort Algorithms

- Sorting is used for eliminating duplicate copies in a collection of records
- Sorting is needed for the ordered sequential file during bulk load
- Sort-merge join algorithm involves sorting (more on this several lectures later)

External Merge Algorithm

- How can we efficiently merge two sorted files when both are much larger than our main memory?
- Key idea: To find an element that is no larger than all elements in two lists, one only needs to compare minimum elements from each list
 - If: $A_1 \leq A_2 \leq \cdots \leq A_N$ Then: $\min(A_1, B_1) \leq A_i, \forall i$ $B_1 \leq B_2 \leq \cdots \leq B_M$ $\min(A_1, B_1) \leq B_j, \forall j$

External Sort-Merge Algorithm

- Problem: Sort r records, stored in b file blocks with a total memory space of M blocks
- Create sorted runs with i = 0
 - Read M blocks of relation into memory
 - Sort the in-memory blocks
 - Write sorted data to run Ri, increment i

External Sort-Merge Algorithm

- Merge the sorted runs: merge subfiles until 1 remains
 - Select the first record in sort order from each of the buffers
 - Write the record to the output
 - Delete the record from the buffer page, and read the next block if empty
- Total cost: $b_r(2\lceil \log_{M-1}(b_r/M) \rceil + 1)$

Example: External Merge Sort

Sort fragments of file in memory using internal sort where each run size is the size of the block

For this example, use block size = 3 tuples

		_	
g	24		
а	19	run 1	
d	31		
C	33		
b	14	run 2	
e	16		
r	16		
d	21	run 3	
m	3		
р	2		
d	7	run 4	
а	14		
initial			

relation

Figure 12.4 from Database System Concepts book

Example: External Merge Sort (2)

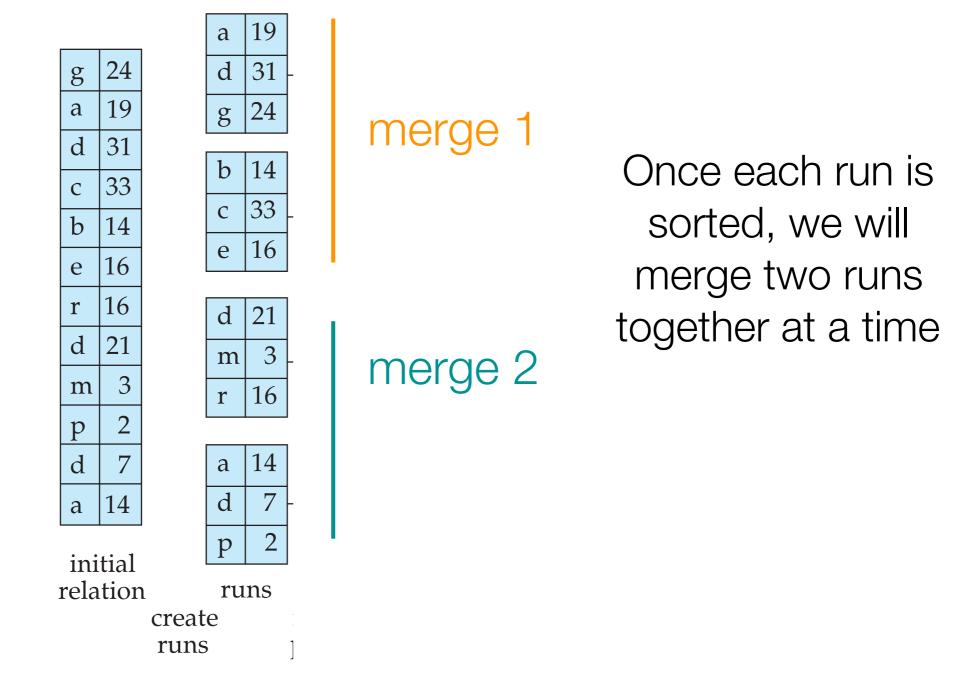


Figure 12.4 from Database System Concepts book

Example: External Merge Sort (3)

Another layer of sorted runs, so again merge 2 runs at a time...

Figure 12.4 from Database System Concepts book

Example: External Merge Sort (4)

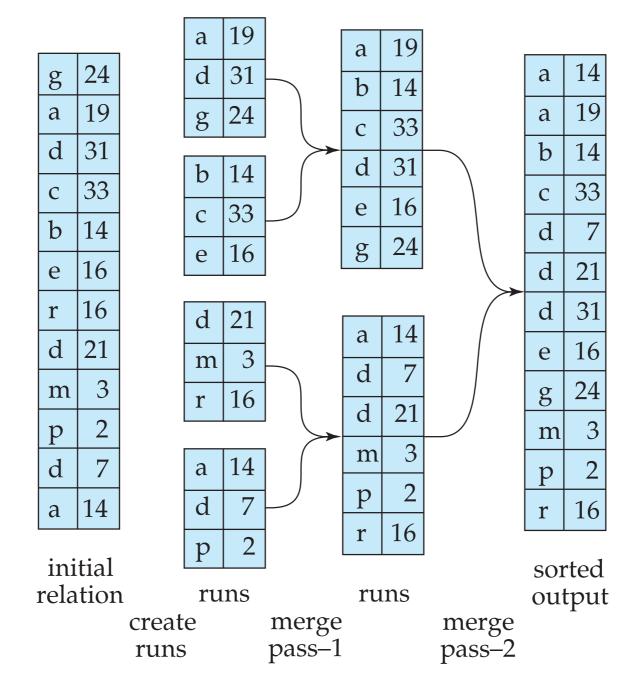


Figure 12.4 from Database System Concepts book

Data Storage: Recap

- How DBMS stores data
 - Disk, main memory
 - Files, blocks, records
 - Organization of records in files
- External Merge Sort

