
SQL Application Programming
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Recap: SQL Queries

SELECT [DISTINCT] <attribute list>  
FROM <table list>  
[WHERE <condition on the tables>]  
[GROUP BY <grouping attributes>] 
[HAVING <group condition>]  
[ORDER BY <attribute list> ASC | DESC]  
[LIMIT <number of tuples>]

CS 377 [Spring 2017] - Ho

Recap: SQL Usage
• Stand-alone: user enters SQL commands via a command

line or in a GUI

• Embedded in a host language: SQL commands are
embedded (written inside) an “ordinary” program in a high
level language (e.g., Java, C++, C, etc.)

• Library-based: SQL commands are made available
through library functions (e.g., Java, Python)

• Web-based: various languages with extensions allow
webpages to access database server

CS 377 [Spring 2017] - Ho

Today’s Lecture

1. Introduction to Database Programming

2. JDBC

3. PHP

Standard Client / Server Model

• Server: machine with specific
functionalities (e.g., file server,
print server, email server)

• Client: user machine with user
interface capabilities and local
processing

• Application / web server:
intermediate layer to check
security and process data

client

Figure 2.7 from book

server

app server

CS 377 [Spring 2017] - Ho

Typical Database Program Sequence

1. Establish / open a connection to database server —
specify url of database server and account / password
details

2. Submit database commands (e.g., queries, updates,
etc.) — most types of SQL statements can be included

3. Terminate / close the connection to the database

CS 377 [Spring 2017] - Ho

Impedence Mismatch

• Problems that occur because of differences between
database model and programming language model

• Bind attribute data types to programming language
data types

• Map between query result data structure (sets or multi
sets of tuples) to appropriate data structure in
programming language

CS 377 [Spring 2017] - Ho

Java Database Connection (JDBC)

CS 377 [Spring 2017] - Ho

JDBC

• Provides capability to access a database server through
a set of library functions

• Set of library functions forms a standardized
Application Program Interface (API)

• Allows programmer to send SQL statements for
execution and query retrieval

• Supported by most major database vendors

CS 377 [Spring 2017] - Ho

JDBC Program: Step 1

1. Establish / open a connection to database server

I. Import JDBC library (java.sql.*)

II. Load appropriate JDBC driver

III. Create a connection object

CS 377 [Spring 2017] - Ho

JDBC: java.sql Package
• Library functions are contained in the java.sql package

• Every JDBC must import the classes in this package  
import java.sql.*

• Designed to access any database platform

• Un-avoidable that there will be a system-dependent
component to access a specific database type

• Drivers are used to support communication
transparency between the different vendors

CS 377 [Spring 2017] - Ho

JDBC Driver

Java Program

JDBC API
JDBC driver 
(e.g., MySQL

driver)

Database 
(e.g., MySQL

Server)

direct calls using specific
database protocols

CS 377 [Spring 2017] - Ho

JDBC Driver
• A communication driver is a system dependent software

module that is written specifically according to a given
communication protocol

• Different vendors can provide the same data service
through different communication protocols

• A JDBC program must first load the desired
communication driver

• Each system has its own way to load the driver  
(Biggest headache in JDBC programming)

CS 377 [Spring 2017] - Ho

Dealing with SQLException
Most methods in the JDBC SQL library will throw SQLException

• Catch the exception  
try 
{ 
 < method in java.sql package > 
} 
catch (Exception e)  
{ 
< statements to execute when there is an error>  
}

• Specify throws SQLException to each method in your program -
exit program upon error

CS 377 [Spring 2017] - Ho

DriverManager: Managing the JDBC Driver
• Attempt at standardization of loading the JDBC communication

driver

• Contains methods for managing a set of JDBC drivers

• Methods contained in the class:

• static void registerDriver(Driver driver) - registers the given
driver with the device manager by reading in the driver code from
the installed library

• static Connection getConnection(String url, String user,
String password) - attempts to establish a connection and
should only be used after the driver was registered

CS 377 [Spring 2017] - Ho

Registering a Driver (Textbook Way)

• Standard way to register a platform dependent JDBC
driver is to use the registerDriver() method

• Example: registering the JDBC driver for Oracle: 
DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());

• Unfortunately not all vendors use this approach to load its
JDBC driver (e.g., MySQL)

CS 377 [Spring 2017] - Ho

Registering a MySQL Driver

• Exploits Java’s built-in capability to load a class

• Driver is loaded using the java.lang.reflect package

• Syntax: 
Class.forName(“com.mysql.jdbc.Driver”);

CS 377 [Spring 2017] - Ho

Dynamic Loading Feature

• Java has the ability to load user-written classes
dynamically into a compiled program and execute it

• Load a different class that has a method with the same
name, you can get the behavior of the method to
change

CS 377 [Spring 2017] - Ho

Dynamic Loading: java.lang.reflect

• Commonly used by programs which require ability to
examine or modify runtime behavior of applications

• Applications: create instances of objects using their
fully-qualified names

• Debuggers & Test Tools: examine private members of
classes

• Class browser: enumerate members of a class

CS 377 [Spring 2017] - Ho

Dynamic Loading: java.lang.reflect

• Drawbacks:

• Performance overhead

• Security restrictions

• Exposure of internals

CS 377 [Spring 2017] - Ho

Location of the JDBC Driver Software

• Java must be able to find (locate) the JDBC Driver

• CLASSPATH variable must point to the SQL Java
JDBC library (depends on your installation)

• Include the PATH to run the JDBC program

• Example: 
java -cp <location of jdbc driver library> <your program>

CS 377 [Spring 2017] - Ho

Create a Connection Object

• Network connection to a database server is established
using the getConnection method in the DriverManager
class

• Syntax: 
Connection SQLconnection; // variable for
connection 
SQLconnection = DriverManager.getConnection(URL,
user, password);

location of database server

CS 377 [Spring 2017] - Ho

JDBC: SQL Connection
• Connection contains a reference to the data structure that

stores information on the network connection

• Connection must be passed to subsequent methods to
communicate with the MySQL server

• Only need a single connection to the server

• URL must contain the protocol, the host name, the port
number, and the database name 
(e.g., “jdbc:mysql://cs377db.mathcs.emory.edu:3306/
companyDB”)

CS 377 [Spring 2017] - Ho

JDBC Program: Step 2

2. Submit database commands

I. Create statement object

II. Send statement

III. Process query results

CS 377 [Spring 2017] - Ho

Creating a Statement Object

• java.sql.Statement class is used to execute a SQL
statement (by sending it to the database)

• It also has buffers to receive the result tuples

• Before submitting a query, you must first create a
Statement object for the processing of the query

• Syntax: 
Statement SQLstatement; // variable ref for obj 
SQLstatement = <sqlconnection>.createStatement();

CS 377 [Spring 2017] - Ho

Submit a SQL Query

• executeQuery method sends the SQL query using the
DBMS connection to the DBMS server for processing

• Syntax: 
ResultSet rset; // reference variable for results  
rset = SQLstatement.executeQuery(“<SQL query>”) ;

• Example: 
ResultSet rset; // reference variable for results  
rset = SQLstatement.executeQuery(“select * from
employee”);

CS 377 [Spring 2017] - Ho

Submit a SQL Query

• Statement object can be recycled if SQL queries are
executed in serial

• Execute one query and read the result completely
before executing next query

• For multiple queries at the same time, you need to create
multiple Statement objects — one per parallel query

CS 377 [Spring 2017] - Ho

Submit a SQL Update

• executeUpdate method sends the SQL command using
the DBMS connection to the DBMS server for processing

• SQL command maybe an INSERT, UPDATE, or DELETE
statement or even creation of a table or constraint

• Example: 
rset = SQLstatement.executeUpdate(“delete * from
employee”);

• Returns an update count

CS 377 [Spring 2017] - Ho

Process Query Results

• ResultSet returns an iterable that contains all the tuples in
the output relation

• Retrieve one tuple:  
rset.next() - returns null if there are no more tuples
otherwise returns the next tuple

• Retrieve all tuples in the result set 
while (rset.next() != null) {  
 <process the tuple> 
}

CS 377 [Spring 2017] - Ho

Demo: Employee.java

CS 377 [Spring 2017] - Ho

Useful ResultSet Methods
Java Function Description

beforeFirst()
moves the read cursor to the front of the ResultSet
object, just before the first row (can be used to re-
read the data again)

first() moves the read cursor to the first row of the
ResultSet object

absolute(rowNum) moves the read cursor to the row rowNumber of the
ResultSet object

afterLast()
moves the read cursor to the end of this ResultSet
object, after the last row (can be used to read the
data in reverse order)

last() moves the read cursor to the last row of this Result
object (can be used to find number of rows)

getRow() returns the row index of the current row

CS 377 [Spring 2017] - Ho

Demo: EmployeeRSMethod.java

CS 377 [Spring 2017] - Ho

Retrieve Field in the Result Tuple

Java Function SQL Type Description
getInt(index) INTEGER

returns attribute at position
index as a <javatype> 
(e.g., getInt —> int type)

getLong(index) BIG INT
getFloat(index) REAL / FLOAT
getDouble(index) DOUBLE
getBignum(index) DECIMAL
getBoolean(index) BIT / BOOLEAN
getString(index) VARCHAR / CHAR
getDate(index) DATE
getTime(index) TIME
getTimeStamp(index) TIMESTAMP
getObject(index) any type

CS 377 [Spring 2017] - Ho

Metadata About ResultSet
• ResultSetMetData class contains meta information about

the ResultSet

• Methods to retrieve/obtain the meta data

• Variables to store values of the meta data

• Syntax:  
ResultSet rset;  
rset = SQLstatement.executeQuery(“<SQL query”>);  
ResultSetMetaData metaData; 
metaData = rset.getMetaData();

CS 377 [Spring 2017] - Ho

Useful ResultSetMetaData Methods
• int getColumnCount(): returns the number of columns in

the tuples of the ResultSet

• String getColumnName(int columnIndex): returns the
name of the column whose index is specified

• String getColumnType(int columnIndex): returns the
integer code for the data type of the attribute whose index
is specified (see java.lang.Types for the codes)

• String getColumnTypeName(int columnIndex): returns
the type of column whose index is specified

CS 377 [Spring 2017] - Ho

Useful ResultSetMetaData Methods
• int getColumnDisplaySize(int columnIndex): returns the display

width (number of characters needed to display the value) of the
attribute whose index is specified

• int getPrecision(int columnIndex): returns the number of digits of the
field/column whose index is specified - data type must be numeric

• int getScale(int columnIndex): returns the number of decimal places
of the field/column whose index is specified - data type must be
numeric

• String getColumnClassName(int columnIndex): returns the name of
the Java class (e.g., “java.lang.String”) for the attribute whose index is
specified

CS 377 [Spring 2017] - Ho

Demo: MetaData.java

CS 377 [Spring 2017] - Ho

JDBC Program: Step 3

3. Close connection

I. Close & free result set

II. Close & free statement object

III. Close & free connection object

CS 377 [Spring 2017] - Ho

Closing Connections

• Upon completion, you should close the various
connections and free resources

• Close and free the result set: 
rset.close();

• Close and free the Statement object 
SQLstatement.close();

• Close and free the Connection buffer  
SQLconnection.close();

CS 377 [Spring 2017] - Ho

JDBC Program Steps
1. Establish / open a

connection to database
server

I. Import JDBC library
(java.sql.*)

II. Load appropriate
JDBC driver

III. Create a connection
object

2. Submit database
commands

I. Create a statement
object

II. Submit SQL
statement

III. Process query results

3. Close connection

CS 377 [Spring 2017] - Ho

PHP: Web Programming

CS 377 [Spring 2017] - Ho

World Wide Web (WWW)

http://www.vebbsite.com/admin/photos/world-wide-web.jpg

Web browser is a
program that

receives web content
and displays them

DNS server converts
a domain name to
an an IP address

Web server serves
content, whether it

is webpages,
images, movies, etc.

http://www.vebbsite.com/admin/photos/world-wide-web.jpg

CS 377 [Spring 2017] - Ho

Website

• Nothing more than a collection of computer files
(webpages)

• Files are written in a special language called HTML 
(Hyper Text Markup Language)

• Tags are used to specify how an items are displayed

• Content can be static or dynamically generated

CS 377 [Spring 2017] - Ho

Example: Hello World HTML
<html>  
 <head>  
 <title> 
 CS377 Hello page  
 </title>  
 </head> 
 <body>  
  
 <H2> 
 Hello world ! 
 </H2>  
  
 </body> 
</html>

CS 377 [Spring 2017] - Ho

Dynamic Content
• Static webpages are considered passive content as they

don’t perform any operations

• Example: My personal webpage

• Webserver can execute programs that produce an HTML
file (webpages)

• Active content are web pages that are created
dynamically

• Common example is online ordering or shopping

CS 377 [Spring 2017] - Ho

Three-Tier Web Architecture

Client Program 
(Web browser)

Application Server

Data Management
System

Presentation

Logic

Data

http://apigee.com/about/blog/technology/new-three-tier-architecture-html5-proxy-apis

http://apigee.com/about/blog/technology/new-three-tier-architecture-html5-proxy-apis

LAMP

• Typical web service
solution stack

• Original phrase was
Linux, Apache, MySQL,
and Perl (Perl —> PHP)

• Components are largely
interchangeable

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

https://en.wikipedia.org/wiki/LAMP_

PHP: PHP Hypertext Processor
• Open source, server-side

scripting language for
producing dynamic web
pages

• Allows access to a
database and executions of
calculations and logic

• PHP web server interprets
PHP code and dynamically
constructs web page http://contentdeliverance.com/cms-school/wp-content/

uploads/2011/05/client-server-diagram-mysql.png

http://contentdeliverance.com/cms-school/wp-content/uploads/2011/05/client-server-diagram-mysql.png
http://contentdeliverance.com/cms-school/wp-content/uploads/2011/05/client-server-diagram-mysql.png

CS 377 [Spring 2017] - Ho

PHP: Strengths

• Ease of learning and use

• Open source and stable

• Speed - relatively fast

• Powerful library support & interface to many different
database systems

• Availability of support

CS 377 [Spring 2017] - Ho

PHP: Disadvantages

• Security - many exploits of weaknesses of PHP

• Not suitable for large scales - not very modular

• Ugly and unpredictable type system (type casting and
other conversion mechanism)

• Culture of messiness

• Poor debugging facilities

CS 377 [Spring 2017] - Ho

Exploring PHP: Setup
• PHP is currently installed on cs377db.mathcs.emory.edu

• Created a common user (cs377_s17) on the machine with the
password to be posted on piazza

• Remote login to the server: 
ssh -X cs377_s17@cs377db.mathcs.emory.edu

• Scripts should be placed inside the public_html directory:  
cd ~/public_html

• You can access the PHP scripts via a brower:  
http://cs377db.mathcs.emory.edu/~cs377_s17/filename

http://cs377db.mathcs.emory.edu
http://cs377db.mathcs.emory.edu
http://cs377db.mathcs.emory.edu

CS 377 [Spring 2017] - Ho

PHP Program Structure

• PHP code can be embedded in HTML code

• PHP program consists of

• Main program

• Statements enclosed by the PHP tags

• Function definitions

CS 377 [Spring 2017] - Ho

PHP Interpreter

• Echo everything that is not enclosed inside a PHP tag

• Text that is enclosed inside a PHP tag are considered to
be PHP

• Syntax: 
<? php 
 … one or more PHP statements …  
?>

CS 377 [Spring 2017] - Ho

Example: Hello World in PHP (helloworld.php)

 
 
 
<?php 
// prints hello world  
echo "Hello World!";  
?>

start tag to denote PHP statement

end tag to close PHP statement

comment

http://cs377db.mathcs.emory.edu/helloworld.php

http://cs377db.mathcs.emory.edu/helloworld.php

CS 377 [Spring 2017] - Ho

Running PHP Programs

• Stand-alone (good for debugging)

• UNIX-prompt>> php <script-name>

• Web browser

• PHP script inside ~/public_html on cs377db server

• Point your favorite web browser to:  
http://cs377db.mathcs.emory.edu/~<userid>/<script-
name>

CS 377 [Spring 2017] - Ho

Example: PHP with HTML (luckyNum.php)
 <html>  
 <head>  
 <title> PHP Test </title> 
 </head> 
 <body> 
  
  
 Welcome stranger, here is your lucky number:  
 <?php print rand(1, 1000); ?> 

 </body> 
 </html> http://cs377db.mathcs.emory.edu/luckyNum.php

http://cs377db.mathcs.emory.edu/luckyNum.php

CS 377 [Spring 2017] - Ho

PHP Variables

• Syntax: $variableName

• Variables start with letter or underscore

• Variable name is case-sensitive

• Implicitly defined — automatically defined when you use
the variable for the first time in a program

CS 377 [Spring 2017] - Ho

Example: PHP Variables (var.php)

 
<?php 
 $a = 1;  
 $A = 2;  
 print("a = " . $a . "\n"); # . is string concatenation  
 print("A = " . $A . "\n"); # Var name is case sensitive ! 
 print("b = " . $b . "\n"); # Warning, not fatal !  
?>

http://cs377db6.mathcs.emory.edu/var.php

http://cs377db.mathcs.emory.edu/var.php

CS 377 [Spring 2017] - Ho

PHP Variable Types
• Support 8 primitive types

• 4 scalar types: boolean, integer, float, string

• 2 compound types: array, object (C’s struct)

• 2 special types: resource (special variable holding a
reference to an external resource), NULL

• Dynamic typing — type of variable is determined by the
type of value that was stored in the most recent
assignment statement

CS 377 [Spring 2017] - Ho

Example: Dynamic Typing (dynatype.php)

<?php 
 $a = 12;  
 print ("a = " . $a . " Type of a = " . gettype($a) . "\n");  
 $a = 12.0;  
 print ("a = " . $a . " Type of a = " . gettype($a) . "\n");  
 $a = "12";  
 print ("a = " . $a . " Type of a = " . gettype($a) . "\n");  
 $a = true;  
 print ("a = " . $a . " Type of a = " . gettype($a) . "\n");  
?>

http://cs377db.mathcs.emory.edu/dynatype.php

http://cs377db.mathcs.emory.edu/dynatype.php

CS 377 [Spring 2017] - Ho

PHP Operators
• Operators are similar to Java

• Arithmetic operators: +, -, *, / , %, **

• Logical operators: and, or, xor, !

• Comparison: ==, !=, <, <=, >, <=

• Example:  
 <?php 
 $b = 3 * 3 % 5;  
 $b = $a++ + 23; 
 $a = ++$b - 23;  
 ?>

CS 377 [Spring 2017] - Ho

PHP Statements
• If statement & elsif  

if (expr1)  
{ 
.. statements … 
} 
elseif (expr2)  
{ 
.. statements 2…  
} 
[else 
{ .. more statements … 
}]

• While statement  
while (expr)  
{ 
.. statements … 
}

• For statement 
for (expr1; expr2; expr3) 
{ 
… statements … 
} 

break and continue work similarly

CS 377 [Spring 2017] - Ho

PHP Functions
• Similar to functions in other programming languages

• Can appear anywhere in the main program

• Need not be defined before it is used

• Syntax:  
function <funcName> ($<param1>, $<param2>, …)  
{ 
… one or more statements …  
} 

CS 377 [Spring 2017] - Ho

Example: PHP Function

<?php 
 $a = square(4); 
 print("Square of 4 = " . $a . "\n");  
 # Function definition  
 function square($x)  
 {  
 $r = $x * $x ; 
 return($r);  
 }  
?> prints out the square of 4 = 16

http://cs377db.mathcs.emory.edu/squareFunc.php

http://cs377db.mathcs.emory.edu/squareFunc.php

CS 377 [Spring 2017] - Ho

PHP Variable Scope
2 scopes in PHP

• Global (program) scope — variable created in the main
program has global scope and can be accessible from
everywhere in the main program

• Access variable inside a function by declaring it a
global variable with the keyword global

• Function scope — variable created in the function has a
function scope and will be different than a variable with
the same name in global scope

CS 377 [Spring 2017] - Ho

Example: PHP Variable Scope
<?php 
 $a = 1; # Global a 
 print("Main: a = " . $a . "\n"); 
 f($a); 
 print("Main: a = " . $a . "\n");

 function f() 
 { 
 global $a; # ******** a will now access a global variable  
 print("f before: a = " . $a . "\n"); # Global scope a  
 $a = 4444;  
 print("f before: a = " . $a . "\n"); # Global scope a  
 } 
 print("Main: a = " . $a . "\n"); 
?>

http://cs377db.mathcs.emory.edu/varscope.php

http://cs377db.mathcs.emory.edu/varscope.php

CS 377 [Spring 2017] - Ho

Beware! PHP Weirdness

• Things in PHP that are unlike Java/C

• String — different ways to quote a string

• Variables can appear inside a string

• Variables are evaluated differently depending on how
the string is quoted

• Array — use of associative arrays (key, value pairs)

CS 377 [Spring 2017] - Ho

Strings: Single-quote

• Always treated verbatim and no evaluation takes place

• Example: 
$x = 1; 
print ‘This is a single-quoted string. This is $x\n’; 
 
Output: 
This is a single-quote string. This is $x\n

CS 377 [Spring 2017] - Ho

Strings: Double-quote
• Perform evaluation of variables to construct final strings

• Use escape character “\” before $ to prevent evaluation

• Example: 
$x = 1;  
print “This is a double-quoted string. This is $x\n”;  
print “This is an escaped double-quoted string. This is \
$x\n”; 
 
Output:  
This is a double-quote string. This is 1 
This is an escaped double-quote string. This is $x

CS 377 [Spring 2017] - Ho

Strings: “Here” Documents
• Inline multi-line text that is evaluated

• Example:  
$x = 12345;  
print <<<MARKER 
 Here document text.. type away... This is $x 
 Another line. Just keep going - the string will not stop 
 until there is a line with MARKER at the START of the line\n  
MARKER;  
 
Output: 
Here document text.. type away... This is 12345  
Another line. Just keep going - the string will not stop 
until there is a line with MARKER at the START of the line

CS 377 [Spring 2017] - Ho

Example: Strings
<?php 
 $x = "Hello World !"; 
 print 'Single-quoted string. This is $x'; 
 print"\n";  
 print "Double-quoted string. This is $x"; 
 print"\n";  
 print <<<MARKER  
 Here document text.. type away... This is $x 
 Another line. Just keep going - until a line with MARKER is found 
MARKER;  
 print"\n";  
 print <<<MARKER2 
 Here document text.. type away... This is \$x 
 Another line. Just keep going - until a line with MARKER is found 
MARKER2; 
 print "\n";  
?> http://cs377db.mathcs.emory.edu/stringEx.php

http://cs377db.mathcs.emory.edu/stringEx.php

CS 377 [Spring 2017] - Ho

Arrays: Ordered Map

• Associates keys with values

• General: 
$varName = array ( 
 key1 => value1 ,  
 key2 => value2 ,  
 ...  
);

CS 377 [Spring 2017] - Ho

Arrays: Ordered Map

• Integer indices 
$varName = array ( 
 value1 ,  
 value2 ,  
 ...  
);

• “Traditional” way  
$arrName[index] = value;

CS 377 [Spring 2017] - Ho

Array Functions

• Count the number of elements in an array: 
count($<array variable>)

• Accessing elements in array 
foreach ($<array variable> as $KEY_VAR =>
$VALUE_VAR)  
{ 
 $KEY_VAR = key of the current array element 
 $VALUE_VAR = value of current array element 
}

CS 377 [Spring 2017] - Ho

Example: Associate Arrays

• array01.php — different syntax for defining an array

• array02.php — counting the number of elements in an
array

• array03.php —accessing the array using the special
foreach structure

• array04.php — an example of a true associate array
where the keys are not integers

CS 377 [Spring 2017] - Ho

PHP Program: Step 1

1. Establish connection to database

I. Pick extension / library module to connect to
database system

II. Connect to database

CS 377 [Spring 2017] - Ho

PHP: Access to MySQL

• ext/mysql (MySQL extension which is not recommended
and deprecated now)

• ext/mysqli (MySQL improved extension)

• PDO (PHP Data objects - pure object oriented
programming)

CS 377 [Spring 2017] - Ho

PHP: Connect to Server
• Command: mysqli_connect(host, user, passwd [, dname

[, port [, socket]]])

• Example:  
$conn = mysqli_connect("cs377db.mathcs.emory.edu",
"cs377", “cs377_s17");  
 // check connection  
 if (mysqli_connect_errno()) 
 { 
 printf("Connect failed: %s\n", mysqli_connect_error()); 
 exit(); 
 }

CS 377 [Spring 2017] - Ho

PHP: Connect to Database

• Specify the database in the connection: 
$conn =
mysqli_connect(“cs377db.mathcs.emory.edu","cs377
","cs377_s17", "companyDB");

• Use mysqli_select_db() function: 
if (! mysqli_select_db ($conn, "companyDB"))  
{ 
 printf("Error: %s\n", mysqli_error($conn)); 
 exit(1);  
}

CS 377 [Spring 2017] - Ho

PHP Program: Step 2

2. Submit database commands

I. Send statement

II. Process query results

CS 377 [Spring 2017] - Ho

PHP: Submit SQL Query

• Execute a query using mysqli_query() 
if (($result = mysqli_query($conn, "SQL-
command")) == 0)  
{ 
 printf("Error: %s\n", mysqli_error($conn));  
 exit(1);  
 }

• Returns 0 if there was an error, otherwise the result

CS 377 [Spring 2017] - Ho

Example: Submit SQL Query
• PHP code: 

$conn = mysqli_connect(“cs377db.mathcs.emory.edu”,”cs377",
“cs377_s17", "companyDB");  
 if (mysqli_connect_errno())  
 { 
 … 
 }  
 $query = 'select fname, lname, salary from employee';  
 if (! ($result = mysqli_query($conn, $query))) 
 { 
 printf("Error: %s\n", mysqli_error($conn)); 
 exit(1);  
 }

CS 377 [Spring 2017] - Ho

PHP: Obtain SQL Results

Many different functions to retrieve result tuples

• mysqli_fetch_all($result) : fetches all result rows and
returns the result set as an associative array

• mysqli_fetch_array($result) : returns the current
(fetched) row as an array

• mysqli_fetch_assoc($result) : returns the current
(fetched) row as an associative array or NULL if there is
no more rows

CS 377 [Spring 2017] - Ho

PHP: Obtain SQL Results

• Focus on mysqli_fetch_assoc($result)

• Returns associative array that contains (key, value) pairs
with the attribute name and value

• Example:

•  

$key $value

SSN 111-11-111

Fname John

Lname Smith

… …

CS 377 [Spring 2017] - Ho

Example: Print SQL Results

Print attribute names and attribute values from $result array 
while ($row = mysqli_fetch_assoc($result))  
{ 
 foreach ($row as $key => $value)  
 {  
 print ($key . " = " . $value . "\n"); 
 }  
 print("================"); 
 }

Example program: employee0.php

CS 377 [Spring 2017] - Ho

PHP Program: Step 3

3. Close connection

I. De-allocate and free resources

II. Close connection

CS 377 [Spring 2017] - Ho

Step 4: Free Resources & Disconnect

• De-allocate and free resources using mysqli_free_result()

• Syntax: mysqli_free_result(<result variable>);

• Disconnect our connection with MySQL server using
mysqli_close()

• Syntax: mysqli_close(<connection variable>);

CS 377 [Spring 2017] - Ho

Example: Stand-Alone PHP program

• Print all the employees in the company database in a
“tabular” format

• Print the attribute names only once

• Print the tuples

• To RUN: PHP emp-table.php

CS 377 [Spring 2017] - Ho

PHP via Web Browser

• Extremely easy to execute a program with a web browser

• Add some HTML header and trailer tags to the PHP
script

• Put the MySQL PHP script in the special directory (will
depend on what web server architecture you use)

• Load the PHP script in the web browser

CS 377 [Spring 2017] - Ho

Example: PHP Program via HTML
• HTML is ideally suited for formatting outputs

• Same example as before where you want to display all the
employees in the company database in a “tabular” format —
utilize HTML table format

• <TABLE> tag to denote start of table

• <TR> denotes a new row

• <TD> denotes one data item in the row

• Example: emp-html-table.php
http://cs377db.mathcs.emory.edu/emp-html-table.php

http://cs377db.mathcs.emory.edu/emp-html-table.php

CS 377 [Spring 2017] - Ho

PHP: HTML FORM

• HTML FORM tag allows a webpage to obtain input
field(s) from the user

• <input type=“<type>” name=“<varname>”> element

• Each input field must have a type

• Each input field must have a name attribute

• Optional: specify the size of the input field  
<input type=“<type>” name=“<varname>”, size=40>

CS 377 [Spring 2017] - Ho

PHP: HTML FORM

• Common types

• <input type = “text”> defines a one-line input field for
text input

• <input type = “radio”> defines a radio button (limit to 1
choice)

• <input type = “submit”> defines button to submit a
form to form-handler

CS 377 [Spring 2017] - Ho

PHP: HTML Form
• <form action=“filename.php” method=“{get | post}”>

• action defines the address or URL where to submit the form

• method specifies the HTTP method to be used when
submitting the forms

• GET (default) is generally used for short amounts of data
and without sensitive information (data is encoded after
a ? symbol)

• POST offers better security because submitted data is
not visible in the page address

CS 377 [Spring 2017] - Ho

PHP: Receiving Data using POST

CS 377 [Spring 2017] - Ho

PHP: Receiving Data using POST

CS 377 [Spring 2017] - Ho

PHP: Receiving Data using POST

• PHP interpreter receives form tagged data from the
HTML form

• Data comes in an associative array named $_POST[]

• Initializes the element $_POST[‘input-var-name’] with
the value entered in the corresponding input field in the
form tag

CS 377 [Spring 2017] - Ho

Example: PHP Script for form1 (echo.php)
<html>  
<head>  
<title> Form1 test </title>  
</head> 
<body>  
<HR>  
  
<?php  
-- 
PHP program: echo the data send in the "inp" field by the form 
-- 
 $data = $_POST['inp'] ; 
 print("Post Data is $data \n"); 
?>  
  
<HR>  
</body> 
</html>

CS 377 [Spring 2017] - Ho

Example: HTML FORM
<html>  
<head>  
 <title> HTML Form 1</title>  
</head> 
<body>  
 <HR>  
 <HR>  
 Form:  
 <HR><P> 
 <FORM ACTION="http://cs377db.mathcs.emory.edu/echo.php"
METHOD="POST">  
 <p>Enter input: <input type="text" name="inp" size=40></p> 
 <p><input type="submit" value="Press to send"></p> 
 </FORM>  
</body> 
</html> http://cs377db.mathcs.emory.edu/formEx.html

http://cs377db.mathcs.emory.edu/formEx.html

CS 377 [Spring 2017] - Ho

Example: PHP Client for companyDB

• Web form to submit a query:  
http://cs377db.mathcs.emory.edu/companyDB-
queryform.html

• PHP script to handle the query: 
http://cs377db.mathcs.emory.edu/companydb-
query.php

http://cs377db.mathcs.emory.edu/companyDB-queryform.html
http://cs377db.mathcs.emory.edu/companyDB-queryform.html
http://cs377db.mathcs.emory.edu/companydb-query.php
http://cs377db.mathcs.emory.edu/companydb-query.php

CS 377 [Spring 2017] - Ho

SQL Application Programming: Recap
• General application interaction sequence

• JDBC

• PHP

• Connecting to MySQL

• HTML web forms

• For more information about PHP:  
http://us2.php.net/manual/en/index.php 

http://us2.php.net/manual/en/index.php

