Midterm Review

CS 377: Database Systems

Piazza Poll Results

A total of 45 vote(s) in 91 hours

CS 377 [Spring 2017] - Ho

Database Concepts

- Data model categories: high-level or conceptual data models, low-level or physical data models, and representational or implementation data models
- Physical data and logical data independence
 - How metadata fits into the picture
- Three schema architecture

Entity Relationship (ER) Model

- Entity
 - Attributes
 - Weak Entity
- Relationship
 - Degree
 - Cardinality ratio constraint
 - Participation constraint

Relation Model

- Relation, attributes
- Schema vs instance
- Relational model constraints
 - Domain constraint
 - Key constraint
 - Referential integrity constraint

ER to Relational Model

ER Model	Relational model
Entity type	Entity relation
1:1 or 1:N relationship	Expand (or create R relation)
M:N relationship	Create R relation with two foreign keys
n-ary relationship type	Create R relation with n foreign keys
Simple attribute	Attribute
Composite attribute	Set of simple component attributes
Multivalued attribute	Relation and foreign key
Key attribute	Primary (or secondary) key

Relational Algebra

Operation	Notation	Purpose
SELECT	$\sigma_{<\text{selection condition}>}(R)$	Selects all tuples that satisfy the selection condition from a relation R
PROJECT	$\pi_{< \text{atttribute list}>}(R)$	New relation with subset of attributes of R and removes duplicate tuples
THETA_JOIN	$R_1 \Join_{<\text{join condition}>} R_2$	All combinations of tuples from R_1 and R_2 that satisfy the join condition
EQUIJOIN	$R_1 \bowtie_{<\text{join condition}>} R_2$	Theta join with only equality join comparisons
NATURAL JOIN	$R_1 *_{<\text{join condition}>} R_2$	Equijoin except join attributes of R ₂ are not included in the resulting relation
UNION	$R_1 \cup R_2$	Relation that includes all tuples in R1 or R2
INTERSECTION	$R_1 \cap R_2$	Relation that includes all tuples in both R_1 and R_2
DIFFERENCE	$R_1 - R_2$	Relation that includes all tuples in R1 that are not in R2
CARTESIAN PRODUCT	$R_1 \times R_2$	Relation with attributes of R_1 and R_2 and includes tuples with all possible combinations of tuples of R_1 and R_2
DIVISION	$R_1(Z) \div R_2(Y)$	Relation that includes all tuples t[X] in R ₁ (Z) that appear in R ₁ in combination with every tuple from R ₂ (Y) where $Z = X \cup Y$
GROUP BY AGGREGATE	$<$ group attrs $>$ $\mathcal{F}_{<$ set funcs $>$	Relation that includes the grouping attributes and the set function values

CS 377 [Spring 2017] - Ho

Banking Example

- Find the names of all customers who have a loan and a savings account at the bank
- Find the names of all customers who have a loan at the Decatur branch but do not have a
 savings account at any branch of the bank
- Find all customers who have a savings account at all branches located in the city of Atlanta

Relational Calculus (Tuple Relational Calculus)

Query of the form: {t | CONDITION(t) }

- Conditions are formulas and are recursively defined
- Atomic formula (Relation(t), R.a op S.b / constant)
- Special formula quantifiers
 - Universal quantifier $(\forall t)$ (Condition(t))
 - Existential quantifier $(\exists t)$ (Condition(t))

SQL Data Definition

- Create database
- Create table
 - Attribute datatypes and constraints
 - Key constraints (primary and foreign key)
 - Circular integrity constraints

- Alter tables
 - Add/remove attributes
 - Add/remove constraints
- Drop tables & databases

SQL Data Modification

- Data modifications does not return a result but changes the database
 - INSERT (add new tuples)
 INSERT INTO <relation> VALUES <attr values>;
 - DELETE (remove tuples)
 DELETE FROM <relation> WHERE <condition>;
 - UPDATE (change value(s) of existing tuples)
 UPDATE <relation>
 SET <list of attribute assignments>
 WHERE <condition>;

SQL Select-From-Where Query

- SQL Query:
 SELECT <attribute list>
 FROM
 WHERE <condition on the tables>
- RA Query:

 $\pi_{\text{<attribute list}} \sigma_{\text{<condition}} (R_1 \times R_2 \times \cdots \times R_n)$

SQL Basic Query

SELECT[DISTINCT] <attribute list>FROM[WHERE<condition on the tables>][ORDER BY<attribute list>[LIMIT<number of tuples>]

WHERE conditions: comparison operations, arithmetic operations, logical operations, IN, LIKE, IS NULL, EXISTS, ANY, ALL

SQL: Group By & Having

- GROUP BY: Apply aggregate functions to subgroups of tuples in a relation
- HAVING: Filters out groups that do not satisfy the group condition
- SQL Query:
 SELECT [DISTINCT] <attribute list>
 FROM
 [WHERE <condition on the tables>]
 [GROUP BY <grouping attributes>]
 [HAVING <group condition>]

SQL: Nested Queries

 A subquery (parenthensized **SELECT-FROM-WHERE** statement) inside the **WHERE** clause

SELECT ... Nested query
 FROM
 WHERE <some condition test> (SELECT ... FROM
 Set membership (IN, NOT IN) Set comparison (ANY, ALL)
 Empty relation test (EXIST)

SQL: Temporal Relations

- A subquery (parenthensized SELECT-FROM-WHERE statement) inside the FROM clause
- Must give it an alias
- SELECT <attributes> FROM R1, R2, (SELECT ...) <alias>, ..., RN WHERE <condition>;

SQL: Set Operations

- UNION: join two relations
 - Syntax: (SELECT ...) UNION (SELECT ...)
- **INTERSECT**: not in most SQL implementations
 - QFT: WHERE x IN <set1> AND x IN <set2>
- **DIFFERENCE**: not in most SQL implementations
 - QFT: WHERE x IN <set1> AND x NOT IN <set2>

SQL: Set Operations

- **SUPERSET**: set1 superset set2
 - QFT: SELECT ...
 WHERE NOT EXISTS (SELECT ...
 WHERE x IN set2
 AND x NOT IN set1)
- DIVISION: A division B => all tuples where a is superset of B

SQL: Other QFTs

• Only: set1 subset set2

QFT: SELECT ... WHERE NOT EXISTS (SELECT ... WHERE x IN set1 AND x NOT IN set2)

- Most number of some attribute y
 - QFT: SELECT ...
 GROUP BY <group> HAVING setf(y) = (SELECT MAX(setf(y)) ... GROUP BY <group>)

CS 377 [Spring 2017] - Ho

Banking Example

- Find the branch names and their assets that have lent out at least 1M across all their customers
- Find the names and addresses
 of all customers who have a loan
 and a savings account at the
 bank
- Find the names of all branches that have assets greater than those of at least one branch located in the city of Atlanta

Banking Example

- Find the names of all customers who have a loan at the Decatur branch but do not have a savings account at any branch of the bank
 - Return the customer's information who owes the bank the most amount of money
- Find all customers who have a savings account at all branches located in the city of Atlanta

SQL Views

- View is a virtual table that does not exist in physical form
 - Allows ability to present information in different ways to different users
 - Can be used like an ordinary relation and simplifies complex queries
 - Limits data access to specific users (sensitive data can be hidden)
 - If conceptual schema changes, only the SELECT query needed to construct view needs to change

https://s-media-cache-ak0.pinimg.com/736x/68/7e/f6/687ef64b86cbd0a2291871e9e4939ba3.jpg