
Database Design Theory and
Normalization
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Recap: What Has Been Covered
Lectures 1-2:  

Database Overview  
& Concepts

Lecture 3: 
Conceptual Data
Model (ER Model)

Lecture 4: 
Representational
Model (Relational
Model) & Mapping

from ER to Relation
Model

Lectures 5-6:  
Relational Algebra

& Calculus

Lectures 7-12:  
SQL

CS 377 [Spring 2017] - Ho

What’s Left

• Database design: Schema normalization

• Data storage & indexing

• Query optimization

• Transaction management & concurrency control

• Big data systems

• NoSQL

Intention: Give you a taste of
advanced database systems.

More details — take CS554

CS 377 [Spring 2017] - Ho

Today and Next Lecture

1. 1NF

2. Informal guidelines

3. Functional dependency

1. Inference rules

2. Closure algorithm

4. 2NF, 3NF, BCNF

CS 377 [Spring 2017] - Ho

Product Database (from Lecture 3)

Name Address SSN

Name Price Description Name

Address

Stock
Price

Product Company

Person

makes

buys employs

CS 377 [Spring 2017] - Ho

Universal Relation

Name Address SSN

Name Price Description Name

Address

Stock
Price

Product Company

Person

makes

buys employs

What if we combine everything into one entity?  
What is bad about having a single universal relation which

contains all the attributes?

CS 377 [Spring 2017] - Ho

Are these Bad Designs?

CS 377 [Spring 2017] - Ho

History of Database Design
Relational

database model  
(Codd, 1970)

Classical paper on database
normalization based on

functional dependency - 1NF,
2NF, & 3NF (Codd, 1972)

Boyce-Codd Normal Form
(BCNF) is a new and

stronger 3NF 
(Boyce & Codd, 1974)

4NF with multi-valued
dependences  
(Fagin, 1977)

5NF with
projection-join
normal form  
(Fagin, 1979)

CS 377 [Spring 2017] - Ho

Relationship amongst Normal Forms

Each rectangle represents all possible relations
Image courtesy of Prof Cheung’s notes

CS 377 [Spring 2017] - Ho

Normalization: General Idea

• Designers should aim for the “ultimate” 5NF

• However, designers typically stop at 3NF or BCNF

• Designing a good database is a complex task

• Normalization is useful aid but should not be panacea

• Normal forms can be violated deliberately to achieve
better performance (less join operations)

CS 377 [Spring 2017] - Ho

First Normal Form (1NF)
• Simplest one that does not depend on “functional

dependency”

• Basic relational model where every attribute has atomic
(single, not multi) values

• Techniques to achieve 1NF (if not already done)

• Remove attribute violating 1NF and place in separate
relation

• Expand the key

CS 377 [Spring 2017] - Ho

Example: 1NF Conversion

Adapted from Figure 14.9 (Book)

CS 377 [Spring 2017] - Ho

When is a Relation “Good” or “Bad”?

• Number of bad properties called anomalies

• A relation exhibiting one or more of these anomalies is
deemed bad 
 
 
  CAVEAT: “Good” relations can be inefficient!

DB designers may use “bad” relations for
performance reasons.

CS 377 [Spring 2017] - Ho

Database Anomalies: Insert Anomaly

Inserting ONE item of information

• Normal: one tuple is introduced to one or more tables
with no NULL values

• Anomaly: multiple tuples are added to some relation

• Anomaly: NULL values are added

CS 377 [Spring 2017] - Ho

Example: Insert Anomaly

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

SSN FName LName DNo DName MgrSSN
NULL NULL NULL 6 Administration NULL

Relation about employees and departments

What if a new department is created (dno = 6, dname =
“Administration”) with no employees yet?

CS 377 [Spring 2017] - Ho

Database Anomalies: Delete Anomaly

• Normal behavior of deleting ONE item of information

• One tuple is removed in one or more tables

• Only intended information is deleted and does not cause
loss of additional information

• Delete anomaly occurs when deleting ONE item of information

• Deletes multiple tuples into some relation

• Causes additional (unintended) information

CS 377 [Spring 2017] - Ho

Example: Delete Anomaly

What if Jack Rabbit leaves the company?  
DELETE employee WHERE fname = ‘Jack’ AND lname
= ‘Rabbit’;

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789

Payroll department is also deleted!

CS 377 [Spring 2017] - Ho

Database Anomalies: Update Anomaly

• Normal behavior of updating ONE item of information

• One tuple in one or more tables is updated

• Update anomaly occurs when updating ONE item of
information

• Updates multiple tuples from some relation

CS 377 [Spring 2017] - Ho

Example: Update Anomaly

What if manager of research department changes? 
UPDATE employee SET MgrSSN = ‘888-88-8888’  
WHERE DName = ‘Research’; 

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 888-88-8888
222-22-2222 Jane Doe 5 Research 888-88-8888
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

Operation has modified multiple tuples in single relation!

CS 377 [Spring 2017] - Ho

Generation of Spurious Tuples

• Natural join results in more tuples than “expected”

• Represents spurious information that is not valid

• Example: What happens during a natural join?

CS 377 [Spring 2017] - Ho

Example: Generation of Spurious Tuples

Asterisk denotes the tuples that don’t make sense

CS 377 [Spring 2017] - Ho

Informal Design Guidelines

• Design relations where meaning of a relation’s attributes
can be easily explained — avoid combining multiple
entity types and relationship types into a single relation

• Avoid insertion, deletion, and update anomalies —
minimize redundant information

CS 377 [Spring 2017] - Ho

Informal Design Guidelines

• Reduce NULL values in tuples — use space efficiently
and avoid joins with NULL values

• Design relation schemas to guarantee no spurious tuples
—avoid relations that contain matching attributes that are
not (foreign key, primary key) combinations

CS 377 [Spring 2017] - Ho

Formal Database Design Theory
• Normal forms

• Set of properties that relations must satisfy

• Successively higher degrees of stringency

• Database normalization

• Certify whether a database design satisfies a certain
normal form

• Correct designs to achieve certain normal form

CS 377 [Spring 2017] - Ho

Functional Dependencies (FD)

• Definition:

• Let X and Y be 2 sets of attributes of R

• A functional dependency (X —> Y) occurs if for any
two tuples t1 and t2 of the relation R, if t1[X] = t2[X]
(i.e., the attribute values for X is the same in both
tuples) then t1[Y] = t2[Y] 
 

X—>Y means that whenever two tuples
agree on X, then they agree on Y

CS 377 [Spring 2017] - Ho

FD Pictorially

A B C D E F G
… … … … … … …
… b7 c4 … e1 f3 g4
… … … … … … …
… b7 c4 … e1 f3 g4
… … … … … … …

t1

t2

X Y

If t1 and t2 agree here… they also agree here!

CS 377 [Spring 2017] - Ho

FD for Relational Schema

• Constraint between two sets of attributes

• Generalize the concept of keys

• Why should we care?

• Start with relational schema

• Find FDs

• Use these to design better schema

CS 377 [Spring 2017] - Ho

Example: Company Database

• Relation that represent information about employees and
the projects they work on

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5

CS 377 [Spring 2017] - Ho

Example: Company Database

• FDs in the relation

• SSN —> fname, lname

• PNo —> PName

• SSN, PNo —> Hours

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5

CS 377 [Spring 2017] - Ho

Example: Company Database

• FDs can cause anomalies due to dependency between
attributes

• Insert anomaly - new project (pj3) with no employees

• Delete anomaly - deleting John Smith from pj2 deletes
information about pj2

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5

CS 377 [Spring 2017] - Ho

Inferring FDs

• An FD is

• Inherent property of an application

• Defined based on the semantics of the attributes

• Not something we can infer from a set of tuples

CS 377 [Spring 2017] - Ho

Inferring FDs from Table

• Given a table with a set of tuples

• Can confirm that a FD seems to be valid

• Infer a FD is definitely invalid

• Can never prove that FD is valid

CS 377 [Spring 2017] - Ho

Example: Course Database

• Relation with courses, students, and instructors

studentID name semester courseNo section instructor
123455 Bob S17 CS377 0 Ho
234097 John S17 CS377 0 Ho
234107 Alice F16 CS377 0 Cheung
140701 Mary F16 CS377 0 Cheung

CS 377 [Spring 2017] - Ho

Example: Course Database

• FDs in the relation

• courseNo, semester —> instructor

• studentID —> courseNo, semester

• studentID —> name, level

studentID name level semester courseNo instructor
123455 Bob Junior S17 CS377 Ho
234097 John Senior S17 CS377 Ho
234107 Alice Junior F16 CS377 Cheung
140701 Mary Senior F16 CS377 Cheung

CS 377 [Spring 2017] - Ho

“Good” vs “Bad” FDs: Intuition

• studentID —> name, level is a “good” FD

• Minimal redundancy, less possibility of anomaly

studentID name level semester courseNo instructor
123455 Bob Junior S17 CS377 Ho
234097 John Senior S17 CS377 Ho
234107 Alice Junior F16 CS377 Cheung
140701 Mary Senior F16 CS377 Cheung

CS 377 [Spring 2017] - Ho

“Good” vs “Bad” FDs: Intuition

• courseNo, semester —> instructor is a “bad” FD

• Redundancy! Possibility of anomalies

studentID name level semester courseNo instructor
123455 Bob Junior S17 CS377 Ho
234097 John Senior S17 CS377 Ho
234107 Alice Junior F16 CS377 Cheung
140701 Mary Senior F16 CS377 Cheung

CS 377 [Spring 2017] - Ho

Refresher: Keys
• Set of attributes S is a super key of a relation R if S

functionally determines all attributes in R  

• Set of attributes K is a key of a relation if and only if

• K functionally determines all attributes in R

• K is minimal superkey

• None of its subsets functionally determines all attributes
in R

8t1, t2 2 R : t1[SK] 6= t2[SK]

CS 377 [Spring 2017] - Ho

“Good” vs “Bad” FDs

• A key of a relation functionally determines all attributes in
that relation

• This is called natural or trivial

• “Good” functional dependency is a natural or trivial
functional dependency

• Functional dependencies other than natural
dependencies will cause anomalies

CS 377 [Spring 2017] - Ho

Example: Company DB Revisited

• SSN, PNo —> Hours is a “good” functional dependency

• (SSN, PNo, Hours) should be in the same relation

• SSN —> fname, lname is a “bad” functional dependency
and should be taken out and put together in another
relation on their own

• PNo —> PName is a “bad” functional dependency and
should be taken out and put in another relation on their own

SSN FName LName PNo PName Hours

CS 377 [Spring 2017] - Ho

“Bad” FDs Cause Anomalies

• Since the LHS of a functional dependency is not a key,
you can have multiple tuples in the database

• Leads to update anomalies as well as insert and delete
anomalies

• Duplication of information is guaranteed!

• Solution: break up the relation into multiple tuples

CS 377 [Spring 2017] - Ho

Relation Decomposition
• A decomposition of relation R is a collection of relations

R1, R2, …, Rn such that every attribute of R appears in
R1, R2, …, Rn at least once

• Some decompositions are useful and some aren’t

• Example:  
Employee(SSN, Fname, LName, PNo, PName, Hours) —  
R1(SSN, PName, Hours)  
R2(PNumber, Fname, LName)

• Decompose with a goal!
What does this mean?

CS 377 [Spring 2017] - Ho

What is a Good Decomposition?

• Normal forms will be guiding criteria for better relations

• When a relation R violates the guiding criteria of normal
form, we decompose the relation to comply with the
guiding criteria of the normal form

• Use functional dependencies to determine if dependency
is “good” or “bad”

• Find all keys of the relation R via inference rules

CS 377 [Spring 2017] - Ho

Armstrong’s Axioms

• Most basic inference rules

• Given a set of functional dependencies, we can derive
additional functional dependencies using inference
rules

• Sound — any FD inferred using Armstrong’s axioms will
hold in R

• Complete — Every valid FD on R can be found by
applying only Armstrong’s axioms

CS 377 [Spring 2017] - Ho

Armstrong’s Axiom 1: Reflexivity

• For attribute sets X, Y: If Y is subset of X, then X—> Y

• Examples:

• A, B —> B

• A, B, C —> A, B

• A, B, C —> A, B, C

CS 377 [Spring 2017] - Ho

Armstrong’s Axiom 2: Augmentation

• For attribute sets X, Y, Z: If X —> Y, then X, Z —> Y, Z

• Examples:

• A —> B implies A, C —> B, C

• A, B —> C implies A, B, C -> C

CS 377 [Spring 2017] - Ho

Armstrong’s Axiom 3: Transitivity

• For attribute sets X, Y, Z: If X —> Y and Y —> Z, then X
—> Z

• Examples:

• A —> B and B —> C implies A —> C

• A —> C, D and C, D —> E implies A —> E

CS 377 [Spring 2017] - Ho

Example: Armstrong’s Axioms

• Product(name, category, color, department, price)

• Given initial set of FDs:

• name —> color

• category —> department

• color, category —> price

CS 377 [Spring 2017] - Ho

Example: Armstrong’s Axioms

• Product(name, category, color, department, price)

• Inferred FDs:

• name, category —> price: augmentation & transitivity

• name, category —> color: reflexivity & transitivity

CS 377 [Spring 2017] - Ho

Other Useful Inference Rules

• Derived from Armstrong’s Axioms

• Decomposition rule: If X —> Y, Z then X —> Y, X —> Z

• Union rule: If X —> Y and X —> Z, then X —> Y, Z

• Pseudo transitivity rule: If X —> Y and Y, W —> Z then  
X, W—> Z

Tedious to infer all the functional dependencies and
check them all — is there algorithmic way to do this?

CS 377 [Spring 2017] - Ho

Finding Keys of Relation R

• Bad news: NP-complete problem

• Running time of algorithm to solve the problem exactly
is exponentially increasing with the problem size

• Large NP-complete problems are difficult to solve!

• No efficient solution to find all the keys

CS 377 [Spring 2017] - Ho

Finding Keys of Relation R

• Possible solutions

• Brute force algorithm: Check every subset of attributes
for super key strategy — tests every possible solution

• Use heuristics to find all the keys of a relation — turn
towards closures to help us find keys in a relation

CS 377 [Spring 2017] - Ho

Attribute Closure Set

• If X is an attribute set, the closure X+ is the set of all
attributes B such that X —> B

• X is subset of X+ since X —> X

• X+ includes all attributes that are functionally
determined from X

• Importance: If X+ = R, then X is a superkey

• Closure can tell us if set of attributes X is a superkey

CS 377 [Spring 2017] - Ho

Example: Closure

• Product(name, category,
color, department, price)

• name —> color

• category —>
department

• color, category —>
price

• Attribute Closure:

• {name}+ = {name,
color}

• {name, category}+ =
{name, color, category,
department, price}

• {color}+ = {color}

CS 377 [Spring 2017] - Ho

Finding a Key after Closure

• If X+ not equal to the relation, we must augment more
attributes to X to obtain a key

• If X+ = R, then X is superkey — check for minimality

• Remove one or more attributes A

• Compute the closure of X - A to see if (X - A)+ = R

• X is a key if (X - A)+ not equal R for any attribute A

CS 377 [Spring 2017] - Ho

Closure Algorithm

• Input: A set F of FDs on a relation schema R, and a set of
attributes X, which is a subset of R

• Algorithm:  
Initialize X+ := X 
repeat 
 old X+ := X+ 
 for each functional dependency Y —> Z in F  
 if X+ superset Y, then X+ := X+ union Z  
until (X+ = old X+)

CS 377 [Spring 2017] - Ho

Example: Closure Algorithm

EmpProj(SSN, FName, LName, PNo, PName, PLocation,
Hours)

• SSN —> FName, LName

• PNo —> PName, PLocation

• SSN, PNo —> Hours

CS 377 [Spring 2017] - Ho

Example: Closure Algorithm
• Initialize SSN+ := SSN

• Repeat loop (for each FD)

• SSN —> FName, LName 
=> SSN+ := SSN, FName, LName

• PNo —> PName, PLocation 
=> no change

• SSN, PNo —> Hours  
=> no change

• Result: SSN+ := SSN, FName, LName

Since there were changes,  
repeat another loop

through FDs, which results
in no changes => done

CS 377 [Spring 2017] - Ho

Example: Closure Algorithm
• Initialize PNo+ := PNo

• Repeat loop (for each FD)

• SSN —> FName, LName 
=> no change

• PNo —> PName, PLocation 
=> PNo+ := PNo, PName, PLocation

• SSN, PNo —> Hours  
=> no change

• Result: PNo+ := PNo, PName, PLocation

Since there were
changes,  

repeat another loop
through FDs, which

results in no changes
=> done

CS 377 [Spring 2017] - Ho

Example: Closure Algorith

• Initialize (SSN, PNo)+ := SSN, PNo

• Repeat loop (for each FD)

• SSN —> FName, LName  
=> (SSN, PNo)+ := SSN, PNo, FName, LName

• PNo —> PName, PLocation 
=> (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation

• SSN, PNo —> Hours  
=> (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation, Hours

• Result: (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation, Hours

CS 377 [Spring 2017] - Ho

Example: Closure Algorithm
• Summary of results:

• SSN+ := SSN, FName, LName

• PNo+ := PNo, PName, PLocation

• (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation, Hours

• (SSN, PNo) is a superkey!

• (SSN, PNo) is minimal superkey

• {(SSN, PNo) - (SSN)}+ = (PNo)+

• {(SSN, PNo) - (PNo)}+ = (SSN)+

CS 377 [Spring 2017] - Ho

Finding Keys: Heuristic 1
• Increase/decrease until you find keys

• Step 1: Compute closure of all functional dependencies in
F

• Step 2:

• If deficient, then add missing attributes to the LHS until
the closure is equal to the relation

• If sufficient, then remove extraneous attributes from the
LHS until set is minimal

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 1

• R(A, B, C, D, E, F)

• A —> B, C

• B, D —> E, F

• F —> A

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 1

• Step 1: Closure of all functional dependencies

• A+ = A, B, C

• (B, D)+ = A, B, C, D, E, F

• F+ = F, A, B, C

R(A, B, C, D, E, F)
• A —> B, C
• B, D —> E, F
• F —> A

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 1
• Step 2: Insert / remove attributes

• A+ = A, B, C — insufficient so add

• Add D: (A, D)+ = A, B, C, D, E, F —> key!

• Add E: (A, E)+ = A, B, C, E

• Add F: (A, F)+ = A, B, C, F

• Add E, F: (A, E, F)+ = A, B, C, E, F

• No more so done

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 1

• Step 2: Insert / remove attributes

• (B, D)+ = A, B, C, D, E, F — sufficient so try deleting

• Delete B: (D)+ = D

• Delete D: (B)+ = B

• No more so done

B, D is minimal and thus a key!

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 1

• Step 2: Insert / remove attributes

• F+ = F, A, B, C — insufficient so add

• Add D: (D, F)+ = A, B, C, D, E, F —> key!

• Add E: (E, F)+ = A, B, C, E, F

• No more so done

Keys are: (A, D), (B, D), and (D, F)!

CS 377 [Spring 2017] - Ho

Finding Keys: Heuristic 2
• Find necessary attributes first

• Find the irreplaceable attributes

• Attribute is replaceable if it appears in the RHS of
some functional dependency

• A key must include every irreplaceable attribute

• Base set is set of all irreplaceable attributes

• Add other attributes to base set until you have a key

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 2

• R(A, B, C, D, E, F)

• A —> B, C

• B, D —> E, F

• F —> A

• Step 1: Find irreplaceable attributes and construct base
set 
Base set = {D}

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 2

• Step 2: Add other attributes until you have key

• Add A: (A, D)+ = A, B, C, D, E, F —> key!

• Add B: (B, D)+ = A, B, C, D, E, F —> key!

• Add C: (C, D)+ = C, D

• Add E: (D, E)+ = D, E

• Add F: (D, F)+ = A, B, C, D, E, F —> key!

CS 377 [Spring 2017] - Ho

Example: Key Heuristic 2

• Step 2: Add other attributes until you have key (do not
expand known keys)

• Add C: (C, D, E)+ = C, D, E

• No more to add, so done!

CS 377 [Spring 2017] - Ho

Second Normal Form (2NF)
• (Definition) A relation schema R is in 2NF if every non-

prime attribute (i.e., not a member of any candidate key) A
in R is not partially dependent on any key of R

• Relation is 1NF (attributes are atomic)

• No non-key attribute that is functionally determined by
only a (proper) subset of a key
A B C D E F G H

key  
 (A, B, C) B —> F means F is functionally dependent on

subset of key => violation of 2NF

CS 377 [Spring 2017] - Ho

2NF Meaning

A relation that violates 2NF contains another embedded
autonomous entity

A B C D E F G H

B F … …embedded 
entity

CS 377 [Spring 2017] - Ho

Example: Violation of 2NF
• EmpProj(SSN, FName, LName, PNo, PName, Hours)

• SSN —> FName, LName

• PNo —> PName

• SSN, PNo —> Hours

• FName, LName are functionally dependent on SSN

• SSN is subset of a key (SSN, PNo)

• Violation since Employee entity is embedded (SSN, FName, LName)

CS 377 [Spring 2017] - Ho

Decomposition for Normal Form Violations

• Break a relation into two or more relations

• One possibility for EmpProj(SSN, FName, LName, PNo, PName,
Hours):

• R1(PNo, PName, Hours)

• R2(SSN, FName, Lname)

• Another possibility for EmpProj

• R3(SSN, FName, Lname)

• R4(SSN, PNo, PName, Hours)

Are these good or bad
decompositions?

CS 377 [Spring 2017] - Ho

Decomposition Effect

• Populate the new relations using data of the original
relation

• Achieve this by using projection operation on the
original relation

• Example:
R1 = ⇡SSN,FName,LName(EmpProj)

R2 = ⇡PNo,PName,Hours(EmpProj)

CS 377 [Spring 2017] - Ho

Decomposition Effect (2)

• Can we obtain the same information stored in the original
relation?

• Reconstruction algorithm:  
If () {  
 reconstruction = R1 * R2 // Natural join 
} else { 
 reconstruction = R1 x R2 // Cartesian product 
}

R1 \R2 6= ;

CS 377 [Spring 2017] - Ho

Example: Decomposition Effect

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5

SSN FName LName
111-11-1111 John Smith
333-33-3333 Jack Rabbit

PNo PName Hours
pj1 ProjectX 20
pj2 ProjectY 10
pj1 ProjectX 5

CS 377 [Spring 2017] - Ho

Example: Reconstructing After Decomposition

SSN FName LName
111-11-1111 John Smith
333-33-3333 Jack Rabbit

PNo PName Hours
pj1 ProjectX 20
pj2 ProjectY 10
pj1 ProjectX 5

x

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
111-11-1111 John Smith pj1 ProjectX 5
333-33-3333 Jack Rabbit pj1 ProjectX 20
333-33-3333 Jack Rabbit pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5

Extraneous tuples that weren’t present in original relation!

CS 377 [Spring 2017] - Ho

Decomposition Relation Requirements

• Must be able to obtain all tuples in the original relation R
using the reconstruction algorithm

• Missing tuples means that we have lost information
which is unacceptable

• Must not obtain extraneous tuples that were not present
in the original relation R using the reconstruction algorithm

• Invalid information in the relation which is also
unacceptable

CS 377 [Spring 2017] - Ho

Lossless Decomposition
• A decomposition of relation R into 2 relations R1 and R2

is called lossless if and only if 
content(R1) * content(R2) = content(R) or  
content (R1) x content(R2) = content(R)

• 2 lemmas that provide needed guidelines to decompose
R to guarantee lossless

• Lemma 1:

• Lemma 2: If either or ,  
then

content(R) ✓ content(R1) ⇤ content(R2)

R1 \R2 ! R1 R1 \R2 ! R2

content(R) = content(R1) ⇤ content(R2)

CS 377 [Spring 2017] - Ho

Example: 2NF via Lemma 2
• EmpProj(SSN, FName, LName, PNo, PName, Hours)

• SSN —> FName, LName

• PNo —> PName

• SSN, PNo —> Hours

• At least one violating FD

• SSN —> FName

• SSN —> LName

Remove all attributes
functionally dependent
on SSN => compute

closure of SSN

CS 377 [Spring 2017] - Ho

Example: 2NF via Lemma 2

• R1(SSN+) = R1(SSN, FName, LName)

• R2(R - R1) = R2(PNo, PName, Hours)

• To satisfy lemma 2, add SSN to R2 =>  
R2(SSN, PNo, PName, Hours)

• R1 R2 = SSN, and SSN —> R1 \

Are R1 and R2 in the 2NF?

CS 377 [Spring 2017] - Ho

Example: 2NF via Lemma 2

• R1(SSN, FName, LName)

• SSN —> FName, FName — key = good dependency

• R2(SSN, PNo, PName, Hours)

• SSN, PNo —> Hours — key = good dependency

• PNo —> PName — not key = bad!

Remove all attributes functionally dependent
on PNo => compute closure of PNo

CS 377 [Spring 2017] - Ho

Example: 2NF via Lemma 2

• R21(PNo+) = R21(PNo, PName)

• R22(R2 - R21) = R22(SSN, Hours)

• To satisfy lemma 2, add PNo to R22 =>  
R22(SSN, PNo, Hours)

• Resulting decomposition: 
R1(SSN, FName, LName)  
R21(PNo, PName)  
R22(SSN, PNo, Hours)

Are R1, R21, and R22
in the 2NF?

CS 377 [Spring 2017] - Ho

Example: 2NF Complaint

• Employee2(SSN, FName, LName, DNo, DName,
MgrSSN)

• SSN —> FName, LName, DNo

• DNo —> DName, MgrSSN

• Employee2 is 2NF as DNo is not a subset of any key and
neither of the functional dependencies violate 2NF criteria

CS 377 [Spring 2017] - Ho

Example: 2NF Complaint

• But…

• Insert anomaly — adding new department results in
NULL values

• Delete anomaly — deleting an employee may delete
information about department

• Update anomaly — changing department name results
in updates of multiple tuples

CS 377 [Spring 2017] - Ho

Transitive Functional Dependency

A functional dependency A —> B is a transitive functional
dependency in relation R if there is a set of attributes X
such that:

• A —> X

• X —> B

• X is not a super key

CS 377 [Spring 2017] - Ho

Third Normal Form (3NF)
(Definition) A relation schema R is in 3NF if, whenever a
nontrivial functional dependency X —> A holds in R, either
(a) X is a super key of R, or (b) A is a prime attribute of R

• R is in 2NF

• Every non-key attribute is non-transitively dependent on
all the keys
A B C D E F G H
key (A, B, C)

If E —> G, then transitive dependency (A, B, C) —> E —> G

CS 377 [Spring 2017] - Ho

Example: 3NF Violation

• Employee2(SSN, FName, LName, DNo, DName,
MgrSSN)

• SSN —> FName, LName, DNo

• DNo —> DName, MgrSSN

• Since DNo is not a super key, there is a transitive
dependency SSN —> DNo —> DName, MgrSSN

CS 377 [Spring 2017] - Ho

Review: 3NF

• A relation R is 3NF if and only if for every functional
dependency X —> B in relation R, one of the following
must be true:

• X is a superkey, or

• B is a key attribute (part of some key)

CS 377 [Spring 2017] - Ho

Simpler Form of 3NF

• Violation detection: Check every functional dependency  
X —> B for:

• B is a non-key attribute, and

• X is not a superkey

CS 377 [Spring 2017] - Ho

Example: 3NF Violation Take 2

Employee2(SSN, FName, LName, DNo, DName, MgrSSN)

• SSN —> FName, LName, DNo

• FName, LName, and DNO are non-key attributes =>
YES

• SSN is not superkey => NO

• FD is good

CS 377 [Spring 2017] - Ho

Example: 3NF Violation Take 2

Employee2(SSN, FName, LName, DNo, DName, MgrSSN)

• DNo —> DName, MgrSSN

• Name and MgrSSN are non-key attributes => YES

• DNo is not superkey => YES

• FD is bad and a 3NF violation

CS 377 [Spring 2017] - Ho

Example: 3NF Decomposition
• Solution: remove the violation by removing X+ from the

original relation

• R(A, B, C, D, E, F)

• A —> B, C, D

• D —> E, F

• Step 1: Find all keys

• A+ = (A, B, C, D, E, F)

CS 377 [Spring 2017] - Ho

Example: 3NF Decomposition

• Step 2: Is R 2NF?

• Key(s): A

• Non-key attributes: B, C, D, E, F

• Is any of the non-key attributes functionally dependent
on subset of (A)? NO

• Relation is 2NF

CS 377 [Spring 2017] - Ho

Example: 3NF Decomposition

• Step 3: Is R 3NF?

• Key(s): A

• Non-key attributes: B, C, D, E, F

• Is any of the non-key attributes functionally dependent
on attributes that are not super key? YES!

• D —> E, F where D is not a superkey

CS 377 [Spring 2017] - Ho

Example: 3NF Decomposition
• Step 4: Extract offending functional dependence

• D+ = (D, E, F)

• R1(D, E, F)  
R2(A, B, C, D)

• Step 5: Check the new relations if they are 3NF?

• R1: D —> E, F doesn’t violate 3NF criteria

• R2: A —> B, C, D doesn’t violate 3NF criteria

CS 377 [Spring 2017] - Ho

Summary of 1NF, 2NF, 3NF
Normal Form Test Normalization (Remedy)

1NF
Relation should have no
multi-valued attributes or
nested relations

Form new relation for each
multivalued attribute or nested
relation

2NF

For relations where primary
key contains multiple
attributes, no nonkey
attribute should be
functionally dependent on a
part of the primary key

Decompose and set up a new
relation for each partial key
with its dependent attributes
using lossless decomposition

3NF

Relation should not have a
nonkey attribute functionally
determined by another
nonkey attribute

Decompose and set up a
relation that includes the
nonkey attribute(s) that
functionally determine(s) other
nonkey attributes

CS 377 [Spring 2017] - Ho

Boyce-Codd Normal Form (BCNF)
(Definition) A relation schema R is in BCNF if whenever a nontrivial
functional dependency X —> A holds in R, then X is a superkey of R

• Difference from 3NF: 3NF allows A to be prime attribute

• Every relation in BCNF is also in 3NF

• Most relation schemas that are in 3NF are also BCNF but not all

• Example: R(A, B, C)

• A, B —> C

• C —> A

CS 377 [Spring 2017] - Ho

Example: BCNF Violation

• TSS(Teacher, Subject, Student)

• Student, Subject —> Teacher

• Teacher —> Subject

• Keys in TSS

• (Student, Subject)

• (Student, Teacher)

CS 377 [Spring 2017] - Ho

Example: BCNF Violation

• Is TSS in the 3NF?

• Student, Subject —> Teacher — superkey = okay

• Teacher —> Subject

• Is teacher a superkey? NO

• Is subject a key attribute (part of key)? YES — okay
Even though TSS is 3NF — duplicate information

is stored in relation (teacher, subject)

CS 377 [Spring 2017] - Ho

Example: BCNF Violation
• Problem arises when 2 or more composite keys are in a relation

• Is relation BCNF?

• Student, Subject —> Teacher — superkey = okay

• Teacher —> Subject 
Teacher is not a superkey => BCNF violation!

• Solution: Decompose the violating FD

• R1(Teacher, Subject) 
R2(Teacher, Student)

CS 377 [Spring 2017] - Ho

Example: BCNF Normalization

• Relation R(A, B, C, D, E, F, G, H, I, J, K, L, M)

• A —> B, C, D, E

• E —> F, G, H

• I —> J

• A, I —> K

• A, L —> M

CS 377 [Spring 2017] - Ho

Is Normalization Always Good?

• Example: Suppose A and B are always used together but
normalization says they should be in different tables

• Decomposition might produce unacceptable
performance loss (always joining tables)

• For example, data warehouses are huge historical DBs
that are rarely updated after creation — joins are
expensive or impractical

• Everyday DBs: aim for BCNF, settle for 3NF!

CS 377 [Spring 2017] - Ho

Final Note on Normalization

• Is 3NF or BCNF better?

• 3NF can be lossless and preserves all functional
dependencies

• BCNF is guaranteed to be lossless but may not
preserve all functional dependencies

CS 377 [Spring 2017] - Ho

Final Note on Normalization

• Ultimate goal:

• BCNF, lossless, preserves all functional dependencies

• Next ultimate goal:

• 3NF, lossless, preserves all functional dependencies

CS 377 [Spring 2017] - Ho

Database Design: Recap

• FD

• Closure algorithm to find keys

• Lossless decomposition

• 1NF, 2NF, 3NF, BNCF

