
SQL: Advanced Queries
CS 377: Database Systems

CS 377 [Spring 2017] - Ho

Recap: SQL Queries

SELECT [DISTINCT] <attribute list>  
FROM <table list>  
[WHERE <condition on the tables>]  
[GROUP BY <grouping attributes>] 
[HAVING <group condition>]  
[ORDER BY <attribute list> ASC | DESC]  
[LIMIT <number of tuples>]

CS 377 [Spring 2017] - Ho

Today and Next Lecture

1. Temporal Relations

2. Explicit Join Operations

3. SQL Set Operations

4. Query Formulation Techniques

5. SQL View

CS 377 [Spring 2017] - Ho

SQL Query: Temporal Relation

• Result of a SELECT clause that exists temporally, which
assists you in formulating a query

• Syntax: 
SELECT <attributes>  
FROM R1, R2, (SELECT …) <alias>, …, RN  
WHERE <condition>;

• Must always use an alias to denote the result relation of
the SELECT command

CS 377 [Spring 2017] - Ho

SQL Example: Temporal Relation

Find fname, lname of male employees with salary > 50K

SELECT *  
FROM (SELECT fname, lname, salary  
 FROM employee  
 WHERE sex = ‘M’) r1  
WHERE r1.salary > 50000

CS 377 [Spring 2017] - Ho

SQL Query: Temporal Relation Notes

• You can use multiple temporal relations

• You cannot use a temporal relation to create another
temporal relation 
 
Example of incorrect usage: 
SELECT …  
FROM …,  
 (SELECT …) r1,  
 (SELECT … FROM r1 …) r2,  
WHERE …;

CS 377 [Spring 2017] - Ho

SQL Query: WITH
• SQL-99 standard introduced WITH clause to help refine the

result of a query (another way to achieve temporal relation)

• Syntax: 
WITH <alias> AS (SELECT …)[, 
 <alias2> AS (SELECT …)]  
SELECT <query>;

• Can be used to perform “refinement” on a query

• Subsequent queries in the WITH clause can use the
results of the previous query

CS 377 [Spring 2017] - Ho

SQL Example: WITH

Find all information on dependents of John Smith

WITH r1 as (SELECT *  
 FROM employee  
 WHERE fname = ‘John’  
 AND lname = ‘Smith’)  
SELECT *  
FROM dependent  
WHERE essn IN (SELECT ssn from r1);

CS 377 [Spring 2017] - Ho

SQL Query: WITH Notes

• Some vendors do not support WITH (e.g., MySQL)

• Options for dealing

• TEMPORAL relations

• TEMPORARY tables

• VIEW (more on this later)

CS 377 [Spring 2017] - Ho

SQL Query: JOIN Operations

• SQL-99 standard added several join operations:

• INNER JOIN (normal join)

• LEFT JOIN (left outer join)

• RIGHT JOIN (right outer join)

• FULL JOIN (outer join)

CS 377 [Spring 2017] - Ho

SQL Query: JOIN Operations

• Each operation results in a relation

• Operation can only appear in:

• FROM clause of SELECT command

• WHERE clause of SELECT command with an
operator that uses a sub-query

CS 377 [Spring 2017] - Ho

SQL Query: [INNER] JOIN
• Compute the (inner) join between tables r1 and r2 with a

given join condition

• Syntax:  
r1 JOIN r2 ON <join-condition>;  
or  
r1 INNER JOIN r2 ON <join-condition>;

• JOIN operator makes the SQL query look a lot like RA
query

• Can join more than 2 relations

CS 377 [Spring 2017] - Ho

SQL Example: INNER JOIN

Find fname, lname of employees in the ‘Research’
department

RA Query:  

SQL Query:  
SELECT fname, lname  
FROM (employee JOIN department  
 ON dno = dnumber)  
WHERE dname = ‘Research’;

⇡
fname,lname

(�
dname=‘Research’

)(EMPLOYEE ./
dno=dnumber

DEPARTMENT))

CS 377 [Spring 2017] - Ho

SQL Query: OUTER JOIN

• Compute the outer join between tables r1 and r2 with a
given join condition - see RA slides for details on
difference between left, right, and full outer joins

• Syntax: 
r1 LEFT | RIGHT| FULL [OUTER] JOIN r2 on <join
condition>;

• Results in NULL values for the attributes where non-
matching tuples occur

CS 377 [Spring 2017] - Ho

SQL Query: NATURAL JOIN

• Compute the natural join on attributes with the same
names from two or more tables with the common
attribute appearing only once in the result

• Syntax: 
r1 NATURAL JOIN r2;

• Example: 
SELECT *  
FROM works_on NATURAL JOIN dependent;

CS 377 [Spring 2017] - Ho

SQL Query: CROSS JOIN

• Cross join is the same as a Cartesian Product

• Syntax: 
r1 CROSS JOIN r2;

• Example: 
SELECT ssn, fname, lname, dno, dnumber, dname  
FROM employee CROSS JOIN dependent;

CS 377 [Spring 2017] - Ho

SQL: Implicit vs Explicit JOIN

• Why the difference?

• SELECT * SELECT *  
FROM table1 a vs FROM table1 a, table2 b 
INNER JOIN table2 b WHERE a.id = b.id;  
ON a.id = b.id;

• Explicit (inner join) vs implicit join

• In some systems, explicit queries are better optimized for
large records

CS 377 [Spring 2017] - Ho

SQL: Set Operations
Not all set operations have been incorporated into SQL

• UNION: in most implementations because it’s very easy
to merge 2 result sets (O(n) running time)

• INTERSECT: in few implementations because it’s hard
to intersect 2 sets (O(N log N) running time)

• MINUS: almost no implement provides this (just as
expensive as INTERSECT)

• CARTESIAN PRODUCT: built into SELECT command

CS 377 [Spring 2017] - Ho

SQL: Set Operations (2)

• Resulting relations of set operations are sets of tuples  
—> duplicate tuples are eliminated from the result

• Set operations apply only to union compatible relations:
two relations must have the same attributes and
attributes must be in the same order

• Set division is not part of the SQL standard

• MySQL only implements the UNION operator

CS 377 [Spring 2017] - Ho

Example Query: UNION
Find the name of projects that are worked on by ‘Smith’ or ‘Borg’  
 
(SELECT pname 
 FROM project, works_on, employee  
 WHERE pnumber = pno 
 AND essn = ssn 
 AND lname = ‘Smith’)  
UNION  
(SELECT pname 
 FROM project, works_on, employee  
 WHERE pnumber = pno 
 AND essn = ssn 
 AND lname = ‘Borg’)

CS 377 [Spring 2017] - Ho

Example Query: UNION (2)
List all project names that involve an employee whose last name is
‘Smith” either as a worker or manager of the department that
controls the project 
 
(SELECT pname 
 FROM project, department, employee 
 WHERE dnum = dnumber AND mgrssn = ssn 
 AND lname = ‘Smith’) 
UNION 
(SELECT pname 
 FROM project, works_on, employee 
 WHERE pnumber = pno AND essn = ssn 
 AND lname = ‘Smith’)

CS 377 [Spring 2017] - Ho

SQL: Beyond Union

• Can I make queries that use intersection, difference, or
division?

• What are techniques for answering such queries?

Ans: There are query formulation techniques (QFT) that
can be followed to address these deficiencies!

CS 377 [Spring 2017] - Ho

QFT: INTERSECT

How to compute the intersection of two sets when the
system does not support INTERSECT (e.g., MySQL)?

x IN (set1 INTERSECT set2)

(x IN set1) AND (x IN set2)

CS 377 [Spring 2017] - Ho

SQL Example: INTERSECT
Find fname and lname of employees who work on some project
controlled by the ‘Research’ department and also on some project
controlled by the ‘Administration’ department

SELECT fname, lname 
FROM employee  
WHERE ssn IN (SELECT essn  
 FROM works_on, project, department  
 WHERE pno = pnumber  
 AND dnum = dnumber AND dname = ‘Research’) 
 AND ssn IN (SELECT essn  
 FROM works_on, project, department  
 WHERE pno = pnumber AND dnum = dnumber 
 AND dname = ‘Administration’);

CS 377 [Spring 2017] - Ho

QFT: DIFFERENCE

How to compute the difference of two sets when SQL
doesn’t support set difference?

x IN (set1 - set2)

(x IN set1) AND (x NOT IN set2)

CS 377 [Spring 2017] - Ho

SQL Example: DIFFERENCE

Find SSN of employees in the ‘Research’ department who
has no dependents

SELECT ssn 
FROM employee  
WHERE ssn IN (SELECT ssn  
 FROM employee, department  
 WHERE dno = dnumber  
 AND dname = ‘Research’)  
 AND ssn NOT IN (SELECT essn  
 FROM dependent)

CS 377 [Spring 2017] - Ho

QFT: Superset

How to formulate set B is a super set of set A?

 set Bset A set Bset A

CS 377 [Spring 2017] - Ho

QFT: Superset

How to formulate set B is a super set of set A?

 set Bset A

If superset, set B - set
A is empty set!

Otherwise, set B does
not contain all of set A.

CS 377 [Spring 2017] - Ho

QFT: Superset

How to formulate set1 is a superset (contains) of another
set, set2?

set1 CONTAINS set2 <=> set2 - set1 = EMPTY

SELECT …  
FROM … 
WHERE NOT EXISTS (SELECT *  
 FROM <table>  
 WHERE x IN set2  
 AND x NOT IN set1)

CS 377 [Spring 2017] - Ho

QFT: Subset

How to formulate set1 is a subset (part of) of another set,
set2?

set1 SUBSET set2 <=> set1 - set2 = EMPTY

SELECT …  
FROM … 
WHERE NOT EXISTS (SELECT *  
 FROM <table>  
 WHERE x IN set1  
 AND x NOT IN set2)

CS 377 [Spring 2017] - Ho

Subset vs Superset

• Syntax is almost the same, only nested query is different

• Relations specified for IN and NOT IN are the
differentiators for subset vs superset query — easy to get
them mixed up

(SELECT * 
FROM <table>
WHERE x IN set2 
AND x NOT IN set1)

(SELECT * 
FROM <table> 
WHERE x IN set1
AND x NOT IN set2)

set1 superset of set2 set1 subset of set2

CS 377 [Spring 2017] - Ho

QFT: Division

• How to compute the division between two relations?

• Example: Find lname of all employees who work on all
projects controlled by department number 4

• RA:
H1 = ⇡

pnumber

(PROJECT ./
dnum=dnumber

�
dname=‘Research’

(DEPARTMENT))

H2 = ⇡
essn,pno(WORKS ON)

H3 = H2÷H1

Answer = ⇡
fname,lname

(EMPLOYEE ./
ssn = ssn

H3)

CS 377 [Spring 2017] - Ho

QFT: Division

• How to compute the division between two relations?

• Example: Find lname of all employees who work on all
projects controlled by department number 4

• SQL: Use NOT EXISTS and set difference

• Use superset idea — set of projects worked on by an
employee contains set of projects controlled by
department 4

CS 377 [Spring 2017] - Ho

SQL Example: DIVISION
Find lname of all employees who work on all projects controlled by
department number 4

SELECT fname, lname 
FROM employee 
WHERE NOT EXISTS  
 (SELECT pnumber 
 FROM project 
 WHERE pnumber IN (SELECT pnumber  
 FROM project  
 WHERE dnum = 4)  
 AND pnumber NOT IN (SELECT pno 
 FROM works_on  
 WHERE essn = ssn));

project controlled 
by Research

projects worked on  
by employee

CS 377 [Spring 2017] - Ho

QFT: Only

• How to compute queries that ask for only?

• Example: Find the names of projects that are worked on
by only employees in the ‘Research’ department?

• Formulate the solution using a subset condition:

• Employees working on project p are a subset of
employees in the Research department

CS 377 [Spring 2017] - Ho

SQL Example: Only
Find the names of projects that are worked on by only employees in the
‘Research’ department?

SELECT pname  
FROM project 
WHERE NOT EXISTS  
 (SELECT ssn 
 FROM employee 
 WHERE ssn IN (SELECT essn 
 FROM works_on 
 WHERE pno = pnumber)  
 AND ssn NOT IN (SELECT ssn 
 FROM employee, department 
 WHERE dno = dnumber 
 AND dname = ‘Research’));

employees working on  
project p

employees from 
research department

CS 377 [Spring 2017] - Ho

QFT: Most Number of
• How to compute queries that ask for the most number of some

attribute?

• Example: Find the name of the departments with most number of
employees?

Ans: Use nested query with the max function  
SELECT dname  
FROM department, employee  
WHERE dno = dnumber  
GROUP BY dname 
HAVING COUNT(ssn) = (SELECT MAX(COUNT(ssn))  
 FROM employee GROUP BY dno);

CS 377 [Spring 2017] - Ho

SQL Practice (1)

• Find the name of the departments with 2 or more male
employees

• Find the name of the employees with the most number of
dependents

• Find fname and lname of employees who works on all
projects that are worked on by John Smith

CS 377 [Spring 2017] - Ho

SQL Practice (2)

• Find the department name, and the number of
employees in that department that earns more than 40K
for departments with at least 2 employees

• Find fname, lname of employees who work on 2 or more
projects together with John Smith

• Find departments who have 2 or more employees
working on all projects controlled by ‘Research’
department

CS 377 [Spring 2017] - Ho

SQL Practice (3)

• Find the project name and the number of employees
working on that project; for projects that has 3 or more
employees working on the project

• Find the fname and lname of the employees with more
than 2 dependents and work on more than 2 projects

• Find the fname and lname of the employees with more
than 2 dependents and work on all projects controlled by
department #1

CS 377 [Spring 2017] - Ho

SQL: View

CS 377 [Spring 2017] - Ho

SQL: VIEW

• A view is a virtual table, a relation that is defined in terms
of the contents of other tables and views

• A view does not exist in the physical form

• In contrast, a relation whose value is really in the
database is called a base table

• Syntax: 
CREATE VIEW <name> AS <query>;

CS 377 [Spring 2017] - Ho

SQL: View & Logical Data Independence
• Recall Logical Data Independence  

(class on Database Concepts)

• Ability to present the stored information in a different way to
different users

• View can be adapted to the  
need of the user

• If conceptual schema  
changes, only the SELECT 
query needed to construct 
view needs to change

CS 377 [Spring 2017] - Ho

SQL Example: VIEW
• Suppose an administrator maintains a list of activities of all employees

which contains the following information:  
fname, lname, project_name, hours_worked

• Regular SELECT query: 
SELECT fname, lname, pname, hours 
FROM employee, works_on, project 
WHERE ssn = essn AND pno = pnumber;

• Create VIEW for the admin:  
CREATE VIEW emp_activity 
AS (SELECT fname, lname, pname, hours 
 FROM employee, works_on, project 
 WHERE ssn = essn AND pno = pnumber); 

CS 377 [Spring 2017] - Ho

SQL: VIEW Advantages
• View can be used in queries like an ordinary relation

• When a view is used in a SELECT query, the virtual relation
is computed first

• Simplify complex queries by hiding them from the end-user
and applications

• Limit data access to specific users (expose only non-sensitive
data) and provides extra security for read/write access

• Enables backward compatibility - changes to database won’t
affect changes to other applications

CS 377 [Spring 2017] - Ho

SQL: VIEW Disadvantages

• Querying data from database view can be slow (since
view is computed each time)

• Tables dependency - updates to the underlying tables will
force changes to the view itself to make it work properly

• Most data manipulation statements (INSERT, DELETE,
UPDATE) are not possible on the view

CS 377 [Spring 2017] - Ho

SQL Advanced Queries: Recap

• Temporal relations

• Explicit join operations

• Formulating set operations

• SQL view operation

