
Transaction Management & 
Concurrency Control
CS 377: Database Systems



CS 377 [Spring 2016] - Ho

Example: Need for Control
• ATM where a customer has some amount of money in his 

checking account and wants to withdraw $25  
 
READ(A);  
CHECK(A > 25); 
PAY(25); 
A = A - 25;  
WRITE(A); 

• What happens if DBMS crashes right after paying? 

• What if his wife also withdraws money at the same time?



CS 377 [Spring 2016] - Ho

Transaction Management
• Inconsistencies can occur when: 

• System crashes, user aborts, … 

• Interleaving actions of different user programs 

• Want to provide the users an illusion of a single-user 
system 

• Why not just allow one user at a time?



CS 377 [Spring 2016] - Ho

Transaction
• A collection of operations that form a single atomic 

logical unit of execution  
BEGIN TRANSACTION  
  <SQL COMMAND> 
END TRANSACTION 

• Operations: READ(X) - retrieval, WRITE(X) - insert, delete, 
update 

• Transactions must leave the database in a consistent 
state



CS 377 [Spring 2016] - Ho

ACID: Transaction Properties
• Atomicity: a transaction is an atomic unit of data 

processing 

• All actions in transaction happen or none happen 

• Consistency: a database in a consistent state will remain 
in a consistent state after the transaction 

• Any data written to the database must be valid 
according to constraints, cascades, triggers, etc.



CS 377 [Spring 2016] - Ho

ACID: Transaction Properties (2)
• Isolation: the execution of one transaction is isolated from 

other transactions 

• Execution of a transaction should not be interfered with 
by other transactions executing at same time 

• Durability: if a transaction commits, its effects must 
persist 

• Changes should not be lost because of possible failure 
occurring immediately after transaction



CS 377 [Spring 2016] - Ho

Transaction Management Overview
• Recovery (Atomicity & Durability) 

• Ensures database is fault tolerant, and not corrupted by 
software, system or media 

• 24x7 access to critical data 

• Concurrency control (Isolation) 

• Provide correct and highly available data access in the 
presence of access by many users 

• Application program for consistency



CS 377 [Spring 2016] - Ho

Transaction Terminology
• Commit: successful completion of a transaction — operations 

of transaction are guaranteed to be performed on the data in 
the database 

• Abort: unsuccessful termination of a transaction —operations 
of transaction are guaranteed to not be performed on the 
data in the database 

• Rollback: process of undoing updates made by operations of 
a transaction 

• Redo: process of performing the updates made by the 
operations of a transaction again



CS 377 [Spring 2016] - Ho

SQL Transactions
• A new transaction starts with the BEGIN command (or 

begins implicitly when a statement is executed) 

• Transaction stops with either COMMIT, ABORT, 
ROLLBACK 

• COMMIT means all changes are saved 

• ABORT means all changes are undone 

• ROLLBACK undoes transactions not already saved



CS 377 [Spring 2016] - Ho

Recovery via System Logs
Idea: Keep a system log and perform recovering when 
necessary 

• Separate and non-volatile (stable) storage that is 
periodically backed up 

• Contains log records that contains information about 
an operation performed by transaction 

• Each transaction is assigned a unique transaction ID to 
different themselves



CS 377 [Spring 2016] - Ho

Logging: Basic Idea
• Record information for every update 

• Sequential writes to log 

• Minimal information written to log 

• Used by all modern systems 

• Audit trail & efficiency reasons 

• Alternative to logging is shadow paging: make copies of 
pages and make changes to these copies — only on commit 
are they made visible to others



CS 377 [Spring 2016] - Ho

Logging: WAL Picture
Write ahead logging (WAL): all modifications are written to a 
log before they are applied to database 

Data on Disk


Main Memory


Log on Disk


Log
T		 A=0


B=5


A=0


T:	R(A),	W(A)		



CS 377 [Spring 2016] - Ho

Data on Disk


Main Memory


Log on Disk


Log
T 
 A=1


B=5


A=0


T:	R(A),	W(A)		
A: 0à1


Logging: WAL Picture (2)
Write ahead logging (WAL): all modifications are written to a 
log before they are applied to database 



CS 377 [Spring 2016] - Ho

Data on Disk


Main Memory


Log on Disk


Log
T		 A=0


B=5


A=0


T:	R(A),	W(A)		

Data on Disk


Main Memory


Log on Disk


Log
A=1


B=5


A=0


A: 0à1


Logging: WAL Picture (3)
Write ahead logging (WAL): all modifications are written to a 
log before they are applied to database 



CS 377 [Spring 2016] - Ho

Logging: WAL Picture (4)
Write ahead logging (WAL): all modifications are written to a 
log before they are applied to database 

Data on Disk


Main Memory


Log on Disk


Log
T		 A=0


B=5


A=0


T:	R(A),	W(A)		

Data on Disk


Main Memory


Log on Disk


A: 0à1


A=1
First write to log on 
disk, then update 

data on disk



CS 377 [Spring 2016] - Ho

Undo Logging
Idea: undo operations for uncommitted transactions to go back 
to original state of database 

• New transaction begins — add [start, T] to the log 

• Read data — do nothing 

• Write data — add [write, T, X, old_value], after successful 
write to log, update X with new value 

• Complete transaction — add [commit, T] to log 

• Abort transaction — add [abort, T] to log



CS 377 [Spring 2016] - Ho

Example: Undo Logging
T1:    Read (A, t);  
         t <— t x 2; 
         Write(A, t); 
         Read (B, t);  
         t <— t x 2; 
         Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	



CS 377 [Spring 2016] - Ho

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=8	

<Start,	T1>	

B=8	

A=8	

Example: Undo Logging
T1:    Read (A, t);  
         t <— t x 2; 
         Write(A, t); 
         Read (B, t);  
         t <— t x 2; 
         Write(B, t);



CS 377 [Spring 2016] - Ho

T1:    Read (A, t);  
         t <— t x 2; 
         Write(A, t); 
         Read (B, t);  
         t <— t x 2; 
         Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=16	

B=8	

<Start,	T1>	

<Write,	T1,	A,	8>		
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=16	

B=8	

<Start,	T1>	

<Write,	T1,	A,	8>	

Example: Undo Logging

If crash occurs now, we 
can check the log and roll 

back to the last known 
state and recover 

A = 8, B = 8!



CS 377 [Spring 2016] - Ho

T1:    Read (A, t);  
         t <— t x 2; 
         Write(A, t); 
         Read (B, t);  
         t <— t x 2; 
         Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=8	 B=8	

A=16	

B=16	

<Start,	T1>	

<Write,	T1,	A,	8>	

<Write,	T1,	B,	8>	

Example: Undo Logging



CS 377 [Spring 2016] - Ho

T1:    Read (A, t);  
         t <— t x 2; 
         Write(A, t); 
         Read (B, t);  
         t <— t x 2; 
         Write(B, t);

	
	

Data	on	Disk	

Main	Memory	

	
	
	
	

Log	on	Disk	

A=16	

B=16	

<Start,	T1>	

<Write,	T1,	A,	8>	

<Write,	T1,	B,	8>	

<Commit,	T1>	

A=16	 B=16	

Example: Undo Logging



CS 377 [Spring 2016] - Ho

Redo Logging
Idea: save disk I/Os by deferring data changes or do the 
changes for committed transaction 

• New transaction begins — add [start, T] to the log 

• Read data — do nothing 

• Write data — add [write, T, X, new_value], after successful 
write to log, update X with new value 

• Complete transaction — add [commit, T] to log 

• Abort transaction — add [abort, T] to log



CS 377 [Spring 2016] - Ho

Checkpoints
• Log grows infinitely — take 

checkpoints to reduce amount of 
processing 

• Periodically 

• Do not accept new transactions 
and wait for active ones to finish 

• Write “checkpoint” record to disk 

• Flush all log records and resume 
transaction processing

http://www.saintlouischeckpoints.com/
wp-content/uploads/2013/08/

dui20checkpoint200220172011.jpg

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg


CS 377 [Spring 2016] - Ho

Logging Summary
• WAL and recovery protocol are used to 

• Undo actions of aborted transactions 

• Restore the system to a consistent state after a crash 

• Helps with atomicity and durability 

• But only half the story …



CS 377 [Spring 2016] - Ho

Concurrent Executions
• Multiple transactions should be allowed to run 

concurrently in the system 

• Increased processor and disk utilization — better 
transaction throughput 

• Reduced average response time for transactions 

• But, interleaving transactions to ensure isolation and 
handling system crashes are the hard part!



CS 377 [Spring 2016] - Ho

Schedule
• A schedule S of n transactions T1, T2, …, Tn is an 

ordering of the operations of the transactions 

• For each transaction Ti, the operations in Ti in S must 
appear in the same order in which they occur in Ti 

• Operations from other transactions Tj can be 
interleaved with operations of Ti in S 

• Schedule represents an actual or potential execution 
sequence of the transactions



CS 377 [Spring 2016] - Ho

Example: Schedule
Initial DB state: A = 25, B = 25 

T1: Read(A);                             T2:  Read(A);  
      A <— A+100;                            A <— A x 2;  
      Write(A);                                     Write(A);  
      Read(B);                                    Read(B);  
      B <— B + 100;                          B <— B x 2;  
      Write(B);                                     Write(B);



CS 377 [Spring 2016] - Ho

Example: Serial Schedule A

T1 T2

Read(A); 
A <— A + 100; 
Write(A);
Read(B); 
B <— B + 100; 
Write(B);

Read(A); 
A <— A x 2; 
Write(A);
Read(B); 
B <— B x 2; 
Write(B);

A = 25; B = 25

A = 125

B = 125

A = 250

B = 250



CS 377 [Spring 2016] - Ho

Example: Serial Schedule B

T1 T2

Read(A); 
A <— A x 2; 
Write(A);
Read(B); 
B <— B x 2; 
Write(B);

Read(A); 
A <— A + 100; 
Write(A);
Read(B); 
B <— B + 100; 
Write(B);

A = 25; B = 25

A = 50

B = 50

A = 150

B = 150



CS 377 [Spring 2016] - Ho

Example: Serial Schedule C

T1 T2

Read(A); 
A <— A + 100; 
Write(A);

Read(A); 
A <— A x 2; 
Write(A);

Read(B); 
B <— B + 100; 
Write(B);

Read(B); 
B <— B x 2; 
Write(B);

A = 25; B = 25

A = 125

A = 250

B = 125

B = 250



CS 377 [Spring 2016] - Ho

Example: Nonserializable Schedule D

T1 T2

Read(A); 
A <— A + 100; 
Write(A);

Read(A); 
A <— A x 2; 
Write(A);
Read(B); 
B <— B x 2; 
Write(B);

Read(B); 
B <— B + 100; 
Write(B);

A = 25; B = 25

A = 125

A = 250

B = 50

B = 150



CS 377 [Spring 2016] - Ho

Serializability
• Want schedules that are “good” regardless of 

• Initial state 

• Transaction semantics 

• “Equivalent” to a serial schedule 

• Only look at order of read and writes 

• Note: if each transaction preserves consistency, every 
serializable schedule preserves consistency



CS 377 [Spring 2016] - Ho

Conflict
• Pairs of consecutive actions such that if their order is 

interchanged, the behavior of at least one of the 
transactions can change 

• Involve the same database element 

• At least one write 

• Three types of conflict: read-write conflicts (RW), write-
read conflicts (WR), write-write conflicts (WW)



CS 377 [Spring 2016] - Ho

Example: Read-Write Conflict
T1 T2

BEGIN 
Read(A);

BEGIN 
Read(A); 
A <— A * 2; 
Write(A); 
COMMIT;

Read(A); 
COMMIT

A = 10

A = 10

A = 20

A = 20

“Unrepeatable read” 
- T1 gets different / 
inconsistent values!



CS 377 [Spring 2016] - Ho

Example: Write-Read Conflict
T1 T2

BEGIN 
Read(A); 
A <— A + 2; 
Write(A);

BEGIN 
Read(A); 
A <— A * 2; 
Write(A); 
COMMIT;

Read(B); 
B <— B + 100; 
ABORT

A = 10

A = 12

A = 12

A = 24

A “dirty read” (reading uncommitted 
data) means T2’s result is based on 

obsolete / inconsistent value!



CS 377 [Spring 2016] - Ho

Example: Write-Write Conflict
T1 T2

BEGIN 
Write(A);

BEGIN 
Write(A); 
Write(B); 
COMMIT;

Write(B); 
COMMIT

A = 20
B = 100

Overwriting uncommitted data 
results in partially-lost update and 

not equivalent to any serial schedule

A = 10

B = 20



CS 377 [Spring 2016] - Ho

Serializability Definitions
• S1, S2 are conflict equivalent schedules if S1 can be 

transformed into S2 by a series of swaps on non-
conflicting actions 

• A schedule is conflict serializable if it is conflict 
equivalent to some serial schedule 

• Maintains consistency & isolation!



CS 377 [Spring 2016] - Ho

Example: Not conflict serializable
T1 T2

BEGIN 
Read(A);

Write(A);

BEGIN 
Read(A);

Write(A);

Read(B);

Write(B); 
COMMIT;

Read(B);

Write(B); 
COMMIT

Conflict 1

Conflict 2

Both conflicts will not happen in this order for a serial schedule!



CS 377 [Spring 2016] - Ho

Example: Serializable vs Conflict Serializable

• Equivalent to T1, T2, 
T3, so serializable 

• Not conflict equivalent 
to T1, T2, T3 so not 
conflict serializable 

• Conflict serializable => 
serializable but not the 
other way around!

T1 T2 T3
BEGIN 
Read(A);

BEGIN

Write(A); 
COMMIT

Write(A) 
COMMIT

BEGIN

Write(A); 
COMMIT



CS 377 [Spring 2016] - Ho

Precedence (Serialization) Graph
• Graph with directed edges 

• Nodes are transactions in S 

• Edge is created from Ti to Tj if one of the operations in 
Ti appears before a conflicting operation in Tj 

• Schedule is serializable if and only if precedence graph 
has no cycles!



CS 377 [Spring 2016] - Ho

Example: Precedence Graph
T1 T2

Read(A); 
A <— A + 100; 
Write(A);

Read(A); 
A <— A x 2; 
Write(A);
Read(B); 
B <— B x 2; 
Write(B);

Read(B); 
B <— B + 100; 
Write(B);

T2
T1


A non-conflict serializable 
schedule has a cycle!



CS 377 [Spring 2016] - Ho

Locks: Basic Idea
• Each time you want to 

read/write an object, obtain 
a lock to secure permission 
to read/write object 

• When completed, unlock 
removes permissions from 
data item 

• Ensure transactions remain 
isolated and follow 
serializable schedules

T1 T2
BEGIN 
Lock(A) 
Read(A);

BEGIN 
Lock(A)

Write(A)

Unlock(A) 
COMMIT

Read(A) 
Write(A) 
Unlock(A) 
COMMIT

denied since T1 
has lock



CS 377 [Spring 2016] - Ho

Basic Locking
• Two lock modes: shared (read), exclusive (write) 

• If a transaction wants to read an object, it must first  
request a shared lock on that object 

• If a transaction wants to modify an object, it must first 
request an exclusive lock on that object

Shared Exclusive

Shared Yes No

Exclusive No No



CS 377 [Spring 2016] - Ho

Example: Basic Locking Insufficient
T1 T2

Exclusive-Lock(A); 
Read(A); 
A <— A + 5; 
Write(A); 
Unlock(A);

Exclusive-Lock(A); 
Read(A); 
A <— A x 2; 
Write(A); 
Unlock(A);
Exclusive-Lock(B); 
Read(B); 
B <— B x 2; 
Write(B); 
Unlock(B)

Exclusive-Lock(B);

Read(B); 
B <— B + 5; 
Write(B); 
Unlock(B)

A = B 
A = 100 
A = 105

A = 105 
A = 210

B = 100  
B = 200

B = 200 
B = 205

A =/= B => not 
conflict-serializable!



CS 377 [Spring 2016] - Ho

Two-phase Locking (2PL)
• All lock requests precede all 

unlock requests 

• Phase 1: obtain locks 

• Phase 2: release locks 

• Guarantees conflict serializability 

• Does not prevent cascading 
aborts (where aborting one 
transaction causes one or more 
other transactions to abort)

time 

# locks held 

release phase acquisition 
phase 



CS 377 [Spring 2016] - Ho

Example: Cascading Abort
T1 T2

Exclusive-Lock(A); 
Read(A); 
A <— A + 5; 
Write(A); 
Exclusive-Lock(B) 
Unlock(A);

Exclusive-Lock(A); 
Read(A); 
A <— A x 2; 
Write(A);

Exclusive-Lock(B); 
Unlock(A);
Read(B); 
B <— B x 2; 
Write(B); 
Unlock(B)

Read(B); 
B <— B + 5; 
Write(B); 
Unlock(B)

cannot obtain 
lock on B until T1 

unlocks

But what if we abort here?



CS 377 [Spring 2016] - Ho

Strict Two-phase Locking (Strict 2PL)
• Only release locks at commit / abort time 

• A transaction that writes will block all other readers 
until the transaction commits or aborts 

• Used in many commercial DBMS systems 

• Oracle is notable exception 

• Downside: not deadlock free



CS 377 [Spring 2016] - Ho

Example: Deadlock

T1 T2
Shared-Lock(Y); 
Read(Y);

Shared-Lock(X); 
Read(X);

Exclusive-Lock(X);

Write(X);

Exclusive-Lock(Y);

T1 and T2 follow the strict 2PL policy but are 
deadlocked!



CS 377 [Spring 2016] - Ho

Deadlock Protocols
Different ways to deal with deadlock 

• Deadlock prevention 

• Rigorous locking protocol — acquire all locks in 
advance 

• Timeout — waits some amount of time then roll back 

• Deadlock detection 

• Construct and maintain graph 



CS 377 [Spring 2016] - Ho

Transactions & Concurrency: Recap
• ACID 

• Logging 

• WAL 

• Checkpoints 

• Conflict Serializable Schedules 

• Locking: Basic, 2PL, Strict 2PL 

• Deadlock


