Storing Data: Disk & Files

CS 377: Database Systems

Recap: BCNF Normalization

- Relation R(A, B, C, D, E, F G, H, |, J, K, L, M)
- A—>B,C,D, E
- BE—>F G, H
s | —=>J
- Al —>K

- A, L—>M

CS 377 [Spring 2016] - Ho

Recap: BOCNF Normalization (2)

- Step 1: Find all keys
- Use heuristic #2 to find that A, |, L are not in RHS
- (A LLIP=A 1L B, C D EFG, H,J KM
- (A, 1, L) is key

- Step 2: Check for BONF condition

- A —>B, G, D, E: violation FD as A is subset of key

CS 377 [Spring 2016] - Ho

Recap: BCNF Normalization (3)

- Step 2(c): Decompose using At
- (A=A B,C,D,E, F G, H

- R1(A, B,C, D, E, F G, H)
R2A, |, J, K, L, M)

- Step 3: Check R1 for BCNF condition

- B —>F G, H: violation as E is not a super key

CS 377 [Spring 2016] - Ho

Recap: BOCNF Normalization (4)

- Step 3(c): Decompose using E”
- {E}"=E,F G, H

- R11(A, B, G, D, E)
R12(E, F, G, H)

- Step 4: Check R11 for BCNF condition
- OKl
- Step 5: Check R12(E, F, G, H) for BCNF

- OKl

CS 377 [Spring 2016] - Ho

Recap: BCNF Normalization (5)

- Step 6: Check R2(A, |, J, K, L, M) for BCNF
- | —> J: violation as | Is sulbset of key
+ Decompose using {I}* =1, J

- R21(, J)
R2(A, 1, K, L, M)

- Step 7: Check R21 for BCNF condition

- OKl

CS 377 [Spring 2016] - Ho

Recap: BCNF Normalization (6)

- Step 8: Check R2(A, |, K, L, M) for BCNF condition
- A, | —> K: violation as (A,l) is not superkey
- Decompose using {A, I}* = A, |, K

© R221A |, K)
R222(A, |, L, M)

- Step 9: Check R221 for BCNF condition

- OKl

CS 377 [Spring 2016] - Ho

Recap: BCNF Normalization (/)

- Step 10: Check R222(A, I, L, M) for BCNF condition
- A, L —> M: violation as (A,L) is not superkey
- Decompose using {A, L}T = A, L, M

© R2221(A, L, M)
R2222(A, 1, L)

- Step 11: Check R2221 for BCNF condition

- OKl

CS 377 [Spring 2016] - Ho

Recap: BCNF Normalization (8)

- Step 12: Check R2222(A, |, L) for BCNF condition
- OK!

- Final Decomposition:
R11(A, B, C, D, E)
R12(E, F G, H)
R21(, J)

R221(A, |, K)
R2221(A, L, M)
R2222(A, |, L)

CS 377 [Spring 2016] - Ho

Final Note on Normalization

- |s SNF or BCNF better?
- 3NF can be lossless and preserves all functional dependencies

- BCNF is guaranteed to be lossless but may not preserve all
functional dependencies

- Ultimate goal:
- BCNF, lossless, preserves all functional dependencies
+ Next ultimate goal:

- 3NF, lossless, preserves all functional dependencies

CS 377 [Spring 2016] - Ho

DMBS Architecture

Users: DBA Staff Casual Users Application Parametric Users
/ \ l Programmers
)
DDL Privileged Interactive Application
Statements Commands Query Programs
. .
m— a Y Host
uery e —| Language
Compiler Compiler Precompiler Cor?’\pilir
; . Y R
: Query DML : Compiled
I Optimizer Compiler 9 Transactions
! 4 g
I P ’ = -
: @
| P L—
X ,° DBA Commands,
' L’ Queries, and Transactions
Y . Y

Catalog/

Data
Dictionary

Query and Transaction

Execution:

)

Runtime
Database

query

—xecution

Query

data access

Stored Database

Concurrency Control/
Backup/Recovery
Subsystems

Manager

Storage Manager

Input/Output

CS 377 [Spring 2016] - Ho

from Database

/O access

N
N~

Data Storage

- How does a DBMS store and access data”
+ Disk
- Main memory

- How do we move data from disk to main memory*?
- Blocks

- How do we organize relational data into files?

CS 377 [Spring 2016] - Ho

Computer System Overview

CPU Main Memory

Control RAM RAN
Unit

Arithmetic & Logic
Unit
Controller(s)

/0
Disk Drive Disk Drive Disk Drive

http://www.doc.ic.ac.uk/~eedwards/compsys/memory/memory.gif

CS 377 [Spring 2016] - Ho

http://www.doc.ic.ac.uk/~eedwards/compsys/memory/memory.gif

Memory Hierarchy

acCess
sSpeed

CPU cache

Main Memory

Flash Storage

Magnetic Hard Disk Drive

CS 377 [Spring 2016] - Ho

price

Typical Storage Hierarchy

- Main memory (RAM) for currently used data
- Not persistent
- Relatively high cost

- Disk for main database (secondary storage)

+Tapes for archiving older versions of the data (tertiary
storage)

CS 377 [Spring 2016] - Ho

Data Store Overview

Data items

Records
Memory DBMS

Blocks blocks

Files

Disk

CS 377 [Spring 2016] - Ho

Hard Disks

Data Is stored and retrieved In units called disk blocks or
nDages

- Typical numbers these days are 64 KB per block
- Retrieval time depends upon the location of the disk

- Placement of blocks on disk has major impact on
DBMS performance

Disks are a mechanical anachronism!

CS 377 [Spring 2016] - Ho

Components of Disk

Data Is encoded In | Readwits

Actuator Arm head Spindle Disk rotation

concentric circles of ¥
sectors called tracks :

Disk head: mechanism to
read / write data

Cylinder
— of tracks

/ [T (imaginary)
A,

- I

o Q\J?

Boom (disk arm) moves _ < —
to position disk head on Actuator movement

the desired track

Track Sector (arc of track)

Exactly one head reads/
writes at any time

CS 377 [Spring 2016] - Ho

Block Access

- Time to access (read/write) a page
-+ Seek time: move arms to position disk head on track
- Rotational delay: walit for page to rotate under head
- Transfer time: move data to/from disk surface
- Seek time and rotational delay are dominant factors
- Seek time ~ 0to 10 ms
-+ Rotational delay ~ 0 to 10 ms

- Transfer rate;: ~100 MB / s

CS 377 [Spring 2016] - Ho

Disk Access Situations

Random access: collection of short processes that
execute In parallel, share the same disk, and cannot be

predicted in advance
- Very expensive |/O

- Seqguential access: blocks are accessed in a sequence
that can e predicted (e.g., accessing all the records in a
single relation)

- Much less expensive |/O

CS 377 [Spring 2016] - Ho

Example: Disk Specifications

Seagate HDD
Capacity 318

Platters 3

- What are I/O rates for block size of 4 KB?
- Random workload: ~0.3 MB/s

- Sequential workload: ~210 MB/s

CS 377 [Spring 2016] - Ho

Speeding up Disk Access

- Blocks in a file should be arranged sequentially on disk to
Minimize seek and rotational delay

- ‘Next’ block concept
- Blocks on same track
-+ Blocks on same cylinder
- Blocks on adjacent cylinder

- For sequential scan, pre-fetch several blocks at a time!

CS 377 [Spring 2016] - Ho

Records

- Records contain fields which have values of a particular
type (e.g., amount, date, time, age)

- Fields themselves may be fixed length or variable length

record O 10101 | Srinivasan | Comp. Sci. | 65000
record 1 12121 | Wu Finance 90000
record 2 15151 | Mozart Music 40000
record 3 | 22222 | Einstein Physics 95000
record 4 | 32343 | El Said History 60000
record 5 | 33456 | Gold Physics 87000
record 6 45565 | Katz Comp. Sci. | 75000
record 7 | 58583 | Califieri History 62000
record 8 76543 | Singh Finance 80000
record 9 76766 | Crick Biology 72000
record 10| 83821 | Brandt Comp. Sci. | 92000
record 11| 98345 | Kim Elec. Eng. 80000

CS 377 [Spring 2016] - Ho

Blocks

Blocks contain records

Unspanned: records must lbe within one block, simple
but can lead to unused space

Spanned: record size can be larger than block size,
pointer to rest of record

(a) Block i Record 1 Record 2 Record 3
Block i + 1 Record 4 Record 5 Record 6
(b) Block i Record 1 Record 2 Record3 | Record4 | P —|

Block i+ 1 | Record 4 (rest) Record 5 Record 6 Record7 | P

CS 377 [Spring 2016] - Ho

Files

- Disk space Is organized into files
- Files consist of blocks (pages)
- Blocks consist of records
- Organization of records in files
- Heap

-+ Ordered (sequential)

CS 377 [Spring 2016] - Ho

Unordered (Heap) Files

- Contains records in no particular order
- New records are inserted at the end of the file

- Insert: very efficient, last disk block of file is copied into
buffer, add new record, and rewrite back onto disk

- Linear search: O(b)

-+ Reading the records in order of a particular filed requires
sorting the file records

CS 377 [Spring 2016] - Ho

Ordered (Sequential) File

File whose records are sorted DY s jams

some attribute (usually its o |

Block 2 Adams, John

primary key)

Block 3 Alexander, Ed

Search: binary search in

Block 4 Allen, Troy

O(|ng(b))

Block 5 Anderson, Zac

Insert: more expensive to keep

Block 6 Arnold, Mack

records In ordered file

Block n-1 | Wong, James

Reading the records in order of ——

~
2
«Q
=
nl

the ordering field is quite efficient =™ e

CS 377 [Spring 2016] - Ho

Average Access [Imes

Table 17.2 Average Access Times for a File of b Blocks under Basic File Organizations

Average Blocks to Access

Type of Organization Access/Search Method a Specific Record
Heap (unordered) Sequential scan (linear search) b/2
Ordered Sequential scan b/2
Ordered Binary search log, b

CS 377 [Spring 2016] - Ho

Buffer Manager

- Data should be in RAM for DBMS to operate on it
efficiently

- All pages may not fit into main memory

- Buffer manager is responsible for bringing blocks from
disk to main memory as needed

- Allocate space in the buffer if not exist (replace some
other block to make space for new block)

- Reads the block from disk to buffer

CS 377 [Spring 2016] - Ho

Buffer Manager (Pictorially)

Application

(Database server) .
— —— / READ)
BUFFER POOL I - _WRITE /

A

o
disk page
Nt

free frame =y

— / INPUT

~_OUTUPT

E DB j -

http://courses.cs.washington.edu/courses/csep544/14wi/video/archive/htmi5/csep544 14wi 6/slide487.jpg

CS 377 [Spring 2016] - Ho

http://courses.cs.washington.edu/courses/csep544/14wi/video/archive/html5/csep544_14wi_6/slide487.jpg

DBMS vs. OS File System

Why not let OS handle disk management and buffer
management”?

- DBMS better at predicting reference patterns

- Buffer management is necessary to implement
concurrency control and recovery

- More control of the overlap of I/O with computation

- Leverage multiple disks more effectively

CS 377 [Spring 2016] - Ho

Data Storage: Recap

- How DBMS stores data
- Disk, main memory
- Files, blocks, records
+ Organization of records In files

- Buffer manager

CS 377 [Spring 2016] - Ho

