
SQL Nested & Complex Queries
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Recap: Basic SQL Retrieval Query
A SQL query can consist of several clauses, but only
SELECT and FROM are mandatory 
 
SELECT <attribute list>  
FROM <table list>  
[WHERE <condition on the tables (join or selection)>] 
[ORDER BY <attribute list>] 
[LIMIT <number of tuples>]

CS 377 [Spring 2016] - Ho

Subquery
• Subquery: A parenthesized SELECT-FROM-WHERE

statement which results in a relation of tuples

• Syntax: 
(SELECT-command)

• Usage

• Inside WHERE clause (nested query)

• Inside FROM clause (temporal relation)

CS 377 [Spring 2016] - Ho

Nested Query
• Nested query is when a subquery is specified within the

WHERE clause of another query, called the outer query

• Syntax: 
SELECT …  
FROM … 
WHERE … (SELECT … 
 FROM …  
 WHERE …)

Nested Query

CS 377 [Spring 2016] - Ho

Nested Query (2)
• Forms of nested query:

• Set membership: IN and NOT IN

• Set comparison:  
compareOp ANY or compareOp ALL

• Test for empty relation: EXIST

• In theory, nesting can be arbitrarily deep but in practice
the number of levels is limited

CS 377 [Spring 2016] - Ho

Example Query: Nested Query
Retrieve the name and address of all employees who work for
the ‘Research’ department

• Soln #1: SELECT fname, lname 
 FROM employee, department 
 WHERE dno = dnumber 
 AND dname = ‘Research’;

• Soln #2: SELECT fname, lname 
 FROM EMPLOYEE 
 WHERE dno IN (SELECT pnumber 
 FROM department 
 WHERE dname = ‘Research’)

CS 377 [Spring 2016] - Ho

Example Query: Nested Query (2)
Find fname, lname of employees that do not have any
dependents

SELECT fname, lname  
FROM employee  
WHERE ssn NOT IN (SELECT essn 
 FROM dependent);

CS 377 [Spring 2016] - Ho

Correlated Nested Queries
• Correlated: inner query (query in the WHERE clause) uses one

or more attributes from relation(s) specified in the outer query

• Uncorrelated: inner query is a stand-alone query that can be
executed independently from the outer query

• Example Syntax: 
SELECT …  
FROM R1  
WHERE attr1 IN (SELECT attr2  
 FROM R2 
 WHERE R2.attr3 = R1.attr4)

CS 377 [Spring 2016] - Ho

Example Query: Correlated Nested Query
Retrieve the name of each employee who has a dependent
with the same name as the employee

SELECT e.fname, e.lname  
FROM employee AS e  
WHERE e.ssn IN (SELECT essn 
 FROM dependent  
 WHERE essn = e.ssn  
 AND e.fname = name);

CS 377 [Spring 2016] - Ho

Correlated Nested Query Execution
• FOR (each tuple X in the outer query) DO { 

 Execute inner query using attribute value of tuple X 
}

• Example: 
SELECT fname, lname, salary, uno  
FROM employee a  
WHERE salary >= ALL (SELECT salary 
 FROM employee a  
 WHERE b.dno = a.dno)

CS 377 [Spring 2016] - Ho

Correlated Nested Query Execution (2)

• Outer tuple a =  
WHERE 50,000 >= ALL (SELECT salary FROM employee b
where b.dno = 4)  
=> FALSE

FName LName DNo Salary
John Smith 4 50,000

James Bond 4 80,000
Jane Brown 3 60,000

Jennifer Wallace 5 30,000
James Borg 1 55,000
Joyce English 5 25,000
Alicia Wong 4 70,000

John Smith 4 50,000

CS 377 [Spring 2016] - Ho

Correlated Nested Query Execution (2)

• Outer tuple a =  
WHERE 80,000 >= ALL (SELECT salary FROM employee b
where b.dno = 4)  
=> TRUE (select tuple)

FName LName DNo Salary
John Smith 4 50,000

James Bond 4 80,000
Jane Brown 3 60,000

Jennifer Wallace 5 30,000
James Borg 1 55,000
Joyce English 5 25,000
Alicia Wong 4 70,000

James Bond 4 80,000

CS 377 [Spring 2016] - Ho

Correlated Nested Query Execution (2)

SELECT fname, lname, salary, uno  
FROM employee a 
WHERE salary >= ALL (SELECT salary FROM employee a  
 WHERE b.dno = a.dno) 
 
Return name, salary, and department number of employees
whose salary is the highest of all employees in his/her department

FName LName DNo Salary
James Bond 4 80,000
Jane Brown 3 60,000

Jennifer Wallace 5 30,000
James Borg 1 55,000

CS 377 [Spring 2016] - Ho

Correlated Nested Query Scope
Scoping rules defines where a name is visible

• Each nesting level constitutes a new inner scope

• Names of relations and their attributes in outer query
are visible in the inner query but not the converse

• Attribute name specified inside an inner query is
associated with nearest relation

CS 377 [Spring 2016] - Ho

Example: Scoping Nested Queries
SELECT <attribute list from R1 and/or R2> 
FROM R1, R2  
WHERE <conditions from R1 and/or R2> AND  
 (SELECT <attribute list from R1, R2, R3 and/or R4> 
 FROM R3, R4  
 WHERE <conditions from R1, R2, R3, and/or R4>)

• Attributes of R1 and R2 are visible in the inner query

• Attributes of R3 and R4 are not visible in the outer
query

CS 377 [Spring 2016] - Ho

Example: Scoping Nested Queries (2)
SELECT <attribute list from R1 and/or R2> 
FROM R1, R2  
WHERE <conditions from R1 and/or R2> AND 
 (SELECT x 
 FROM R3, R4 
 WHERE <conditions from R1, R2, R3, and/or R4>)

• If R3 or R4 contains the attribute name x, then x refers to
that attribute in R3 or Rf

• If R3 and R4 does not contain the attribute name x, then
x in the inner query refers to the attribute in R1 or R2

CS 377 [Spring 2016] - Ho

SQL Query: EXISTS
• Checks whether the result of a correlated nested query is

empty (contains no tuples) or not

• Example: Retrieve the names of employees who have no
dependents 
 
SELECT fname, lname  
FROM employee  
WHERE NOT EXISTS (SELECT *  
 FROM dependent  
 WHERE ssn = essn);

CS 377 [Spring 2016] - Ho

SQL Query: Aggregate Functions
• COUNT, SUM, MAX, MIN, AVG can be used in the

SELECT clause

• Example: Find the sum, maximum, minimum, and
average salary among all employees in the Research
department 
 
SELECT SUM(salary), MAX(salary)  
 MIN(salary), AVG(salary)  
FROM employee, department  
WHERE dno = dnumber AND dname = ‘Research’

CS 377 [Spring 2016] - Ho

SQL Query: Aggregate Functions (2)
• Name given to the selected aggregate function attribute is the

same as the function call

• SELECT MAX(salary), MIN(salary), AVG(salary)  
FROM employee; 

• Rename selected attributes with AS alias clause inside the
SELECT clause

• SELECT MAX(salary) AS max, MIN(salary) AS min,
AVG(salary) AS average  
FROM employee;

max(salary) min(salary) avg(salary)

CS 377 [Spring 2016] - Ho

SQL Example: Aggregate Function
Retrieve the names of all employees who have two or more
dependents

CS 377 [Spring 2016] - Ho

SQL Query: GROUP BY
• Apply aggregate functions to subgroups of tuples in a relation

• Corresponds to grouping and aggregate function in RA

• Grouping attributes: attributes used to group the tuples

• Function is applied to each subgroup independently

• Syntax:  
SELECT <attribute list> 
FROM <table list> 
WHERE <condition on the tables> 
GROUP BY <grouping attributes>

CS 377 [Spring 2016] - Ho

GROUP BY Execution
A query with GROUP BY clause is processed as follows:

1. Select the tuples that satisfies the WHERE condition

2. Selected tuples from (1) are grouped based on their
value in the grouping attributes

3. One or more set functions is applied to the group

CS 377 [Spring 2016] - Ho

SQL Example: GROUP BY
For each department, retrieve the department number, the
number of employees in the department, and their average
salary

SELECT dno, count(*), avg(salary)  
FROM employee  
GROUP BY dno

CS 377 [Spring 2016] - Ho

SQL Query: GROUP BY details
• What happens if we do not include certain grouping

attributes in the SELECT clause?

• What happens if we include an attribute in the SELECT
clause that is not in the group by attribute list?

CS 377 [Spring 2016] - Ho

SQL Query: HAVING
• HAVING clause specifies a selection condition on groups

(rather than individual tuples)

• Filters out groups that do not satisfy the group condition

• Syntax: 
SELECT <attribute list>  
FROM <table list>  
WHERE <condition on the tables>  
GROUP BY <grouping attributes> 
HAVING <group condition>

CS 377 [Spring 2016] - Ho

SQL Query: HAVING Details
• Group condition is a condition on a set of tuples —> must use a

grouping attribute inside the HAVING clause

• Process order:

1. Select tuples that satisfy the WHERE condition

2. Selected tuples from (1) are grouped based on their value in the
grouping attributes

3. Filter groups so only those satisfying the condition are left

4. Set functions in the SELECT clause are applied to these
groups

CS 377 [Spring 2016] - Ho

SQL Example: HAVING
For each project on which more than two employees work,
retrieve the project number, project name, and the number
of employees who work on that project

SELECT pnumber, pname, COUNT(*)  
FROM project, works_on  
WHERE pnumber = pno  
GROUP BY pnumber, pname 
HAVING COUNT(*) > 2;  

CS 377 [Spring 2016] - Ho

SQL Example: HAVING (2)
For each department with at least 2 employees, find the
department name, and the number of employees in that
department that earns greater than $40K

SELECT dname, COUNT(ssn)  
FROM department, employee  
WHERE dnumber = dno  
 AND salary > 40000  
GROUP BY dname 
HAVING COUNT(ssn) > 2;  

Is this right? What does it return?

CS 377 [Spring 2016] - Ho

SQL Example: HAVING (2)
• Previous query only counts the number of departments

that have at least 2 employees that earn more then $40K.

• SELECT dname, COUNT(ssn) 
FROM employee, department 
WHERE dno = dnumber 
 AND dno IN (SELECT dno 
 FROM employee  
 GROUP BY dno 
 HAVING COUNT(ssn) >= 2) 
 AND salary > 40000 
GROUP BY dname

CS 377 [Spring 2016] - Ho

Summary of SQL Queries
SELECT [DISTINCT] <attribute list>  
FROM <table list>  
[WHERE <condition on the tables>]  
[GROUP BY <grouping attributes>] 
[HAVING <group condition>]  
[ORDER BY <attribute list> ASC | DESC]  
[LIMIT <number of tuples>]

This has every possible clause of a SQL command included

CS 377 [Spring 2016] - Ho

Query Formulation Techniques: INTERSECT

How to compute the intersection of two sets when the
system does not support INTERSECT (e.g., MySQL)?

x IN (set1 INTERSECT set2)

(x IN set1) AND (x IN set2)

CS 377 [Spring 2016] - Ho

SQL Example: INTERSECT
Find fname and lname of employees who work on some project
controlled by the ‘Research’ department and also on some project
controlled by the ‘Administration’ department

SELECT fname, lname 
FROM employee  
WHERE ssn IN (SELECT essn  
 FROM works_on, project, department  
 WHERE pno = pnumber  
 AND dnum = dnumber AND dname = ‘Research’) 
 AND ssn IN (SELECT essn  
 FROM works_on, project, department  
 WHERE pno = pnumber AND dnum = dnumber 
 AND dname = ‘Administration’);

CS 377 [Spring 2016] - Ho

Query Formulation Techniques: DIFFERENCE

How to compute the difference of two sets when SQL
doesn’t support set difference?

x IN (set1 - set2)

(x IN set1) AND (x NOT IN set2)

CS 377 [Spring 2016] - Ho

SQL Example: DIFFERENCE
Find SSN of employees in the ‘Research’ department who
has no dependents

SELECT ssn 
FROM employee  
WHERE ssn IN (SELECT ssn  
 FROM employee, department  
 WHERE dno = dnumber  
 AND dname = ‘Research’)  
 AND ssn NOT IN (SELECT essn  
 FROM dependent)

CS 377 [Spring 2016] - Ho

Query Formulation Techniques: Superset
How to formulate set1 is a superset (contains) of another
set, set2?

set1 CONTAINS set2 <=> set2 - set1 = EMPTY

SELECT …  
FROM … 
WHERE NOT EXISTS (SELECT *  
 FROM <table>  
 WHERE x IN set2  
 AND x NOT IN set1)

CS 377 [Spring 2016] - Ho

Query Formulation Techniques: Subset
How to formulate set1 is a subset (part of) of another set,
set2?

set1 SUBSET set2 <=> set1 - set2 = EMPTY

SELECT …  
FROM … 
WHERE NOT EXISTS (SELECT *  
 FROM <table>  
 WHERE x IN set1  
 AND x NOT IN set2)

CS 377 [Spring 2016] - Ho

Query Formulation Techniques: Division
• How to compute the division between two relations?

• Example: Find lname of all employees who work on all projects
controlled by department number

• RA:

• SQL: Use NOT EXISTS and set difference  
(can think of it as set of projects worked on employee contains
set of projects controlled by department 4)

H1 = ⇡
pnumber

(PROJECT ./
dnum=dnumber

�
dname=‘Research’

(DEPARTMENT))

H2 = ⇡
essn,pno(WORKS ON)

H3 = H2÷H1

Answer = ⇡
fname,lname

(EMPLOYEE ./
ssn = ssn

H3)

CS 377 [Spring 2016] - Ho

SQL Example: DIVISION
Find lname of all employees who work on all projects controlled by
department number

SELECT fname, lname 
FROM employee 
WHERE NOT EXISTS  
 (SELECT pnumber 
 FROM project 
 WHERE pnumber IN (SELECT pnumber  
 FROM project  
 WHERE dnum = 4)  
 AND pnumber NOT IN (SELECT dno 
 FROM works_on  
 WHERE essn = ssn));

project controlled 
by Research

projects worked on  
by employee

CS 377 [Spring 2016] - Ho

Query Formulation Techniques: Only
• How to compute queries that ask for only?

• Example: Find the names of projects that are worked on
by only employees in the ‘Research’ department?

• Formulate the solution using a subset condition:

• Employees working on project p are a subset of
employees in the Research department

CS 377 [Spring 2016] - Ho

SQL Example: Only
Find the names of projects that are worked on by only employees in the
‘Research’ department?

SELECT pname  
FROM project 
WHERE NOT EXISTS  
 (SELECT ssn 
 FROM employee 
 WHERE ssn IN (SELECT essn 
 FROM works_on 
 WHERE pno = pnumber)  
 AND ssn NOT IN (SELECT ssn 
 FROM employee, department 
 WHERE dno = dnumber 
 AND dname = ‘Research’));

employees working on  
project p

employees from 
research department

CS 377 [Spring 2016] - Ho

Query Formulation Techniques: Most Number of

• How to compute queries that ask for the most number of some
attribute?

• Example: Find the name of the departments with most number of
employees?

Ans: Use nested query with the max function  
SELECT dname  
FROM department, employee  
WHERE dno = dnumber  
GROUP BY dname 
HAVING COUNT(ssn) = (SELECT MAX(COUNT(ssn))  
 FROM employee GROUP BY dno);

CS 377 [Spring 2016] - Ho

SQL Practice (1)
Find the name of the departments with 2 or more male
employees 
 

CS 377 [Spring 2016] - Ho

SQL Practice (2)
Find the name of employees who have more than two
dependents and work on more than 2 projects

CS 377 [Spring 2016] - Ho

SQL Practice (3)
Find the name of the employees with the most number of
dependents

CS 377 [Spring 2016] - Ho

SQL Practice (4)
Find fname and lame of employees who works on all
projects that are worked on by John Smith  

CS 377 [Spring 2016] - Ho

SQL Nested & Complex Queries: Recap
• Nested Queries

• Aggregate Functions

• SQL Grouping

• GROUP BY

• HAVING

• Query Formulation Techniques

