
SQL Queries
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

• Data definition

• Database Creation

• Table Creation

• Query (SELECT)

• Data update (INSERT, DELETE, UPDATE)

• View definition

SQL Outline

CS 377 [Spring 2016] - Ho

Basic SQL Retrieval Query
• Basic form of SELECT statement is called a mapping or a

SELECT-FROM-WHERE block 
 
SELECT <attribute list> 
FROM <table list> 
WHERE <condition on the tables>

• Translated to relational algebra expression 

• Does not remove duplicates as SELECT in relational algebra

conditions of the form attr1 op constant/attr2

cartesian product of
relations is formed

⇡<attribute list>�<condition>(R1

⇥R
2

⇥ · · ·⇥Rn)

CS 377 [Spring 2016] - Ho

Example Query: Basic
• Retrieve the birthdate and address of the employee

whose name is ‘John B. Smith”  
 
SELECT bdate, address  
FROM employee  
WHERE fname=‘John’ AND minit=‘B’  
AND lname=‘Smith’;

• Similar to SELECT-PROJECT pair of relational algebra
operations

• Result may contain duplicate tuples

CS 377 [Spring 2016] - Ho

Example Query (1)
List the SSN, last name, and department number of all
employees 
 
SELECT ssn, lname, dno  
FROM employee;   unspecified WHERE clause

indicates no condition
ssn lname dno

111-12-2345 Kirk 5
222-23-2222 McCoy 4
134-23-2345 Sulu 4
234-13-3840 Chapel 1
134-52-2340 Scott 5

CS 377 [Spring 2016] - Ho

Example Query (2)
List the department number and name of all departments 
 
SELECT dnumber, dname  
FROM department;  

dnumber dname
5 Research
4 Administration
1 Headquarters

CS 377 [Spring 2016] - Ho

Example Query (3)
SELECT ssn, lname, dno, dnumber, dname  
FROM employee, department;  

ssn lname dno dnumber dname
111-12-2345 Kirk 5 5 Research
111-12-2345 Kirk 5 4 Administration
111-12-2345 Kirk 5 1 Headquarters
222-23-2222 McCoy 4 5 Research
222-23-2222 McCoy 4 4 Administration
222-23-2222 McCoy 4 1 Headquarters

… … … … …
134-52-2340 Scott 5 5 Research
134-52-2340 Scott 5 4 Administration
134-52-2340 Scott 5 1 Headquarters

CS 377 [Spring 2016] - Ho

SQL: Join Operation
• Relational algebra expression

• Cartesian product followed by a selection operation

• SQL command

• FROM clause specifies Cartesian product operation

• WHERE clause specifies condition of the selection
operation

R
1

./
condition

R
2

= �
condition

(R
1

⇥R
2

)

CS 377 [Spring 2016] - Ho

Example Query: Join
SELECT ssn, lname, dno, dnumber, dname  
FROM employee, department  
WHERE dno = dnumber; 

ssn lname dno dnumber dname
111-12-2345 Kirk 5 5 Research
222-23-2222 McCoy 4 4 Administration
134-23-2345 Sulu 4 4 Administration
234-13-3840 Chapel 1 1 Headquarters
134-52-2340 Scott 5 5 Research

CS 377 [Spring 2016] - Ho

Example Query (4)
Find the name and address of employees working in the
‘Research’ department

• Relational Algebra expression 
 
 

• SQL expression 
SELECT ssn, lname, dno, dnumber, dname 
FROM employee, department 
WHERE dname=‘Research’ AND dno = dnumber;  

RD = �
Dname=‘Research’

(DEPARTMENT)

RE = RD ./
Dnumber = Dno

EMPLOYEE

Answer = ⇡
fname,lname,Address

(RE)

selection condition join condition

CS 377 [Spring 2016] - Ho

Example Query (5)
Find the name of employees in the ‘Research’ department
who earn over $30,000

CS 377 [Spring 2016] - Ho

Example Query (6)
Find the SSN of employees who work on the project
‘ProductX’

CS 377 [Spring 2016] - Ho

Example Query (7)
Find the name of employees who work on the project
‘ProductX’

CS 377 [Spring 2016] - Ho

Example Query (8)
For the projects located in ‘Stafford’, find the name of the
project, the name of the controlling department, the last
name of the department’s manager, his address, and
birthdate

CS 377 [Spring 2016] - Ho

SQL: DISTINCT
• SQL outputs duplicate values by default

• Each relation is a multi-set (bag) of tuples as opposed
to a set of tuples

• Favored for database efficiency

• DISTINCT keyword in SELECT clause removes duplicate
values

• Downside: requires sorting of the tuples (heavy duty
processing)

CS 377 [Spring 2016] - Ho

Example Query: DISTINCT
• SELECT name  

FROM dependent;

• SELECT DISTINCT name  
FROM dependent;

name
James
Spock
Uhura
James
Hikaru

name
James
Spock
Uhura
Hikaru

CS 377 [Spring 2016] - Ho

SQL: * SELECTOR
• Selects all the values of the selected tuples for all the

attributes

• Example: 
SELECT *  
FROM department  
WHERE dname = ‘Research’;

dnumber dname mgrSsn mgrStartDate
5 Research 333-44-5555 1978-05-10

CS 377 [Spring 2016] - Ho

SQL: Qualifying Attribute Names
• Ambiguous attribute names: the same name for two (or

more) attributes in different relations 
Example:  
Project(essn, pno, hours);  
Dependent(essn, name, sex, bdate, relationship)

• Ambiguous attributed names that appear in the same
query need to be made explicit (otherwise cannot tell
which relation it is from)

• Qualify (prefix) the attribute name with the source relation
name

CS 377 [Spring 2016] - Ho

Example Query: Qualifying Attribute Names

Find project numbers of projects worked on by employees
who have a daughter named ‘Alice’ 
 
SELECT pno  
FROM works_on, dependent  
WHERE works_on.essn = dependent.essn  
 AND name = ‘Alice’;

CS 377 [Spring 2016] - Ho

SQL: Aliasing
• Sometimes, there is a need to use the same relation multiple

times in a SELECT command 
Example: List each employees first name, last name, and their
manager’s first name and last name

• Every attribute name of that relation will be ambiguous

• Use an alias or identifier that follows a relation name in the FROM
clause of a SELECT command

• No comma between alias and relation name!

• Refer to the relation using the given alias in other parts of query

CS 377 [Spring 2016] - Ho

Example Query: Aliasing
List each employees first name, last name, and their
manager’s first name and last name 
 
SELECT e.fname, e.lname, m.fname, m.lname  
FROM employee e, employee m  
WHERE e.superssn = m.ssn;

e and m are called aliases or tuple variables
for employee relation

CS 377 [Spring 2016] - Ho

SQL: Arithmetic Operations
• Any arithmetic expression (that makes sense) can be

used in the SELECT clause

• Example: Show the effect of giving all employees who
work on the ‘ProductX’ project a 10% raise 
 
SELECT fname, lname, 1.1*salary  
FROM employee, works_on, project  
WHERE ssn = essn  
 AND pno = pnumber 
 AND pname = ‘ProductX’

CS 377 [Spring 2016] - Ho

SQL: Set Operations
Not all set operations have been incorporated into SQL

• UNION: in most implementations because it’s very easy
to merge 2 result sets (O(n) running time)

• INTERSECT: in few implementations because it’s hard
to intersect 2 sets (O(N log N) running time)

• MINUS: almost no implement provides this (just as
expensive as INTERSECT)

• CARTESIAN PRODUCT: built into SELECT command

CS 377 [Spring 2016] - Ho

SQL: Set Operations (2)
• Resulting relations of set operations are sets of tuples  

—> duplicate tuples are eliminated from the result

• Set operations apply only to union compatible relations:
two relations must have the same attributes and
attributes must be in the same order

• Set division is not part of the SQL standard

• MySQL only implements the UNION operator

CS 377 [Spring 2016] - Ho

Example Query: UNION
Find the name of projects that are worked on by ‘Smith’ or ‘Borg’  
 
(SELECT pname 
 FROM project, works_on, employee  
 WHERE pnumber = pno 
 AND essn = ssn 
 AND lname = ‘Smith’)  
UNION  
(SELECT pname 
 FROM project, works_on, employee  
 WHERE pnumber = pno 
 AND essn = ssn 
 AND lname = ‘Borg’)

CS 377 [Spring 2016] - Ho

Example Query: UNION (2)
List all project names that involve an employee whose last name is
‘Smith” either as a worker or manager of the department that
controls the project 
 
(SELECT pname 
 FROM project, department, employee 
 WHERE dnum = dnumber AND mgrssn = ssn 
 AND lname = ‘Smith’) 
UNION 
(SELECT pname 
 FROM project, works_on, employee 
 WHERE pnumber = pno AND essn = ssn 
 AND lname = ‘Smith’)

CS 377 [Spring 2016] - Ho

SQL: What can be used in WHERE?
• Attribute names of the relation(s) used in the FROM clause

• Comparison operators: =, <>, <, >, <=, >=

• Arithmetic operations: +, -, *, /

• Logical operators to combine conditions: AND, OR, NOT

• Operations on strings (e.g., concatenation)

• Membership test

• Pattern matching

CS 377 [Spring 2016] - Ho

SQL: IN Operator
• Tests whether a value is contained in a set

• True if attribute value is a member of the set of values

• False otherwise

• Syntax: 
attr IN (set of values)

CS 377 [Spring 2016] - Ho

Example Query: IN
• Find the name of employees whose SSN is 123456789 or

333445555 
 
SELECT fname, lname 
FROM employee 
WHERE ssn IN (‘123456789’, ‘333445555’);

• Find the name of employees whose DNO is 4 or 5 and are male 
 
SELECT fname, lname 
FROM employee 
WHERE (dno, sex) IN ((4, ‘M’), (5, ‘M’));

CS 377 [Spring 2016] - Ho

SQL: LIKE Operator
• Substring comparison for partial strings (wildcard string

comparison)

• Special wildcard characters:

• Underscore (_) matches exactly one character  
(equivalent to ? in the UNIX shell)

• Percent (%) matches 0 or more characters  
(equivalent to * in the UNIX shell)

• Only used with the LIKE operator

CS 377 [Spring 2016] - Ho

Example Query: LIKE
• Find names of employees whose last name start with ’S'  
 
SELECT fname, lname  
FROM employee  
WHERE lname LIKE ’S%’;

• Find the names of employees who live in Houston  
 
SELECT fname, lname  
FROM employee  
WHERE address LIKE ‘%Houston%;

CS 377 [Spring 2016] - Ho

SQL: IS NULL
• Test if an attribute contains the NULL value

• Syntax: 
attr IS NULL

• Example: Find employees that have NULL value in the
salary attribute 
 
SELECT *  
FROM employee  
WHERE salary IS NULL

CS 377 [Spring 2016] - Ho

SQL: NOT IN and IS NOT NULL
• Tests whether a value is not contained in a set or not a

null value respectively

• Syntax looks similar to the IN and IS NULL operators:  
attr NOT IN (set of values)  
attr IS NOT NULL

CS 377 [Spring 2016] - Ho

SQL: Three-Value Logic
TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

AND

TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

OR

TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

NOT

CS 377 [Spring 2016] - Ho

SQL: ORDER BY
• Sort the tuples in a query based on the values of some

attributes

• Default order is in ascending order of the values (ASC)

• Specify descending order using keyword DESC

• Syntax:  
SELECT <attribute list> 
FROM <table list>  
WHERE <condition on the tables>  
ORDER BY <attribute-list> ASC | DESC;

sorting by multiple
columns is just

separated with a comma

CS 377 [Spring 2016] - Ho

Example Query: ORDER BY
• Sort employees by their salary value in descending order 

SELECT fname, lname, salary  
FROM employee  
ORDER BY salary DESC;

• Sort employees by their salary figures and within the
same salary figure, by their last name  
SELECT fname, lname, salary  
FROM employee  
ORDER BY salary, lname;

CS 377 [Spring 2016] - Ho

SQL: LIMIT
• Limit the output to be only the specified number of tuples

• Useful if your table has many relations and you just want to
sanity check your work

• Can be used with ORDER BY to get a maximum or
minimum value

• Syntax:  
SELECT <attribute list> 
FROM <table list> 
WHERE <condition on the tables> 
LIMIT <number of tuples>;

CS 377 [Spring 2016] - Ho

MySQL Workbench
• Open source, integrated development environment for

MySQL database system

• SQL Editor

• Data modeling

• Data administration + performance monitoring

• Works on Windows, Linux, Mac OS X

• https://www.mysql.com/products/workbench/

https://www.mysql.com/products/workbench/

CS 377 [Spring 2016] - Ho

MySQL Workbench DEMO

CS 377 [Spring 2016] - Ho

SQL Queries: Recap
• Basic Query Form

• Qualifying and Aliasing

• * SELECTOR

• UNION

• DISTINCT

• IN and LIKE

• ORDER BY

• LIMIT

